[3]
Qiu, J.B.; He, L. Novel therapeutic strategies for cancer chemotherapy based on warburg effect. Progr. Pharm. Sci., 2009, 33, 385-395.
[4]
Li, X.Y.; Bian, K. Research progress on intervention of chinese materia medica on cancer warburg effect. In: Acta Universitatis Traditionis Medicalis Sinensis Pharmacologiaeque Shanghai; , 2017; 31, pp. 87-99.
[5]
Ni, Q.; Yang, W.; Li, T. Alteration of cell glycometabolism pathway and tumor metastasis. Chin. J. Biochem. Mol. Biol., 2016, 32, 607-611.
[12]
Luo, G.J.; Miao, M. Hexokinase-II and tumor. Chin. Archiv. General Surg., 2013, 7, 56-60.
[13]
Li, S.; Gao, J.; Chunsheng, G. Advances in glycolytic pathway-targeted therapy for malignant tumors. Pract. J. Cancer, 2012, 27, 536-537.
[16]
Aleshin, A.E.; Kirby, C.; Liu, X.; Bourenkov, G.P.; Bartunik, H.D.; Fromm, H.J.; Honzatko, R.B. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. J. Mol. Biol., 2000, 296, 1001-1015.
[23]
Fan, Z.; Jiang, Y. Hexokinase-lI and Warburg effect. J. Clin. Pathol. Res., 2016, 36, 2053-2059.
[24]
DeWaal, D.; Nogueira, V.; Terry, A.R.; Patra, K.C.; Jeon, S.; Guzman, G.; Au, J.; Long, C.P.; Antoniewicz, M.R.; Hay, N. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun., 2018, 9, 1-14.
[26]
You, Q.; Zhou, W.; Chen, Z. Role and mechanism of hexokinase 2 in erlotinib resistance in non-small cell lung cancer. J. Third Military Med. Univ., 2020, 42, 453-459.
[27]
Liu, Z. EGFR-P38 MAPK pathway upregulates PD-L1 via miR-675-5p and downregulates HL A-ABC via hexokinase 2 in hepatocellular carcinoma. Chin. J. Cancer, 2021, 40, 150-166.
[28]
Ma, X.; Chen, J.; Lu, S.; Yu, R.; Zhao, Y. Effects of silenced hexokinase 2 by small interfering RNA on proliferation, migration and invasion of SK-BR-3 human breast cancer cells. Huaxi Yaoxue Zazhi, 2021, 36, 19-22.
[29]
Lei, D.; Zhang, Y.R.; Chen, Q.; Li, L.; Cui, N. HK2 promotes migration and proliferation of human cervical cancer cell lines. Basic Clin. Med., 2020, 40, 1320-1327.
[30]
Feng, Q.; Liu, X.; Zhang, N.; Cui, N. HK2 promotes proliferation and migration of cervical cancer cells by up-regulating cyclin D1 and MMP7 expression through Wnt/β-catenin signaling pathway. J. Biol. Chem., 2020, 47, 649-654.
[31]
Li, S.F.; Song, Z.H.; Li, T.; Sun, J.; Fan, Y.M.; Liu, Y. Hexokinase 2 inhibits LPS-induced mitochondria-dependent apoptosis in human lung epithelial BEAS-2B cells. Chin. J. Pathophysiol., 2019, 35, 133-140.
[32]
Chen, Y.; Jiang, Y.; Yang, H.; Tang, Q.; Yuan, T.; Liang, B. Advances in the study of antitumor herbal components that regulate key enzymes of aerobic glycolytic pathway. Chin. J. Oncol. Prev. Treat., 2020, 12, 705-709.
[33]
Wu, G.; Chen, H. Berberine regulating the level of glycolysis in non-small cell lung cancer cells and inhibiting the occurrence of EMT in A549 cells. J. Clin. Pulmon. Med., 2020, 25, 1206-1211.
[42]
Su, L.J.; Zhang, S.L.; Zhao, J.Q.; Chen, J.X.; Zhang, X.W. Ginsenoside CK regulates HIF-1ɑ-mediated glycolysis inhibition in human hepatocellular carcinoma cells proliferation mechanism. Lishizhen Med. Materia Medica Res., 2021, 32, 1623-1626.
[44]
Zhang, H.; Huang, S.; Cai, S. Advances in the use of hexokinase II as a target for the treatment of tumors. Huaxi Yaoxue Zazhi, 2011, 26, 288-290.
[47]
Cheng, Y.; Diao, D.; Song, Y.; Dang, C. Current research on 2-deoxyglucose in anti-cancer treatment. Chin. J. Clin. Oncol., 2012, 39, 1325-1328.
[57]
Ganapathy-Kanniappan, S.; Vali, M.; Kunjithapatham, R.; Buijs, M.; Syed, L.H.; Rao, P.P.; Ota, S.; Kwak, B.K.; Loffroy, R.; Geschwind, J.F. 3-bromopyruvate: A new targeted antiglycolytic agent and a promise for cancer therapy. Curr. Pharm. Biotechnol., 2010, 11(5), 501-507.
[58]
Yan, J.W.; Zhong, J.; Wang, G.C.; Feng, F. Progress in research of targeting cancer glycolysis path way for anticancer therapy. Zhongguo Xin Yao Zazhi, 2014, 23, 550-556.
[64]
SchcolnikCabrera. A.; DominguezGomez, G.; DuenasGonzalez, A. A combination of inhibitors of glycolysis, glutaminolysis and de novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells. Oncol. Lett., 2020, 18, 6909-6916.
[65]
Qiao, J.; Xiuhua, C. Cancer cells’ warburg effect and developments on the anti-cancer agents. Progr. Pharm. Sci., 2008, 32, 145-152.
[72]
Lu, S.; Su, Y.; Hou, C.; Liu, X. Research progress of metformin on apoptosis. Fudan Univ. J. Med. Sci., 2021, 48, 841-845.
[73]
Sun, X.J.; Peng, Z.Y.; Chen, X.Y.; Tao, H.Y. Reactive oxygen species in regulation of hypoxia-inducible factor. Acad. J. Second Mil. Med. Univ., 2006, 27, 660-664.
[74]
Zou, F.; Xu, H. Effect of hypoxia-inducible factor 1 on glycolytic enzymes. J. Anhui Sports Sci., 2004, 25, 44-46.
[75]
Cui, L.L.; Wang, Y.; Guan, H.; Yuan, T.; Shen, G. Research progress on the antitumor mechanism of metformin. Xiandai Shipin Keji, 2021, 37, 357-363.
[76]
Liu, X.; Ji, W.; Li, W. Advances of the anti-tumor research of metformin. Shandong Yiyao, 2019, 59, 102-105.
[77]
Flora, Guerra Arbini, A.A.; Moro, L. Mitochondria and cancer chemoresistance. Biochim. Biophys. Acta Bioenerg., 2017, 1858, 686-699.
[85]
Li, H.; Chen, L.; Tang, R. Compounds with hexokinase 2 inhibitory activity and uses. CN111410618A, 2020.
[86]
Liu, H.; Tan, S.; Yuan, M.; Liu, R.; Guo, J.; Peng, L.; Yao, X. Small molecule inhibitors of human-derived glucokinase 2 and their applications. CN112891342A, 2021.
[87]
Liu, J.; Shi, R.; Pan, P.; Lv, R.; Kang, Z.; Hou, T. A screening method for hexokinase 2 inhibitors and the use of small molecule compounds in the preparation of antitumor drugs. CN113109418A, 2021.