Thermodynamics of the Association of Aminoglycoside Antibiotics with Human Angiogenin

Page: [92 - 101] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The body needs to maintain a firm balance between the inducers and inhibitors of angiogenesis, the process of proliferation of blood vessels from pre-existing ones. Human angiogenin (hAng), being a potent inducer of angiogenesis, is a cause of tumor cell proliferation, therefore its inhibition becomes a vital area of research. Aminoglycosides are linked ring systems consisting of amino sugars and an aminocyclitol ring and are in use in clinical practices for a long time. These compounds have found clinical uses as antibacterial agents that inhibit bacterial protein synthesis.

Objective: Gentamycin C1, Kanamycin A, Neomycin B, Paromomycin I, and Streptomycin A are commonly used aminoglycoside antibiotics that have been used for the present study. Among these, Neomycin has reported inhibitory activity against angiogenin-induced angiogenesis on the chicken chorioallantoic membrane. This study focuses on the thermodynamic parameters involved in the interactions of these antibiotics with hAng.

Methods: Agarose gel-based assay, Fluorescence quenching studies and Docking studies.

Results: Anti-ribonucleolytic effect of the antibiotics was observed qualitatively using an agarose gelbased assay, which shows that Neomycin exhibits the most efficient inhibition of hAng. Fluorescence quenching studies at different temperatures, using Stern-Volmer and van’t Hoff equations provide information about the thermodynamics of binding, which furthermore highlights the higher binding constant of Neomycin. Docking studies showed that the antibiotics preferably interact with the nuclear translocation site, except Streptomycin, which shows affinity towards the ribonucleolytic site of the protein with very less affinity value.

Conclusion: The study has shown the highly spontaneous formation of Neomycin-hAng complex, giving an exothermic reaction with increase in the degree of freedom of the protein-ligand complex.

Graphical Abstract

[1]
Sheng, J.; Xu, Z. Three decades of research on angiogenin: A review and perspective. Acta Biochim. Biophys. Sin., 2016, 48(5), 399-410.
[http://dx.doi.org/10.1093/abbs/gmv131] [PMID: 26705141]
[2]
Shestenko, O.P.; Nikonov, S.D.; Mertvetsov, N.P. Angiogenin and its role in angiogenesis. Mol. Biol., 2001, 35(3), 349-371.
[PMID: 11443914]
[3]
Schein, C.H. From housekeeper to microsurgeon: The diagnostic and therapeutic potential of ribonucleases. Nat. Biotechnol., 1997, 15(6), 529-536.
[http://dx.doi.org/10.1038/nbt0697-529] [PMID: 9181574]
[4]
Matousek, J. Ribonucleases and their antitumor activity. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2001, 129(3), 175-191.
[http://dx.doi.org/10.1016/S1532-0456(01)90202-9] [PMID: 11461835]
[5]
Loverix, S.; Steyaert, J. Ribonucleases: From prototypes to therapeutic targets? Curr. Med. Chem., 2003, 10(9), 779-785.
[http://dx.doi.org/10.2174/0929867033457845] [PMID: 12678781]
[6]
Saxena, S.K.; Rybak, S.M.; Davey, R.T., Jr; Youle, R.J.; Ackerman, E.J. Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J. Biol. Chem., 1992, 267(30), 21982-21986.
[http://dx.doi.org/10.1016/S0021-9258(19)36710-9] [PMID: 1400510]
[7]
Shapiro, R.; Riordan, J.F.; Vallee, B.L. Characteristic ribonucleolytic activity of human angiogenin. Biochemistry, 1986, 25(12), 3527-3532.
[http://dx.doi.org/10.1021/bi00360a008] [PMID: 2424496]
[8]
Shapiro, R.; Vallee, B.L. Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry, 1989, 28(18), 7401-7408.
[http://dx.doi.org/10.1021/bi00444a038] [PMID: 2479414]
[9]
Kurachi, K.; Davie, E.W.; Strydom, D.J.; Riordan, J.F.; Vallee, B.L. Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry, 1985, 24(20), 5494-5499.
[http://dx.doi.org/10.1021/bi00341a032] [PMID: 2866795]
[10]
Fett, J.W.; Strydom, D.J.; Lobb, R.R.; Alderman, E.M.; Bethune, J.L.; Riordan, J.F.; Vallee, B.L. Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 1985, 24(20), 5480-5486.
[http://dx.doi.org/10.1021/bi00341a030] [PMID: 4074709]
[11]
D’ Alessio, G.; Riordan, J.F. Ribonuclease: Structure and functions; Academic Press: New York, 1997.
[12]
Rybak, S.M.; Vallee, B.L. Base cleavage specificity of angiogenin with Saccharomyces cerevisiae and Escherichia coli 5S RNAs. Biochemistry, 1988, 27(7), 2288-2294.
[http://dx.doi.org/10.1021/bi00407a007] [PMID: 3289612]
[13]
Harper, J.W.; Vallee, B.L. A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry, 1989, 28(4), 1875-1884.
[http://dx.doi.org/10.1021/bi00430a067] [PMID: 2719939]
[14]
Russo, N.; Shapiro, R.; Acharya, K.R.; Riordan, J.F.; Vallee, B.L. Role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc. Natl. Acad. Sci. USA, 1994, 91(8), 2920-2924.
[http://dx.doi.org/10.1073/pnas.91.8.2920] [PMID: 8159680]
[15]
Shapiro, R.; Fox, E.A.; Riordan, J.F. Role of lysines in human angiogenin: Chemical modification and site-directed mutagenesis. Biochemistry, 1989, 28(4), 1726-1732.
[http://dx.doi.org/10.1021/bi00430a045] [PMID: 2497770]
[16]
Leonidas, D.D.; Shapiro, R.; Allen, S.C.; Subbarao, G.V.; Veluraja, K.; Acharya, K.R. Refined crystal structures of native human angiogenin and two active site variants: Implications for the unique functional properties of an enzyme involved in neovascularisation during tumour growth. J. Mol. Biol., 1999, 285(3), 1209-1233.
[http://dx.doi.org/10.1006/jmbi.1998.2378] [PMID: 9918722]
[17]
Lyons, S.M.; Fay, M.M.; Akiyama, Y.; Anderson, P.J.; Ivanov, P. RNA biology of angiogenin: Current state and perspectives. RNA Biol., 2017, 14(2), 171-178.
[http://dx.doi.org/10.1080/15476286.2016.1272746] [PMID: 28010172]
[18]
Hallahan, T.W.; Shapiro, R.; Vallee, B.L. Dual site model for the organogenic activity of angiogenin. Proc. Natl. Acad. Sci. USA, 1991, 88(6), 2222-2226.
[http://dx.doi.org/10.1073/pnas.88.6.2222] [PMID: 2006161]
[19]
Shapiro, R.; Vallee, B.L. Identification of functional arginines in human angiogenin by site-directed mutagenesis. Biochemistry, 1992, 31(49), 12477-12485.
[http://dx.doi.org/10.1021/bi00164a026] [PMID: 1281426]
[20]
Wiedłocha, A. Following angiogenin during angiogenesis: A journey from the cell surface to the nucleolus. Arch. Immunol. Ther. Exp., 1999, 47(5), 299-305.
[PMID: 10604235]
[21]
Xu, Z.P.; Tsuji, T.; Riordan, J.F.; Hu, G.F. The nuclear function of angiogenin in endothelial cells is related to rRNA production. Biochem. Biophys. Res. Commun., 2002, 294(2), 287-292.
[http://dx.doi.org/10.1016/S0006-291X(02)00479-5] [PMID: 12051708]
[22]
Moroianu, J.; Riordan, J.F. Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc. Natl. Acad. Sci. USA, 1994, 91(5), 1677-1681.
[http://dx.doi.org/10.1073/pnas.91.5.1677] [PMID: 8127865]
[23]
Fuchs, S.M.; Raines, R.T. Pathway for polyarginine entry into mammalian cells. Biochemistry, 2004, 43(9), 2438-2444.
[http://dx.doi.org/10.1021/bi035933x] [PMID: 14992581]
[24]
Shimoyama, S.; Gansauge, F.; Gansauge, S.; Negri, G.; Oohara, T.; Beger, H.G. Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res., 1996, 56(12), 2703-2706.
[PMID: 8665497]
[25]
Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat., 2010, 13(6), 151-171.
[http://dx.doi.org/10.1016/j.drup.2010.08.003] [PMID: 20833577]
[26]
Greenwood, D. Antimicrobial Chemotherapy; Oxford University Press: Oxford, 1995.
[27]
Turnidge, J. Pharmacodynamics and dosing of aminoglycosides. Infect. Dis. Clin. North Am., 2003, 17(3), 503-528. v.
[http://dx.doi.org/10.1016/S0891-5520(03)00057-6] [PMID: 14711074]
[28]
Mikkelsen, N.E.; Brännvall, M.; Virtanen, A.; Kirsebom, L.A. Inhibition of RNase P RNA cleavage by aminoglycosides. Proc. Natl. Acad. Sci. USA, 1999, 96(11), 6155-6160.
[http://dx.doi.org/10.1073/pnas.96.11.6155] [PMID: 10339557]
[29]
Tekos, A.; Tsagla, A.; Stathopoulos, C.; Drainas, D. Inhibition of eukaryotic ribonuclease P activity by aminoglycosides: Kinetic studies. FEBS Lett., 2000, 485(1), 71-75.
[http://dx.doi.org/10.1016/S0014-5793(00)02190-6] [PMID: 11086168]
[30]
von Ahsen, U.; Davies, J.; Schroeder, R. Antibiotic inhibition of group I ribozyme function. Nature, 1991, 353(6342), 368-370.
[http://dx.doi.org/10.1038/353368a0] [PMID: 1922343]
[31]
Eubank, T.D.; Biswas, R.; Jovanovic, M.; Litovchick, A.; Lapidot, A.; Gopalan, V. Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates. FEBS Lett., 2002, 511(1-3), 107-112.
[http://dx.doi.org/10.1016/S0014-5793(01)03322-1] [PMID: 11821058]
[32]
Hu, G.F. Neomycin inhibits the angiogenic activity of fibroblast and epidermal growth factors. Biochem. Biophys. Res. Commun., 2001, 287(4), 870-874.
[http://dx.doi.org/10.1006/bbrc.2001.5668] [PMID: 11573945]
[33]
Yoshioka, N.; Wang, L.; Kishimoto, K.; Tsuji, T.; Hu, G.F. A therapeutic target for prostate cancer based on angiogenin-stimulated angiogenesis and cancer cell proliferation. Proc. Natl. Acad. Sci. USA, 2006, 103(39), 14519-14524.
[http://dx.doi.org/10.1073/pnas.0606708103] [PMID: 16971483]
[34]
Panda, A.; Karhadkar, S.; Acharya, B.; Banerjee, A.; De, S.; Dasgupta, S. Enhancement of angiogenin inhibition by polyphenol-capped gold nanoparticles. Biopolymers, 2021, 112(7), e23429.
[http://dx.doi.org/10.1002/bip.23429] [PMID: 33851721]
[35]
Maiti, T.K.; Chatterjee, J.; Dasgupta, S. Effect of green tea polyphenols on angiogenesis induced by an angiogenin-like protein. Biochem. Biophys. Res. Commun., 2003, 308(1), 64-67.
[http://dx.doi.org/10.1016/S0006-291X(03)01338-X] [PMID: 12890480]
[36]
Hu, G.F. Neomycin inhibits angiogenin-induced angiogenesis. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 9791-9795.
[http://dx.doi.org/10.1073/pnas.95.17.9791] [PMID: 9707554]
[37]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: NJ, USA, 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[38]
Bowman, L.H.; Rabin, B.; Schlessinger, D. Multiple ribosomal RNA cleavage pathways in mammalian cells. Nucleic Acids Res., 1981, 9(19), 4951-4966.
[http://dx.doi.org/10.1093/nar/9.19.4951] [PMID: 7312622]
[39]
Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 2012, 9(7), 671-675.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[40]
Min, J.; Xie, M.; Dong, Z.; Yuan, L.; Xiao-Yu, L.; Xing, C. Spectrocopic studies on the interaction of cinnamic acid and its derivatives with human serum albumin. J. Mol. Struct., 2004, 692(1), 71-80.
[http://dx.doi.org/10.1016/j.molstruc.2004.01.003]
[41]
Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17(5-6), 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490:AID-JCC1>3.0.CO;2-P]
[42]
Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[43]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[44]
DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific: SanCarlos, CA, USA, 2002.
[45]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[46]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[47]
Moroianu, J.; Riordan, J.F. Identification of the nucleolar targeting signal of human angiogenin. Biochem. Biophys. Res. Commun., 1994, 203(3), 1765-1772.
[http://dx.doi.org/10.1006/bbrc.1994.2391] [PMID: 7945327]
[48]
Tsuji, T.; Sun, Y.; Kishimoto, K.; Olson, K.A.; Liu, S.; Hirukawa, S.; Hu, G.F. Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res., 2005, 65(4), 1352-1360.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2058] [PMID: 15735021]
[49]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[50]
Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 1981, 20(11), 3096-3102.
[http://dx.doi.org/10.1021/bi00514a017] [PMID: 7248271]
[51]
Germovsek, E.; Barker, C.I.; Sharland, M. What do I need to know about aminoglycoside antibiotics? Arch. Dis. Child. Educ. Pract. Ed., 2017, 102(2), 89-93.
[http://dx.doi.org/10.1136/archdischild-2015-309069] [PMID: 27506599]