Curcumin-loaded Hydrotropic Solid Dispersion Topical Gel Development and Evaluation: A Greener Approach Towards Transdermal Delivery of Drugs

Page: [26 - 39] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Aims and Background: Curcumin's poor water solubility still presents a challenge. Because of Curcumin's instability in solubilizing solvents, using a non-sustainable solvent and dissolved oxygen in the solution might be the problem. Thus, considering all facts, looking for a promising alternative solvent medium is in need. Indeed, a solution of hydrotropic agent has been assessed recently. Hydrotropic agents are the best replacements for organic solvents. These are eco-friendly, safe, and non-toxic agents. Hence, the presented research focuses on improving the solubility of Curcumin through a hydrotropic solid dispersion approach. Amazingly, Curcumin showed a significant solubility enhancement in sodium salicylate hydrotropic Solution. Sodium salicylate hydrotrope ensured the stability of Curcumin in Solution, maintained homogeneity, and exhibited antioxidant properties. Hydrotropy combined with the solid dispersion technique is a simple and effective way to improve the bioavailability of Curcumin. Hydrotropic solid dispersion-loaded curcumin topical gel was developed to achieve transdermal delivery of Curcumin. Solid dispersion was prepared by solvent evaporation method and evaluated for in-vitro performance. Invitro drug dissolution, drug content, FTIR, and XRD were carried out for the prepared HSD.

Objective: The selected HSD (1:4) was loaded into a topical gel by dispersion method, and in-vitro parameters like drug content, Spreadability, pH, rate of drug dissolution, and drug content were performed.

Methods: The solubility study has substantially enhanced the solubility of Curcumin in a 2M sodium salicylate hydrotropic solution. Sodium salicylate was compatible with formulating the solid dispersion. Hydrotropic solid dispersion was successfully prepared in 1:4 ratios. XRD results have shown the amorphous nature of Curcumin in the presence of sodium benzoate. The dissolution studies have shown improved release compared to pure Curcumin and PM (1:4). The prepared HSD was then incorporated into a gel by dispersion method using carbopol 934 and hydroxypropyl methylcellulose as a gelling agent. The Cur-HSD gel was homogeneous and transparent in appearance.

Results: The gel showed excellent Spreadability and drug content of 94.2 with 90.21% of percent drug release for 120 min and showed improved release in the presence of hydrotrope for improved topical delivery of Curcumin.

Conclusions: Thus, to enhance the topical delivery of poorly soluble phytoconstituents, hydrotropes are suggested as a greener approach and to be applied for other poorly soluble phytoconstituents.

Graphical Abstract

[1]
Tripathi, D.; Chaudhary, N.; Wal, P.; Rai, A.K.; Sahoo, J. Green hydrotropes-assisted route: An alternative approach for extracting phytoconstituents and associated drug delivery systems. Drug Deliv. Lett., 2021, 11(3), 220-232.
[http://dx.doi.org/10.2174/2210303111666210712100722]
[2]
Mohanty, C.; Sahoo, S.K. Curcumin and its topical formulations for wound healing applications. Drug Discov. Today, 2017, 22(10), 1582-1592.
[http://dx.doi.org/10.1016/j.drudis.2017.07.001] [PMID: 28711364]
[3]
Rathi, N.; Gaikar, V.G. Crystallization of curcumin and cinnamic acid from aqueous solutions of hydrotropes. J. Crys. Proc. Technol., 2018, 8(3), 73-87.
[http://dx.doi.org/10.4236/jcpt.2018.83005]
[4]
Patil, M.R.; Ganorkar, S.B.; Patil, A.S.; Shirkhedkar, A.A.; Surana, S.J. Hydrotropic solubilization in pharmaceutical analysis: Origin, evolution, cumulative trend and precise applications. Crit. Rev. Anal. Chem., 2021, 51(3), 278-288.
[http://dx.doi.org/10.1080/10408347.2020.1718484] [PMID: 32000510]
[5]
Degot, P.; Huber, V.; Hofmann, E.; Hahn, M.; Touraud, D.; Kunz, W. Solubilization and extraction of curcumin from Curcuma longa using green, sustainable, and food-approved surfactant-free microemulsions. Food Chem., 2021, 336, 127660.
[http://dx.doi.org/10.1016/j.foodchem.2020.127660] [PMID: 32771898]
[6]
Dandekar, D.V.; Gaikar, V.G. Hydrotropic extraction of curcuminoids from turmeric. Sep. Sci. Technol., 2003, 38(5), 1185-1215.
[http://dx.doi.org/10.1081/SS-120018130]
[7]
De Souza, J.F.; Da Silva, P.K.; Alves, T.F.R.; De Barros, T.C.; Amaral, V.A.; De Moura, C.K.M.; Rios, A.C.; Batain, F.; Souto, E.B.; Severino, P.; Komatsu, D.; De Alencar, H.M.; Chaud, M.V. Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. J. Mol. Liq., 2020, 306, 112861.
[http://dx.doi.org/10.1016/j.molliq.2020.112861]
[8]
Patel, N.A.; Patel, N.J.; Patel, R.P. Formulation and evaluation of curcumin gel for topical application. Pharm. Dev. Technol., 2009, 14(1), 83-92.
[http://dx.doi.org/10.1080/10837450802409438] [PMID: 18821270]
[9]
Scomoroscenco, C.; Teodorescu, M.; Raducan, A.; Stan, M.; Voicu, S.N.; Trica, B.; Ninciuleanu, C.M.; Nistor, C.L.; Mihaescu, C.I.; Petcu, C.; Cinteza, L.O. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics, 2021, 13(4), 505.
[http://dx.doi.org/10.3390/pharmaceutics13040505] [PMID: 33916981]
[10]
Noorafshan, A.; Ashkani, E.S. A review of therapeutic effects of curcumin. Curr. Pharm. Des., 2013, 19(11), 2032-2046.
[PMID: 23116311]
[11]
Bhavsar, AC; Damani, A. A comparative study of the performance of selected mutual fund growth schemes from the private sector and public sector schemes in India. Anvesha., 2014, 7(1), 1-9.
[12]
Hu, L.; Shi, Y.; Li, J.H.; Gao, N.; Ji, J.; Niu, F.; Chen, Q.; Yang, X.; Wang, S. Enhancement of oral bioavailability of Curcumin by a novel solid dispersion system. AAPS Pharm. Sci. Tech., 2015, 16(6), 1327-1334.
[http://dx.doi.org/10.1208/s12249-014-0254-0] [PMID: 25804949]
[13]
Silva, S.S.; Gomes, J.M.; Reis, R.L.; Kundu, S.C. Green solvents combined with bioactive compounds as delivery systems: Present and future trends. ACS Appl. Bio Mater., 2021, 4(5), 4000-4013.
[http://dx.doi.org/10.1021/acsabm.1c00013] [PMID: 35006819]
[14]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[15]
Mahmood, K.; Zia, K.M.; Zuber, M.; Salman, M.; Anjum, M.N. Recent developments in curcumin and curcumin based polymeric materi-als for biomedical applications: A review. Int. J. Biol. Macromol., 2015, 81, 877-890.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.026] [PMID: 26391597]
[16]
Modasiya, M.K.; Patel, V.M. Studies on the solubility of curcumin. Int. J. Pharm. Life Sci., 2012, 3(3), 1490-1497.
[17]
Priyadarsini, K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules, 2014, 19(12), 20091-20112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[18]
Shin, M.S.; Yu, J.S.; Lee, J.; Ji, Y.S.; Joung, H.J.; Han, Y.M.; Yoo, H.H.; Kang, K.S. A hydroxypropyl methylcellulose-based solid dispersion of Curcumin with enhanced bioavailability and hepatoprotective activity. Biomolecules, 2019, 9(7), 281.
[http://dx.doi.org/10.3390/biom9070281] [PMID: 31311168]
[19]
Schöttl, S.; Matubayasi, N.; Horinek, D. Solubilization power of surfactant-free microemulsions. Phys. Chem. Chem. Phys., 2020, 22(39), 22185-22189.
[http://dx.doi.org/10.1039/D0CP02933E] [PMID: 32812598]
[20]
Pawar, K.; Desai, M.A.; Parikh, J. Minimum hydrotrope concentration behavior of aqueous solution of sodium salicylate in presence of additives. J. Dispers. Sci. Technol., 2012, 33(12), 1746-1751.
[http://dx.doi.org/10.1080/01932691.2011.629532]
[21]
Kim, J.Y.; Kim, S.; Papp, M.; Park, K.; Pinal, R. Hydrotropic solubilization of poorly water-soluble drugs. J. Pharm. Sci., 2010, 99(9), 3953-3965.
[http://dx.doi.org/10.1002/jps.22241] [PMID: 20607808]
[22]
Majeed, A.; Raza, S.N.; Khan, N.A. Hydrotrophy: Novel solubility enhancement technique: A review. Int. J. Pharm. Sci. Res., 2019, 10(3), 1025-1036.
[23]
Mondal, S.; Ghosh, S.; Moulik, S.P. Stability of curcumin in different solvent and solution media: UV-visible and steady-state fluores-cence spectral study. J. Photochem. Photobiol. B, 2016, 158, 212-218.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.03.004] [PMID: 26985735]
[24]
Paradkar, A.; Ambike, A.A.; Jadhav, B.K.; Mahadik, K.R. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int. J. Pharm., 2004, 271(1-2), 281-286.
[http://dx.doi.org/10.1016/j.ijpharm.2003.11.014] [PMID: 15129995]
[25]
Li, B.; Konecke, S.; Wegiel, L.A.; Taylor, L.S.; Edgar, K.J. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr. Polym., 2013, 98(1), 1108-1116.
[http://dx.doi.org/10.1016/j.carbpol.2013.07.017] [PMID: 23987452]
[26]
Hernandez, P.D.; Solis, C.B.; Pontin, K.P.; Latorre, J.D.; Baxter, M.F.A.; Hernandez, V.X.; Merino, G.R.; Méndez, A.A.; Hargis, B.M.; Lopez, A.R.; Tellez, G. Evaluation of a solid dispersion of curcumin with polyvinylpyrrolidone and boric acid against Salmonella Enteritidis infection and intestinal permeability in broiler chickens: A pilot study. Front. Microbiol., 2018, 9, 1289.
[http://dx.doi.org/10.3389/fmicb.2018.01289] [PMID: 29973919]
[27]
Jamadar, M.J.; Shaikh, R.H. Preparation and evaluation of herbal gel formulation. J. Pharm. Res. Educ., 2017, 1(2), 201-204.
[28]
Kharat, M.; Du, Z.; Zhang, G.; McClements, D.J. Physical and chemical stability of Curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. J. Agric. Food Chem., 2017, 65(8), 1525-1532.
[http://dx.doi.org/10.1021/acs.jafc.6b04815] [PMID: 27935709]
[29]
Li, J.; Lee, I.W.; Shin, G.H.; Chen, X.; Park, H.J. Curcumin-Eudragit® E PO solid dispersion: A simple and potent method to solve the problems of curcumin. Eur. J. Pharm. Biopharm., 2015, 94, 322-332.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.002] [PMID: 26073546]
[30]
Nazim, S.; Dehghan, M.H.; Shaikh, S.; Gomes, P.; Zameeruddin, M.; Qazi, M. A study on Hydrotrope corn starch gelled as a carrier for topical drug delivery. Pharm. Lett., 2011, 3(3), 110-119.
[31]
Kadam, P.V.; Yadav, K.N.; Bhingare, C.L.; Patil, M.J. Standardization and quantification of curcumin from Curcuma longa extract using UV visible spectroscopy and HPLC. J. Pharmacogn. Phytochem., 2018, 7(5), 1913-1918.
[32]
Sintra, T.E.; Abranches, D.O.; Benfica, J.; Soares, B.P.; Ventura, S.P.M.; Coutinho, J.A.P. Cholinium-based ionic liquids as bioinspired hydrotropes to tackle solubility challenges in drug formulation. Eur. J. Pharm. Biopharm., 2021, 164, 86-92.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.013] [PMID: 33895294]
[33]
Fernandes, G.J.; Kumar, L.; Sharma, K.; Tunge, R.; Rathnanand, M. A review on solubility enhancement of carvedilol—A BCS class II drug. J. Pharm. Innov., 2018, 13(3), 197-212.
[http://dx.doi.org/10.1007/s12247-018-9319-z]
[34]
Patel, A.D.; Desai, M.A. Aggregation behavior and thermodynamic studies of hydrotropes: A review. Tenside Surfactants Deterg., 2020, 57(3), 192-202.
[http://dx.doi.org/10.3139/113.110686]
[35]
Yang, M.; Zhang, X.; Guan, S.; Dou, Y.; Gao, X.; Miao, L. Green preparation of lignin nanoparticles in an aqueous hydrotropic solution and application in biobased nanocomposite films. Holzforschung, 2021, 75(5), 463-473.
[http://dx.doi.org/10.1515/hf-2020-0021]
[36]
Abd-Elhakim, Y.M.; Moselhy, A.A.A.; Aldhahrani, A.; Beheiry, R.R.; Mohamed, W.A.M.; Soliman, M.M.; Saffaf, B.A.; M El Deib, M. Protective effect of Curcumin against sodium salicylate-induced oxidative kidney damage, nuclear factor-kappa dysregulation, and apoptotic consequences in rats. Antioxidants, 2021, 10(6), 826.
[http://dx.doi.org/10.3390/antiox10060826] [PMID: 34064189]
[37]
Narayanan, M.; Baskaran, D.; Sampath, V. Experimental design of hydrotropic extraction for recovery of bioactive limonin from lemon (Citrus limon L.) seeds. Sep. Sci. Technol., 2022, 57(5), 707-718.
[http://dx.doi.org/10.1080/01496395.2021.1943683]
[38]
Ghule, S.N.; Desai, M.A. Intensified extraction of valuable compounds from clove buds using ultrasound assisted hydrotropic extraction. J. Appl. Res. Med. Aromat. Plants, 2021, 25, 100325.
[http://dx.doi.org/10.1016/j.jarmap.2021.100325]
[39]
Raman, G.; Gaikar, V.G. Hydrotropic solubilization of boswellic acids from Boswellia serrata resin. Langmuir, 2003, 19(19), 8026-8032.
[http://dx.doi.org/10.1021/la034611r]
[40]
Desai, M.A.; Parikh, J. Hydrotropic extraction of citral from Cymbopogon flexuosus (Steud.). Wats. Ind. Eng. Chem. Res., 2012, 51(9), 3750-3757.
[http://dx.doi.org/10.1021/ie202025b]
[41]
Mazaud, A.; Lebeuf, R.; Pierlot, C.; Laguerre, M.; Nardello, R.V. Amyl xyloside, a selective sugar-based hydrotrope for the aqueous extraction of carnosic acid from rosemary. ACS Sustain. Chem. Eng., 2021, 9(13), 4801-4811.
[http://dx.doi.org/10.1021/acssuschemeng.0c09366]
[42]
Zhao, Y.; Wu, T.; Li, H.; Duan, Y.; Li, H.; Yang, W. Influence of hydrotrope on solubility and bioavailability of curcumin: Its complex formation and solid-state characterization. Drug Dev. Ind. Pharm., 2021, 47(9), 1392-1400.
[http://dx.doi.org/10.1080/03639045.2021.1994987] [PMID: 34668822]
[43]
Przybyłek, M.; Recki, Ł.; Mroczyńska, K.; Jeliński, T.; Cysewski, P. Experimental and theoretical solubility advantage screening of bi-component solid curcumin formulations. J. Drug Deliv. Sci. Technol., 2019, 50, 125-135.
[http://dx.doi.org/10.1016/j.jddst.2019.01.023]
[44]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin: Miniperspective. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[45]
Murti, Y.B.; Hartini, Y.S.; Hinrichs, W.L.J.; Frijlink, H.W.; Setyaningsih, D. UV-Vis spectroscopy to enable determination of the dissolution behavior of solid dispersions containing curcumin and piperine. J. Young Pharm., 2018, 11(1), 26-30.
[http://dx.doi.org/10.5530/jyp.2019.11.6]
[46]
Mohapatra, T.K.; Moharana, A.K.; Swain, R.P.; Subudhi, B.B. Coamorphisation of acetyl salicylic acid and curcumin for enhancing dissolution, anti-inflammatory effect and minimizing gastro toxicity. J. Drug Deliv. Sci. Technol., 2021, 61, 102119.
[http://dx.doi.org/10.1016/j.jddst.2020.102119]
[47]
Jeliński, T.; Przybyłek, M.; Cysewski, P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm. Res., 2019, 36(8), 116.
[http://dx.doi.org/10.1007/s11095-019-2643-2] [PMID: 31161340]
[48]
Gupta, K.R.; Pounikar, A.R.; Jaiswal, P.M. Formulation and evaluation of hydrotropic solid dispersions of curcumin. J. Curr. Chem. Pharm. Sci., 2019, 9(1), 207824594.
[49]
Sarkar, B.; Jain, D.; Solanki, S.S. Improvement of solubility of flavonoids by using different solubilization techniques. Int. J. Discov. Herb. Res., 2011, 1(4), 264-266.
[50]
Shekaari, H.; Mokhtarpour, M.; Faraji, S.; Zafarani, M.M.T. Enhancement of curcumin solubility by some choline chloride-based deep eutectic solvents at different temperatures. Fluid Phase Equilib., 2021, 532, 112917.
[http://dx.doi.org/10.1016/j.fluid.2020.112917]
[51]
Ji, H.; Wang, L.; Pang, Z.; Zhu, W.; Yang, G.; Dong, C. Using a recyclable acid hydrotrope and subsequent short-term ultrasonic pretreatment to facilitate high-value lignin extraction and high-titer ethanol production. Cellulose, 2020, 27(13), 7561-7573.
[http://dx.doi.org/10.1007/s10570-020-03285-5]
[52]
Mazurkeviciute, A.; Ramanauskiene, K.; Ivaskiene, M.; Grigonis, A.; Briedis, V. Topical antifungal bigels: Formulation, characterization and evaluation. Acta Pharm., 2018, 68(2), 223-233.
[http://dx.doi.org/10.2478/acph-2018-0014] [PMID: 29702483]
[53]
Tran, P.H.; Tran, T.T. Developmental strategies of curcumin solid dispersions for enhancing bioavailability. Anti-Cancer. Agents Med. Chem., 2020, 20(16), 1874-82.
[http://dx.doi.org/10.2174/1871520620666200708103845]
[54]
Xie, Y.; Yao, Y. Preparation and characterization of a solid dispersion containing curcumin and octenylsuccinate hydroxypropyl phyto-glycogen for improved curcumin solubility. Eur. J. Pharm. Sci., 2020, 153, 105462.
[http://dx.doi.org/10.1016/j.ejps.2020.105462] [PMID: 32652196]
[55]
Haque, T.; Talukder, M.M.U. Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull., 2018, 8(2), 169-179.
[http://dx.doi.org/10.15171/apb.2018.021] [PMID: 30023318]
[56]
Oliveira, G.; Farias, F.O.; Sosa, F.H.B.; Igarashi, M.L.; Mafra, M.R. Green solvents to tune the biomolecules’ solubilization in aqueous media: An experimental and in silico approach by COSMO-RS. J. Mol. Liq., 2021, 341, 117314.
[http://dx.doi.org/10.1016/j.molliq.2021.117314]
[57]
Nayak, A.K.; Hasnain, M.S.; Dhara, A.K.; Pal, D. Plant Polysaccharides in Pharmaceutical Applications. In: Bioactive Natural Products for Pharmaceutical Applications; Springer: Cham, 2021; pp. 93-125.
[http://dx.doi.org/10.1007/978-3-030-54027-2_3]
[58]
Zhang, Q.; Suntsova, L.; Chistyachenko, Y.S.; Evseenko, V.; Khvostov, M.V.; Polyakov, N.E.; Dushkin, A.V.; Su, W. Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. Int. J. Biol. Macromol., 2019, 128, 158-166.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.079] [PMID: 30664966]
[59]
Hardwick, J.; Taylor, J.; Mehta, M.; Satija, S.; Paudel, K.R.; Hansbro, P.M.; Chellappan, D.K.; Bebawy, M.; Dua, K. Targeting cancer using curcumin encapsulated vesicular drug delivery systems. Curr. Pharm. Des., 2021, 27(1), 2-14.
[http://dx.doi.org/10.2174/1381612826666200728151610] [PMID: 32723255]
[60]
Saini, K.; Modgill, N.; Singh, K.; Kakkar, V. Tetrahydrocurcumin lipid nanoparticle based gel promotes penetration into deeper skin layers and alleviates atopic dermatitis in 2,4-dinitrochlorobenzene (DNCB) mouse model. Nanomaterials, 2022, 12(4), 636.
[http://dx.doi.org/10.3390/nano12040636] [PMID: 35214966]
[61]
Song, I.S.; Cha, J.S.; Choi, M.K. Characterization, in vivo and in vitro evaluation of solid dispersion of curcumin containing d-α-tocopheryl polyethylene glycol 1000 succinate and mannitol. Molecules, 2016, 21(10), 1386.
[http://dx.doi.org/10.3390/molecules21101386] [PMID: 27763524]
[62]
Yu, J.Y.; Kim, J.A.; Joung, H.J.; Ko, J.A.; Park, H.J. Preparation and characterization of curcumin solid dispersion using HPMC. J. Food Sci., 2020, 85(11), 3866-3873.
[http://dx.doi.org/10.1111/1750-3841.15489] [PMID: 33067846]
[63]
Mai, N.N.S.; Nakai, R.; Kawano, Y.; Hanawa, T. Enhancing the solubility of curcumin using a solid dispersion system with hydroxypro-pyl-β-cyclodextrin prepared by grinding, freeze-drying, and common solvent evaporation methods. Pharmacy, 2020, 8(4), 203.
[http://dx.doi.org/10.3390/pharmacy8040203] [PMID: 33147710]
[64]
Zhang, M.; Zhuang, B.; Du, G.; Han, G.; Jin, Y. Curcumin solid dispersion-loaded in situ hydrogels for local treatment of injured vaginal bacterial infection and improvement of vaginal wound healing. J. Pharm. Pharmacol., 2019, 71(7), 1044-1054.
[http://dx.doi.org/10.1111/jphp.13088] [PMID: 30887519]
[65]
Wang, R.; Han, J.; Jiang, A.; Huang, R.; Fu, T.; Wang, L.; Zheng, Q.; Li, W.; Li, J. Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine. Int. J. Pharm., 2019, 561, 9-18.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.027] [PMID: 30817985]
[66]
Kaewnopparat, N.; Kaewnopparat, S.; Jangwang, A.; Maneenaun, D.; Chuchome, T.; Panichayupakaranant, P. Increased solubility, dissolution and physicochemical studies of curcumin-polyvinylpyrrolidone K-30 solid dispersions. World Acad. Sci. Eng. Technol., 2009, 55, 229-234.
[67]
Aslani, A.; Zolfaghari, B.; Fereidani, Y. Design, formulation, and evaluation of a herbal gel contains melissa, sumac, licorice, rosemary, and geranium for treatment of recurrent labial herpes infections. Dent. Res. J., 2018, 15(3), 191-200.
[http://dx.doi.org/10.4103/1735-3327.231865] [PMID: 29922338]
[68]
Zong, S.; Liu, Y.; Park, H.J.; Ye, M.; Li, J. Curcumin solid dispersion based on three model acrylic polymers: Formulation and release properties. Braz. J. Pharm. Sci., 2022, 58, e18946.
[http://dx.doi.org/10.1590/s2175-97902022e18946]
[69]
Okamoto, T.; Yamamoto, K.; Sekitoh, T.; Fujioka, A.; Imanaka, H.; Ishida, N.; Imamura, K. Comparison of improvements of aqueous dissolution of structurally analogous hydrophobic drugs by amorphous solid dispersion. Colloids Surf. A Physicochem. Eng. Asp., 2022, 632, 127744.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127744]
[70]
Zheng, B.; McClements, D.J. Using colloid science to form more efficacious curcumin delivery systems: enhanced solubility, stability, and bioavailability. Molecules, 2020, 25(12), 2791.
[http://dx.doi.org/10.3390/molecules25122791] [PMID: 32560351]
[71]
Singh, R.; Tønnesen, H.H.; Vogensen, S.B.; Loftsson, T.; Másson, M. Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV-Vis titration. J. Incl. Phenom. Macrocycl. Chem., 2010, 66(3-4), 335-348.
[http://dx.doi.org/10.1007/s10847-009-9651-5]
[72]
Matos, RL; Lu, T; Prosapio, V; McConville, C; Leeke, G Ingram, A Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J. CO2 Utilization., 2019, 30, 48-62.
[73]
Shekaari, H.; Mokhtarpour, M.; Faraji, S.; Zafarani, M.M.T. Some choline chloride-based deep eutectic solvents enhance curcumin solubility at different temperatures. Fluid Phase Equilib., 2021, 532, 112917.
[http://dx.doi.org/10.1016/j.fluid.2020.112917]
[74]
Sahoo, L.; Mohapatra, M.; Singh, S. Study of interactions of bioflavonoid quercetin with hydrotropic agent urea: An environmentally friendly approach. Mater. Today Proc., 2022.
[http://dx.doi.org/10.1016/j.matpr.2022.07.314]
[75]
Degot, P.; Huber, V.; El Maangar, A.; Gramüller, J.; Rohr, L.; Touraud, D.; Zemb, T.; Gschwind, R.M.; Kunz, W. Triple role of sodium salicylate in solubilization, extraction, and stabilization of curcumin from Curcuma longa. J. Mol. Liq., 2021, 329, 115538.
[http://dx.doi.org/10.1016/j.molliq.2021.115538]