Characterization, Antifungal Evaluation against Candida spp. Strains and Application of Nystatin: β-cyclodextrin Inclusion Complexes

Page: [1533 - 1546] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Nystatin (Nys) is a fungicidal drug commonly prescribed for candidiasis disease in several administration routes. However, Nys is a class IV drug, according to the Biopharmaceutical Classification System, that possesses limited bioavailability and is used for local activity.

Objective: This study developed and characterized nystatin:β-cyclodextrin (Nys:βCD) inclusion complexes and evaluated their activity against Candida spp.

Methods: Complexes were characterized by physicochemical techniques and drug dissolution profiles. The susceptibility of C. albicans, C. krusei, C. parapsilosis, C. glabrata, C. guilliermondii, C. tropicalis, and C. auris was assessed using the broth microdilution method. The applicability of Nys:βCD inclusion complex was evaluated by incorporating it into a temporary soft material for denture stomatitis treatment.

Results: Nys was better complexed in a 1:1 molar ratio by freeze-drying and spray-drying methods. The inclusion complexes show bi-exponential release, an initial burst release followed by a sustained manner, presenting higher dissolution efficiency than raw Nys. The 1:1 freeze-drying Nys:βCD complex presents antifungal activity against all evaluated Candida strains, showing the maintenance of the drug effectiveness. The inclusion complex incorporated into a tissue conditioner material for denture stomatitis treatment effectively inhibited more than 90% of C. albicans biofilm growth during 7 and 14 days, in a half dose compared to raw Nys.

Conclusion: This work represents a significant contribution to treating a wide variety of diseases caused by the Candida species, optimizing the drug bioavailability and compliance to the treatment due to improved drug solubility, dissolution, and sustained delivery.

Graphical Abstract

[1]
Chin, V.; Lee, T.; Rusliza, B.; Chong, P. Dissecting Candida albicans Infection from the perspective of c. albicans virulence and omics approaches on host–pathogen interaction: A Review. Int. J. Mol. Sci., 2016, 17(10), 1643.
[http://dx.doi.org/10.3390/ijms17101643] [PMID: 27763544]
[2]
Singh, D.K.; Tóth, R.; Gácser, A. Mechanisms of pathogenic Candida species to evade the host complement attack. Front. Cell. Infect. Microbiol., 2020, 10, 94.
[http://dx.doi.org/10.3389/fcimb.2020.00094] [PMID: 32232011]
[3]
Alshamrani, M.M.; El-Saed, A.; Mohammed, A.; Alghoribi, M.F.; Al Johani, S.M.; Cabanalan, H.; Balkhy, H.H. Management of Candida auris outbreak in a tertiary-care setting in Saudi Arabia. Infect. Control Hosp. Epidemiol., 2021, 42(2), 149-155.
[http://dx.doi.org/10.1017/ice.2020.414] [PMID: 32880247]
[4]
Eyre, D.W.; Sheppard, A.E.; Madder, H.; Moir, I.; Moroney, R.; Quan, T.P.; Griffiths, D.; George, S.; Butcher, L.; Morgan, M.; Newnham, R.; Sunderland, M.; Clarke, T.; Foster, D.; Hoffman, P.; Borman, A.M.; Johnson, E.M.; Moore, G.; Brown, C.S.; Walker, A.S.; Peto, T.E.A.; Crook, D.W.; Jeffery, K.J.M. A Candida auris outbreak and its control in an intensive care setting. N. Engl. J. Med., 2018, 379(14), 1322-1331.
[http://dx.doi.org/10.1056/NEJMoa1714373] [PMID: 30281988]
[5]
Taori, S.K.; Khonyongwa, K.; Hayden, I.; Athukorala, G.I.D.D.A.D.; Letters, A.; Fife, A.; Desai, N.; Borman, A.M. Candida auris outbreak: Mortality, interventions and cost of sustaining control. J. Infect., 2019, 79(6), 601-611.
[http://dx.doi.org/10.1016/j.jinf.2019.09.007] [PMID: 31557493]
[6]
Zhu, Y.; O’Brien, B.; Leach, L.; Clarke, A.; Bates, M.; Adams, E.; Ostrowsky, B.; Quinn, M.; Dufort, E.; Southwick, K.; Erazo, R.; Haley, V.B.; Bucher, C.; Chaturvedi, V.; Limberger, R.J.; Blog, D.; Lutterloh, E.; Chaturvedi, S. Laboratory analysis of an outbreak of candida auris in new york from 2016 to 2018: impact and lessons learned. J. Clin. Microbiol., 2020, 58(4), e01503-19.
[http://dx.doi.org/10.1128/JCM.01503-19] [PMID: 31852764]
[7]
Prestel, C.; Anderson, E.; Forsberg, K.; Lyman, M.; de Perio, M.A.; Kuhar, D.; Edwards, K.; Rivera, M.; Shugart, A.; Walters, M.; Dotson, N.Q. Candida auris Outbreak in a COVID-19 specialty care unit — Florida, July–August 2020. MMWR Morb. Mortal. Wkly. Rep., 2021, 70(2), 56-57.
[http://dx.doi.org/10.15585/mmwr.mm7002e3] [PMID: 33444298]
[8]
Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.J.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog., 2020, 16(10), e1008921.
[http://dx.doi.org/10.1371/journal.ppat.1008921] [PMID: 33091071]
[9]
Sabino, R.; Veríssimo, C.; Pereira, Á.A.; Antunes, F. Candida Auris, An agent of hospital-associated outbreaks: which challenging issues do we need to have in mind? Microorganisms, 2020, 8(2), 181.
[http://dx.doi.org/10.3390/microorganisms8020181] [PMID: 32012865]
[10]
Boros-Majewska, J.; Salewska, N.; Borowski, E.; Milewski, S.; Malic, S.; Wei, X.Q.; Hayes, A.J.; Wilson, M.J.; Williams, D.W. Novel Nystatin A1 derivatives exhibiting low host cell toxicity and antifungal activity in an in vitro model of oral candidosis. Med. Microbiol. Immunol., 2014, 203(5), 341-355.
[http://dx.doi.org/10.1007/s00430-014-0343-4] [PMID: 24924305]
[11]
Geerts, G.A.V.M.; Stuhlinger, M.E.; Basson, N.J. Effect of an antifungal denture liner on the saliva yeast count in patients with denture stomatitis: a pilot study. J. Oral Rehabil., 2008, 35(9), 664-669.
[http://dx.doi.org/10.1111/j.1365-2842.2007.01805.x] [PMID: 18793352]
[12]
Iqbal, Z.; Zafar, M.S. Role of antifungal medicaments added to tissue conditioners: A systematic review. J. Prosthodont. Res., 2016, 60(4), 231-239.
[http://dx.doi.org/10.1016/j.jpor.2016.03.006] [PMID: 27085676]
[13]
Lyu, X.; Zhao, C.; Hua, H.; Yan, Z. Efficacy of nystatin for the treatment of oral candidiasis: a systematic review and meta-analysis. Drug Des. Devel. Ther., 2016, 10, 1161-1171.
[http://dx.doi.org/10.2147/DDDT.S100795] [PMID: 27042008]
[14]
Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; Zaoutis, T.E.; Sobel, J.D. Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin. Infect. Dis., 2016, 62(4), e1-e50.
[http://dx.doi.org/10.1093/cid/civ933] [PMID: 26679628]
[15]
Thompson, G.R., III; Patel, P.K.; Kirkpatrick, W.R.; Westbrook, S.D.; Berg, D.; Erlandsen, J.; Redding, S.W.; Patterson, T.F. Oropharyngeal candidiasis in the era of antiretroviral therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2010, 109(4), 488-495.
[http://dx.doi.org/10.1016/j.tripleo.2009.11.026] [PMID: 20156694]
[16]
Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical appearance of oral Candida infection and therapeutic strategies. Front. Microbiol., 2015, 6, 1391.
[http://dx.doi.org/10.3389/fmicb.2015.01391] [PMID: 26733948]
[17]
Lombardi, T.; Budtz-Jörgensen, E. Treatment of denture-induced stomatitis: a review. Eur. J. Prosthodont. Restor. Dent., 1993, 2(1), 17-22.
[PMID: 8180613]
[18]
Uekama, K. Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull., 2004, 52(8), 900-915.
[http://dx.doi.org/10.1248/cpb.52.900] [PMID: 15304981]
[19]
Antipin, I.S.; Alfimov, M.V.; Arslanov, V.V.; Burilov, V.A.; Vatsadze, S.Z.; Voloshin, Y.Z.; Volcho, K.P.; Gorbatchuk, V.V.; Gorbunova, Y.G.; Gromov, S.P.; Dudkin, S.V.; Zaitsev, S.Y.; Zakharova, L.Y.; Ziganshin, M.A.; Zolotukhina, A.V.; Kalinina, M.A.; Karakhanov, E.A.; Kashapov, R.R.; Koifman, O.I.; Konovalov, A.I.; Korenev, V.S.; Maksimov, A.L.; Mamardashvili, N.Z.; Mamardashvili, G.M.; Martynov, A.G.; Mustafina, A.R.; Nugmanov, R.I.; Ovsyannikov, A.S.; Padnya, P.L.; Potapov, A.S.; Selektor, S.L.; Sokolov, M.N.; Solovieva, S.E.; Stoikov, I.I.; Stuzhin, P.A.; Suslov, E.V.; Ushakov, E.N.; Fedin, V.P.; Fedorenko, S.V.; Fedorova, O.A.; Fedorov, Y.V.; Chvalun, S.N.; Tsivadze, A.Y.; Shtykov, S.N.; Shurpik, D.N.; Shcherbina, M.A.; Yakimova, L.S. Functional supramolecular systems: design and applications. Russ. Chem. Rev., 2021, 90(8), 895-1107.
[http://dx.doi.org/10.1070/RCR5011]
[20]
Xu, W.; Li, X.; Wang, L.; Li, S.; Chu, S.; Wang, J.; Li, Y.; Hou, J.; Luo, Q.; Liu, J. Design of cyclodextrin-based functional systems for biomedical applications. Front Chem., 2021, 9, 635507.
[http://dx.doi.org/10.3389/fchem.2021.635507] [PMID: 33681149]
[21]
Duchêne, D.; Wouessidjewe, D. Physicochemical characteristics and pharmaceutical uses of cyclodextrin derivates, part I. Pharm. Technol., 1990, 6, 26-34.
[22]
Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev., 1998, 98(5), 2045-2076.
[http://dx.doi.org/10.1021/cr970025p] [PMID: 11848959]
[23]
Arya, P.; Raghav, N. in vitro studies of Curcumin-β-cyclodextrin inclusion complex as sustained release system. J. Mol. Struct., 2021, 1228, 129774.
[http://dx.doi.org/10.1016/j.molstruc.2020.129774]
[24]
Teixeira, K.I.R.; Araújo, P.V.; Sinisterra, R.D.; Cortés, M.E. Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol. Braz. J. Microbiol., 2012, 43(2), 810-818.
[http://dx.doi.org/10.1590/S1517-83822012000200047] [PMID: 24031894]
[25]
Higuchi, T.; Connors, K.A. Phase solubility techniques. Adv Anal Chem Instrum., 1965, 4, 117-122.
[26]
Garg, A.; Ahmad, J.; Hassan, M.Z. Inclusion complex of thymol and hydroxypropyl-β-cyclodextrin (HP-β-CD) in polymeric hydrogel for topical application: Physicochemical characterization, molecular docking, and stability evaluation. J. Drug Deliv. Sci. Technol., 2021, 64, 102609.
[http://dx.doi.org/10.1016/j.jddst.2021.102609]
[27]
Racaniello, G.F.; Laquintana, V.; Summonte, S.; Lopedota, A.; Cutrignelli, A.; Lopalco, A.; Franco, M.; Bernkop-Schnürch, A.; Denora, N. Spray-dried mucoadhesive microparticles based on S-protected thiolated hydroxypropyl-β-cyclodextrin for budesonide nasal delivery. Int. J. Pharm., 2021, 603, 120728.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120728] [PMID: 34029665]
[28]
Zhao, X.; Qiu, N.; Ma, Y.; Liu, J.; An, L.; Zhang, T.; Li, Z.; Han, X.; Chen, L. Preparation, characterization and biological evaluation of β-cyclodextrin-biotin conjugate based podophyllotoxin complex. Eur. J. Pharm. Sci., 2021, 160, 105745.
[http://dx.doi.org/10.1016/j.ejps.2021.105745] [PMID: 33549707]
[29]
Riekes, M.K.; Tagliari, M.P.; Granada, A.; Kuminek, G.; Silva, M.A.S.; Stulzer, H.K. Enhanced solubility and dissolution rate of amiodarone by complexation with β-cyclodextrin through different methods. Mater. Sci. Eng. C, 2010, 30(7), 1008-1013.
[http://dx.doi.org/10.1016/j.msec.2010.05.001]
[30]
Dimitriu, C.; Corciova, A.; Cioroiu, B.; Mircea, C.; Tuchilus, C.; Ciobanu, C.; Ivanescu, B. Influence of hydroxypropyl-beta-cyclodextrin on the physicochemical and biological characteristics of a flavone with important pharmacological properties. Environ. Eng. Manag. J., 2015, 14(2), 311-319.
[http://dx.doi.org/10.30638/eemj.2015.031]
[31]
Rodriguez-Tudela, J.L.; Arendrup, M.C.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Denning, D.W.; Donnelly, J.P.; Dromer, F.; Fegeler, W.; Lass-Flörl, C.; Moore, C.; Richardson, M.; Sandven, P.; Velegraki, A.; Verweij, P. EUCAST Definitive Document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin. Microbiol. Infect., 2008, 14(4), 398-405.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01935.x] [PMID: 18190574]
[32]
Richards, T.S.; Oliver, B.G.; White, T.C. Micafungin activity against Candida albicans with diverse azole resistance phenotypes. J. Antimicrob. Chemother., 2008, 62(2), 349-355.
[http://dx.doi.org/10.1093/jac/dkn156] [PMID: 18436555]
[33]
Silva, W.J.; Seneviratne, J.; Parahitiyawa, N.; Rosa, E.A.R.; Samaranayake, L.P.; Cury, A.A.D.B. Improvement of XTT assay performance for studies involving Candida albicans biofilms. Braz. Dent. J., 2008, 19(4), 364-369.
[http://dx.doi.org/10.1590/S0103-64402008000400014] [PMID: 19180329]
[34]
Ramage, G.; Vandewalle, K.; Wickes, B.L.; López-Ribot, J.L. Characteristics of biofilm formation by Candida albicans. Rev. Iberoam. Micol., 2001, 18(4), 163-170.
[PMID: 15496122]
[35]
Morikava, F.S.; Moraes, G.S.; Cachoeira, V.S.; Ramalho, M.P.; Silva, R.A.; Neppelenbroek, K.H.; Urban, V.M. Methods for Candida albicans biofilm formation on temporary soft liner/Métodos para a formação de biofilme de Candida albicans em reembasador macio temporário. Brazilian J. Heal. Rev., 2021, 4(5), 21447-21459.
[http://dx.doi.org/10.34119/bjhrv4n5-234]
[36]
Chandra, J.; Mukherjee, P.K.; Leidich, S.D.; Faddoul, F.F.; Hoyer, L.L.; Douglas, L.J.; Ghannoum, M.A. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J. Dent. Res., 2001, 80(3), 903-908.
[http://dx.doi.org/10.1177/00220345010800031101] [PMID: 11379893]
[37]
CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed; Clinical and Laboratory Standards Institute: Wayne, PA, 2017.
[38]
Kuhn, D.M.; Balkis, M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J. Clin. Microbiol., 2003, 41(1), 506-508.
[http://dx.doi.org/10.1128/JCM.41.1.506-508.2003] [PMID: 12517908]
[39]
Bueno, M.G.; Urban, V.M.; Barbério, G.S.; Silva, W.J.; Porto, V.C.; Pinto, L.; Neppelenbroek, K.H. Effect of antimicrobial agents incorporated into resilient denture relines on the Candida albicans biofilm. Oral Dis., 2015, 21(1), 57-65.
[http://dx.doi.org/10.1111/odi.12207] [PMID: 24219354]
[40]
Moraes, G.S.; Cachoeira, V.S.; Alves, F.M.C.; Kiratcz, F.; Albach, T.; Bueno, M.G.; Neppelenbroek, K.H.; Urban, V.M. Is there an optimal method to detach Candida albicans biofilm from dental materials? J. Med. Microbiol., 2021, 70(10), 001436.
[http://dx.doi.org/10.1099/jmm.0.001436] [PMID: 34623230]
[41]
Al Omari, A.A.; Al Omari, M.M.; Badwan, A.A.; Al-Sou’od, K.A. Effect of cyclodextrins on the solubility and stability of candesartan cilexetil in solution and solid state. J. Pharm. Biomed. Anal., 2011, 54(3), 503-509.
[http://dx.doi.org/10.1016/j.jpba.2010.09.027] [PMID: 20971593]
[42]
Mendonça, E.A.; Lira, M.C.; Rabello, M.M.; Cavalcanti, I.M.; Galdino, S.L.; Pitta, I.R.; Lima, M.C.; Pitta, M.G.; Hernandes, M.Z.; Santos-Magalhães, N.S. Enhanced antiproliferative activity of the new anticancer candidate LPSF/AC04 in cyclodextrin inclusion complexes encapsulated into liposomes. AAPS Pharm. Sci. Tech, 2012, 13(4), 1355-1366.
[http://dx.doi.org/10.1208/s12249-012-9853-9] [PMID: 23054982]
[43]
Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev., 2007, 59(7), 645-666.
[http://dx.doi.org/10.1016/j.addr.2007.05.012] [PMID: 17601630]
[44]
Nakanishi, K.; Masada, M.; Nadai, T.; Miyajima, K. Effect of the interaction of drug-.BETA.-cyclodextrin complex with bile salts on the drug absorption from rat small intestinal lumen. Chem. Pharm. Bull., 1989, 37(1), 211-214.
[http://dx.doi.org/10.1248/cpb.37.211] [PMID: 2720852]
[45]
Loftsson, T.; Hreinsdóttir, D.; Másson, M. Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm., 2005, 302(1-2), 18-28.
[http://dx.doi.org/10.1016/j.ijpharm.2005.05.042] [PMID: 16099118]
[46]
Zhang, X.; Wu, D.; Lai, J.; Lu, Y.; Yin, Z.; Wu, W. Piroxicam/2-hydroxypropyl-beta-cyclodextrin inclusion complex prepared by a new fluid-bed coating technique. J. Pharm. Sci., 2009, 98(2), 665-675.
[http://dx.doi.org/10.1002/jps.21453] [PMID: 18543294]
[47]
Rusa, C.C.; Luca, C.; Tonelli, A.E. Polymer-cyclodextrin inclusion compounds: toward new aspects of their inclusion mechanism. Macromolecules, 2001, 34(5), 1318-1322.
[http://dx.doi.org/10.1021/ma001868c]
[48]
Mura, P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharm. Biomed. Anal., 2015, 113, 226-238.
[http://dx.doi.org/10.1016/j.jpba.2015.01.058] [PMID: 25743620]
[49]
Zingone, G.; Rubessa, F. Preformulation study of the inclusion complex warfarin-β-cyclodextrin. Int. J. Pharm., 2005, 291(1-2), 3-10.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.013] [PMID: 15707726]
[50]
Patel, S.G.; Rajput, S.J. Enhancement of oral bioavailability of cilostazol by forming its inclusion complexes. AAPS Pharm. Sci. Tech, 2009, 10(2), 660-669.
[http://dx.doi.org/10.1208/s12249-009-9249-7] [PMID: 19459053]
[51]
Cunha-Filho, M.S.S.; Dacunha-Marinho, B.; Torres-Labandeira, J.J.; Martínez-Pacheco, R.; Landín, M. Characterization of β-lapachone and methylated β-cyclodextrin solid-state systems. AAPS Pharm. Sci. Tech, 2007, 8(3), E68-E77.
[http://dx.doi.org/10.1208/pt0803060] [PMID: 17915810]
[52]
Denadai, Â.M.L.; Teixeira, K.I.; Santoro, M.M.; Pimenta, A.M.C.; Cortés, M.E.; Sinisterra, R.D. Supramolecular self-assembly of β-cyclodextrin: an effective carrier of the antimicrobial agent chlorhexidine. Carbohydr. Res., 2007, 342(15), 2286-2296.
[http://dx.doi.org/10.1016/j.carres.2007.05.002] [PMID: 17618611]
[53]
Somer, A.; Roik, J.R.; Ribeiro, M.A.; Urban, A.M.; Schoeffel, A.; Urban, V.M.; Farago, P.V.; Castro, L.V.; Sato, F.; Jacinto, C.; Campesatto, E.; Moreira, M.S.A.; Novatski, A. Nystatin complexation with β -cyclodextrin: Spectroscopic evaluation of inclusion by FT-Raman, photoacoustic spectroscopy, and 1H NMR. Mater. Chem. Phys., 2020, 239, 122117.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122117]
[54]
Peng, H.; Xiong, H.; Li, J.; Xie, M.; Liu, Y.; Bai, C.; Chen, L. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem., 2010, 121(1), 23-28.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.085]
[55]
Siepmann, J.; Siepmann, F. Modeling of diffusion controlled drug delivery. J. Control. Release, 2012, 161(2), 351-362.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.006] [PMID: 22019555]
[56]
Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[57]
Nenoff, P.; Krüger, C.; Neumeister, C.; Schwantes, U.; Koch, D. In vitro susceptibility testing of yeasts to nystatin – low minimum inhibitory concentrations suggest no indication of in vitro resistance of Candida albicans, Candida species or non-Candida yeast species to nystatin. Clinic. Med. Invest., 2016, 1(3), 71-76.
[http://dx.doi.org/10.15761/CMI.1000116]
[58]
Iguchi, S.; Itakura, Y.; Yoshida, A.; Kamada, K.; Mizushima, R.; Arai, Y.; Uzawa, Y.; Kikuchi, K. Candida auris: A pathogen difficult to identify, treat, and eradicate and its characteristics in Japanese strains. J. Infect. Chemother., 2019, 25(10), 743-749.
[http://dx.doi.org/10.1016/j.jiac.2019.05.034] [PMID: 31257156]
[59]
Rogers, T.R. Antifungal drug resistance: does it matter? Int. J. Infect. Dis., 2002, 6(S1), S47-S53.
[http://dx.doi.org/10.1016/S1201-9712(02)90154-2] [PMID: 12044289]
[60]
Memişoğlu, E.; Bochot, A.; Özalp, M.; Şen, M.; Duchêne, D.; Hincal, A.A. Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm. Res., 2003, 20(1), 117-125.
[http://dx.doi.org/10.1023/A:1022263111961] [PMID: 12608545]
[61]
Finger, S.; Wiegand, C.; Buschmann, H.J.; Hipler, U.C. Antimicrobial properties of cyclodextrin–antiseptics-complexes determined by microplate laser nephelometry and ATP bioluminescence assay. Int. J. Pharm., 2012, 436(1-2), 851-856.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.009] [PMID: 22877865]
[62]
Abdul Rasool, B.K.; Salmo, H.M. Development and clinical evaluation of clotrimazole-β-cyclodextrin eyedrops for the treatment of fungal keratitis. AAPS Pharm. Sci. Tech., 2012, 13(3), 883-889.
[http://dx.doi.org/10.1208/s12249-012-9813-4] [PMID: 22696223]