Hesperidin: A Potential Therapeutic Agent against COVID-19

Article ID: e171022210062 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

COVID-19, aka Coronavirus Disease 2019, triggered by new severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2, is now a public health emergency due to its rapid spread, high transmission efficiency, and severe viral pandemic that is significantly increasing the number of patients and associated deaths. Currently, no specific treatment is available for this highly contagious virus. The unavailability of effective and specific treatments and the severity of this epidemic situation potentiate medicinal chemists’ in supporting new prophylactic or therapeutic interventions against COVID-19. This study discusses the therapeutic potential of hesperidin, a traditionally used herbal medicine with an exceptional safety profile. Recent studies on hesperidin advocate its promising potential in the prevention and management of COVID-19. This paper also discusses the recent clinical studies based on the previously documented antiviral activity of hesperidin. Herein, we propose the detailed preclinical and clinical manifestations of hesperidin based on its multifaceted bioactivities to develop a novel anti-COVID-19 lead.

Graphical Abstract

[1]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[2]
Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: A mini-review. Clin Drug Investig 2018; 38(8): 653-71.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[3]
Garg S, Garg M, Prabhakar N, Malhotra P, Agarwal R. Unraveling the mystery of COVID‐19 cytokine storm: From skin to organ sys-tems. Dermatol Ther 2020; 33(6): e13859.
[http://dx.doi.org/10.1111/dth.13859] [PMID: 32559324]
[4]
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med 2020; 46(6): 1089-98.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[5]
Penman SL, Kiy RT, Jensen RL, et al. Safety perspectives on presently considered drugs for the treatment of COVID‐19. Br J Pharmacol 2020; 177(19): bph.15204.
[http://dx.doi.org/10.1111/bph.15204] [PMID: 32681537]
[6]
Carter C, Thi Lan Anh N, Notter J. COVID-19 disease: Perspectives in low- and middle-income countries. Clin Integr Care 2020; 1: 100005.
[http://dx.doi.org/10.1016/j.intcar.2020.100005]
[7]
Renu K, Prasanna PL, Valsala Gopalakrishnan A. Coronaviruses pathogenesis, comorbidities and multi-organ damage - A review. Life Sci 2020; 255: 117839.
[http://dx.doi.org/10.1016/j.lfs.2020.117839] [PMID: 32450165]
[8]
Zumla A, Chan JFW, Azhar EI, Hui DSC, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[9]
Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020; 146(1): 110-8.
[http://dx.doi.org/10.1016/j.jaci.2020.04.006] [PMID: 32294485]
[10]
Al-Samkari H, Karp LRS, Dzik WH, et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020; 136(4): 489-500.
[http://dx.doi.org/10.1182/blood.2020006520] [PMID: 32492712]
[11]
Coppola A, Lombardi M, Tassoni MI, et al. COVID-19, thromboembolic risk and thromboprophylaxis: Learning lessons from the bed-side, awaiting evidence. Blood Transfus 2020; 18(3): 226-9.
[PMID: 32453688]
[12]
Lemke G, Silverman GJ. Blood clots and TAM receptor signalling in COVID-19 pathogenesis. Nat Rev Immunol 2020; 20(7): 395-6.
[http://dx.doi.org/10.1038/s41577-020-0354-x] [PMID: 32488201]
[13]
Aune D, Keum N, Giovannucci E, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr 2018; 108(5): 1069-91.
[http://dx.doi.org/10.1093/ajcn/nqy097] [PMID: 30475962]
[14]
Wallace TC, Bailey RL, Blumberg JB, et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit Rev Food Sci Nutr 2020; 60(13): 2174-211.
[http://dx.doi.org/10.1080/10408398.2019.1632258] [PMID: 31267783]
[15]
Barreca D, Mandalari G, Calderaro A, et al. Citrus flavones: An update on sources, biological functions, and health promoting properties. Plants 2020; 9(3): 288.
[http://dx.doi.org/10.3390/plants9030288] [PMID: 32110931]
[16]
Calder P, Carr A, Gombart A, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 2020; 12(4): 1181.
[http://dx.doi.org/10.3390/nu12041181]
[17]
Lee YS, Huh JY, Nam SH, Moon SK, Lee SB. Enzymatic bioconversion of citrus hesperidin by Aspergillus sojae naringinase: Enhanced solubility of hesperetin-7-O-glucoside with in vitro inhibition of human intestinal maltase, HMG-CoA reductase, and growth of Helicobacter pylori. Food Chem 2012; 135(4): 2253-9.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.007] [PMID: 22980799]
[18]
Yu W, Xie X, Yu Z, Jin Q, Wu H. Mechanism of hesperidin-induced apoptosis in human gastric cancer AGS cells. Trop J Pharm Res 2019; 18(11): 2363-9.
[19]
Garg A, Garg S, Zaneveld LJD, Singla AK. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother Res 2001; 15(8): 655-69.
[http://dx.doi.org/10.1002/ptr.1074] [PMID: 11746857]
[20]
Srinivasan S, Vinothkumar V, Murali R. Antidiabetic efficacy of citrus fruits with special allusion to flavone glycosides.In: Bioactive Food as Dietary Interventions for Diabetes. Academic Press 2019; pp. 335-46.
[http://dx.doi.org/10.1016/B978-0-12-813822-9.00022-9]
[21]
Manthey JA, Grohmann K. Flavonoids of the orange subfamily aurantioideae. Adv Exp Med Biol 1998; 439: 85-101.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_7] [PMID: 9781297]
[22]
Devi KP, Rajavel T, Nabavi SF, et al. Hesperidin: A promising anticancer agent from nature. Ind Crops Prod 2015; 76: 582-9.
[http://dx.doi.org/10.1016/j.indcrop.2015.07.051]
[23]
Inderjit, Dakshini KM. Hesperetin 7-rutinoside (hesperidin) and taxifolin 3-arabinoside as germination and growth inhibitors in soils associated with the weed, Pluchea lanceolata (DC) C.B. Clarke (Asteraceae). J Chem Ecol 1991; 17(8): 1585-91.
[http://dx.doi.org/10.1007/BF00984690] [PMID: 24257882]
[24]
Li C, Schluesener H. Health-promoting effects of the citrus flavanone hesperidin. Crit Rev Food Sci Nutr 2017; 57(3): 613-31.
[http://dx.doi.org/10.1080/10408398.2014.906382] [PMID: 25675136]
[25]
Liu EH, Zhao P, Duan L, et al. Simultaneous determination of six bioactive flavonoids in Citri Reticulatae Pericarpium by rapid resolution liquid chromatography coupled with triple quadrupole electrospray tandem mass spectrometry. Food Chem 2013; 141(4): 3977-83.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.077] [PMID: 23993574]
[26]
Ye X, Song F, Fan G, Wu F. Simultaneous determination of 11 constituents in Citrus reticulate ‘Chachi’ by high performance liquid chromatography. Se Pu 2015; 33(4): 423-7.
[http://dx.doi.org/10.3724/SP.J.1123.2014.12015] [PMID: 26292415]
[27]
Omidbaigi R, Faghih NM. Quantitative distribution of hesperidin in Citrus species, during fruit maturation and optimal harvest time. Nat Prod Radiance 2004; 4: 12-5.
[28]
Levaj B, Verica DU, Kovacevic DB, Krasnici N. Determination of flavonoids in pulp and peel of mandarin fruits. ACS Agric Conspec Sci 2009; 74(3): 221-5.
[29]
Agcam E, Akyıldız A, Akdemir Evrendilek G. Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurisation. Food Chem 2014; 143: 354-61.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.115] [PMID: 24054251]
[30]
Abad-García B, Berrueta LA, Garmón-Lobato S, Urkaregi A, Gallo B, Vicente F. Chemometric characterization of fruit juices from Span-ish cultivars according to their phenolic compound contents: I. Citrus fruits. J Agric Food Chem 2012; 60(14): 3635-44.
[http://dx.doi.org/10.1021/jf300022u] [PMID: 22423971]
[31]
Bocco A, Cuvelier ME, Richard H, Berset C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 1998; 46(6): 2123-9.
[http://dx.doi.org/10.1021/jf9709562]
[32]
Mouly P, Gaydou EM, Auffray A. Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J Chromatogr A 1998; 800(2): 171-9.
[http://dx.doi.org/10.1016/S0021-9673(97)01131-X] [PMID: 9561761]
[33]
Proteggente AR, Saija A, De Pasquale A, Rice-Evans CA. The compositional characterisation and antioxidant activity of fresh juices from sicilian sweet orange (Citrus sinensis L. Osbeck) varieties. Free Radic Res 2003; 37(6): 681-7.
[http://dx.doi.org/10.1080/1071576031000083198] [PMID: 12868495]
[34]
Barreca D, Bellocco E, Caristi C, Leuzzi U, Gattuso G. Flavonoid composition and antioxidant activity of juices from Chinotto (Citrus x myrtifolia Raf.) fruits at different ripening stages. J Agric Food Chem 2010; 58(5): 3031-6.
[http://dx.doi.org/10.1021/jf9044809] [PMID: 20155909]
[35]
Uçan F, Ağçam E, Akyildiz A. Bioactive compounds and quality parameters of natural cloudy lemon juices. J Food Sci Technol 2016; 53(3): 1465-74.
[http://dx.doi.org/10.1007/s13197-015-2155-y] [PMID: 27570271]
[36]
Leuzzi U, Caristi C, Panzera V, Licandro G. Flavonoids in pigmented orange juice and second-pressure extracts. J Agric Food Chem 2000; 48(11): 5501-6.
[http://dx.doi.org/10.1021/jf000538o] [PMID: 11087509]
[37]
Dolzhenko Y, Bertea CM, Occhipinti A, Bossi S, Maffei ME. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha×piperita L.). J Photochem Photobiol B 2010; 100(2): 67-75.
[http://dx.doi.org/10.1016/j.jphotobiol.2010.05.003] [PMID: 20627615]
[38]
Kazłowska K, Hsu T, Hou CC, Yang WC, Tsai GJ. Anti-inflammatory properties of phenolic compounds and crude extract from Porphyra dentata. J Ethnopharmacol 2010; 128(1): 123-30.
[http://dx.doi.org/10.1016/j.jep.2009.12.037] [PMID: 20051261]
[39]
Eberle RJ, Olivier DS, Pacca CC, et al. In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases. PLoS One 2021; 16(3): e0246319.
[http://dx.doi.org/10.1371/journal.pone.0246319] [PMID: 33661906]
[40]
Dong W, Wei X, Zhang F, et al. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Sci Rep 2015; 4(1): 7237.
[http://dx.doi.org/10.1038/srep07237] [PMID: 25429875]
[41]
Saha RK, Takahashi T, Suzuki T. Glucosyl hesperidin prevents influenza a virus replication in vitro by inhibition of viral sialidase. Biol Pharm Bull 2009; 32(7): 1188-92.
[http://dx.doi.org/10.1248/bpb.32.1188] [PMID: 19571383]
[42]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[43]
Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: New light on the healthy function of citrus fruits. Antioxidants 2020; 9(8): 742.
[http://dx.doi.org/10.3390/antiox9080742] [PMID: 32823497]
[44]
Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn 2021; 39(9): 3347-57.
[PMID: 32362245]
[45]
Coppola M, Mondola R. Phytotherapeutics and SARS-CoV-2 infection: Potential role of bioflavonoids. Med Hypotheses 2020; 140: 109766.
[http://dx.doi.org/10.1016/j.mehy.2020.109766] [PMID: 32353741]
[46]
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[47]
Tejada S, Pinya S, Martorell M, et al. Potential anti-inflammatory effects of hesperidin from the Genus citrus. Curr Med Chem 2019; 25(37): 4929-45.
[http://dx.doi.org/10.2174/0929867324666170718104412] [PMID: 28721824]
[48]
Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[49]
Kuntić V, Brborić J, Holclajtner-Antunović I, Uskoković-Marković S. Evaluating the bioactive effects of flavonoid hesperidin: A new literature data survey. Vojnosanit Pregl 2014; 71(1): 60-5.
[http://dx.doi.org/10.2298/VSP1401060K] [PMID: 24516992]
[50]
Stricker RB, Fesler MC. Flattening the risk: Preexposure prophylaxis for COVID-19. Infect Drug Resist 2020; 13: 3689-94.
[http://dx.doi.org/10.2147/IDR.S264831] [PMID: 33116688]
[51]
Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med Hypotheses 2020; 144: 109957.
[http://dx.doi.org/10.1016/j.mehy.2020.109957] [PMID: 32531538]
[52]
Sime PJ, O’Reilly KMA. Fibrosis of the lung and other tissues: New concepts in pathogenesis and treatment. Clin Immunol 2001; 99(3): 308-19.
[http://dx.doi.org/10.1006/clim.2001.5008] [PMID: 11358425]
[53]
Vitiello A, Pelliccia C, Ferrara F. COVID-19 patients with pulmonary fibrotic tissue: Clinical pharmacological rational of antifibrotic therapy. SN Compr Clin Med 2020; 2(10): 1709-12.
[http://dx.doi.org/10.1007/s42399-020-00487-7] [PMID: 32875276]
[54]
Gonzalez-Gonzalez FJ, Chandel NS, Jain M, Budinger GRS. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Transl Res 2017; 190: 61-8.
[http://dx.doi.org/10.1016/j.trsl.2017.09.005] [PMID: 29080401]
[55]
Zhou Z, Kandhare AD, Kandhare AA, Bodhankar SL. Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways. EXCLI J 2019; 18: 723-45.
[PMID: 31611754]
[56]
Bello M, Martínez-Muñoz A, Balbuena-Rebolledo I. Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV-2 main protease through MM/GBSA. J Mol Model 2020; 26(12): 340.
[http://dx.doi.org/10.1007/s00894-020-04600-4] [PMID: 33184722]
[57]
Dhingra A, Chopra B, Dass R, Mittal S. An update on anti-inflammatory compounds: A review. Antiinflamm Antiallergy Agents Med Chem 2015; 14(2): 81-97.
[http://dx.doi.org/10.2174/1871523014666150514102027] [PMID: 25973652]
[58]
Chopra B, Dhingra AK, Dhar KL, Nepali K. Emerging role of terpenoids for the treatment of cancer: A review. Mini Rev Med Chem 2021; 21(16): 2300-36.
[http://dx.doi.org/10.2174/1389557521666210112143024] [PMID: 33438537]
[59]
Jain A, Chaudhary J, Khaira H, Chopra B, Dhingra A. Piperazine: A promising scaffold with analgesic and anti-inflammatory potential. Drug Res (Stuttg) 2021; 71(2): 62-72.
[http://dx.doi.org/10.1055/a-1323-2813] [PMID: 33336346]
[60]
Dhingra AK, Chopra B, Dass R, Mittal SK. A review on COX and their inhibitors: Present and future. IPP 2014; 2(4): 470-85.
[61]
Roe K. An inflammation classification system using cytokine parameters. Scand J Immunol 2021; 93(2): e12970.
[http://dx.doi.org/10.1111/sji.12970] [PMID: 32892387]
[62]
Dhingra AK, Chopra B, Dua JS, Prasad DN. Therapeutic potential of N-heterocyclic analogs as anti-inflammatory agents. Antiinflamm Antiallergy Agents Med Chem 2018; 16(3): 136-52.
[http://dx.doi.org/10.2174/1871523017666180126150901] [PMID: 29376495]
[63]
Wirtz PH, von Känel R. Psychological stress, inflammation, and coronary heart disease. Curr Cardiol Rep 2017; 19(11): 111.
[http://dx.doi.org/10.1007/s11886-017-0919-x] [PMID: 28932967]
[64]
Dhingra AK, Chopra B, Dua JS, Parsad DN. New insight on inflammation and its management: A review. JIPBS 2017; 4(4): 117-26.
[65]
Dhingra AK, Chopra B, Bonthagarala B. Natural anti-inflammatory agents: Recent progress and future perspectives. Ann Pharmacol Pharmacother 2018; 3(4): 1158-68.
[66]
Dhingra AK, Chopra B. Inflammation as a therapeutic target for various deadly disorders: A review. Curr Drug Targets 2020; 21(6): 582-8.
[http://dx.doi.org/10.2174/1389450120666191204154115] [PMID: 31801453]
[67]
Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 2009; 284(20): 13291-5.
[http://dx.doi.org/10.1074/jbc.R900010200] [PMID: 19182219]
[68]
Ikehata H, Yamamoto M. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicol Appl Pharmacol 2018; 360: 69-77.
[http://dx.doi.org/10.1016/j.taap.2018.09.038] [PMID: 30268578]
[69]
Zhu C, Dong Y, Liu H, Ren H, Cui Z. Hesperetin protects against H2O2-triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells. Biomed Pharmacother 2017; 88: 124-33.
[http://dx.doi.org/10.1016/j.biopha.2016.11.089] [PMID: 28103505]
[70]
Ren H, Hao J, Liu T, et al. Hesperetin suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells via the inhi-bition of NF-κB and activation of Nrf2/HO-1 pathways. Inflammation 2016; 39(3): 964-73.
[http://dx.doi.org/10.1007/s10753-016-0311-9] [PMID: 26994999]
[71]
Hemanth KB, Dinesh KB, Diwan PV. Hesperidin, a citrus flavonoid, protects against l-methionine-induced hyperhomocysteinemia by abrogation of oxidative stress, endothelial dysfunction and neurotoxicity in Wistar rats. Pharm Biol 2017; 55(1): 146-55.
[http://dx.doi.org/10.1080/13880209.2016.1231695] [PMID: 27677544]
[72]
Aly MS, Galaly SR, Moustafa N, Mohammed HM, Khadrawy SM, Mahmoud AM. Hesperidin protects against diethylnitrosamine/carbon tetrachloride-induced renal repercussions via up-regulation of Nrf2/HO-1 signaling and attenuation of oxidative stress. J Appl Pharm Sci 2017; 7(11): 7-14.
[73]
Prasatthong P, Meephat S, Rattanakanokchai S, et al. Hesperidin ameliorates signs of the metabolic syndrome and cardiac dysfunction via IRS/Akt/GLUT4 signaling pathway in a rat model of diet-induced metabolic syndrome. Eur J Nutr 2021; 60(2): 833-48.
[http://dx.doi.org/10.1007/s00394-020-02291-4] [PMID: 32462317]
[74]
Sun YZ, Chen JF, Shen LM, Zhou J, Wang CF. Anti-atherosclerotic effect of hesperidin in LDLr −/− mice and its possible mechanism. Eur J Pharmacol 2017; 815: 109-17.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.010] [PMID: 28899694]
[75]
Kalpana KB, Srinivasan M, Menon VP. Evaluation of antioxidant activity of hesperidin and its protective effect on H2O2 induced oxidative damage on pBR322 DNA and RBC cellular membrane. Mol Cell Biochem 2009; 323(1-2): 21-9.
[http://dx.doi.org/10.1007/s11010-008-9960-9] [PMID: 19039655]
[76]
Moon PD, Kim HM. Antiinflammatory effects of traditional Korean medicine, JinPitang and its active ingredient, hesperidin in HaCaT cells. Phytother Res 2012; 26(5): 657-62.
[http://dx.doi.org/10.1002/ptr.3627] [PMID: 21984511]
[77]
Fu S, Sun C, Tao X, Ren Y. Anti-inflammatory effects of active constituents extracted from Chinese medicinal herbs against Propionibacterium acnes. Nat Prod Res 2012; 26(18): 1746-9.
[http://dx.doi.org/10.1080/14786419.2011.608675] [PMID: 21999396]
[78]
Hernandez-Pigeon H, Garidou L, Galliano MF, et al. Effects of dextran sulfate, 4-t-butylcyclohexanol, pongamia oil and hesperidin methyl chalcone on inflammatory and vascular responses implicated in rosacea. Clin Cosmet Investig Dermatol 2018; 11: 421-9.
[http://dx.doi.org/10.2147/CCID.S168621] [PMID: 30233225]
[79]
Emim JADS, Oliveira AB, Lapa AJ. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J Pharm Pharmacol 2011; 46(2): 118-22.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03753.x] [PMID: 8021799]
[80]
Pelzer LE, Guardia T, Juarez AO, Guerreiro E. Acute and chronic antiinflammatory effects of plant flavonoids. Farmaco 1998; 53(6): 421-4.
[http://dx.doi.org/10.1016/S0014-827X(98)00046-9] [PMID: 9764475]
[81]
Kaidama WM, Gacche RN. Anti-inflammatory properties of hesperidin in guinea pigs. Int J Pharm Pharm Res 2016; 6: 206-17.
[82]
Hajialyani M, Hosein FM, Echeverría J, Nabavi S, Uriarte E, Sobarzo-Sánchez E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019; 24(3): 648.
[http://dx.doi.org/10.3390/molecules24030648] [PMID: 30759833]
[83]
Roohbakhsh A, Parhiz H, Soltani F, Rezaee R, Iranshahi M. Neuropharmacological properties and pharmacokinetics of the citrus flavonoids hesperidin and hesperetin - A mini-review. Life Sci 2014; 113(1-2): 1-6.
[http://dx.doi.org/10.1016/j.lfs.2014.07.029] [PMID: 25109791]
[84]
Yurtal Z, Altug ME, Unsaldi E, Secinti IE, Kucukgul A. Investigation of neuroprotective and therapeutic effect of hesperidin in experimental spinal cord injury. Turk Neurosurg 2020; 30(6): 899-906.
[http://dx.doi.org/10.5137/1019-5149.JTN.29611-20.2] [PMID: 33216334]
[85]
Antunes MS, Cattelan SL, Ladd FVL, et al. Hesperidin ameliorates anxiety-depressive-like behavior in 6-OHDA model of Parkinson’s disease by regulating striatal cytokine and neurotrophic factors levels and dopaminergic innervation loss in the striatum of mice. Mol Neurobiol 2020; 57(7): 3027-41.
[http://dx.doi.org/10.1007/s12035-020-01940-3] [PMID: 32458386]
[86]
Welbat JU, Naewla S, Pannangrong W, Sirichoat A, Aranarochana A, Wigmore P. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat. Biochem Pharmacol 2020; 178: 114083.
[http://dx.doi.org/10.1016/j.bcp.2020.114083] [PMID: 32522593]
[87]
Montreal Heart Institute. Study of Hesperidin therapy on COVID- 19 symptoms (hesperidin). Available from: https://clinicaltrials.gov/ct2/show/record/NCT04715932 (Assessed on: September 13, 2021).
[88]
Tanta University. Hesperidin and diosmin for treatment of COVID-19. 2021. Available from: https://clinicaltrials.gov/ct2/show/record/NCT04452799 (Assessed on: September 13, 2021).