Synthesis and In vivo Evaluation of Hepatoprotective Effects of Novel Sulfur-Containing 1,4-Dihydropyridines and 1,2,3,4-Tetrahydropyridines

Article ID: e171022210054 Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Hepatoprotectors, currently used in clinical practice, often show low efficacy. One of the promising goals in the therapy of liver diseases is the targeted synthesis of smallmolecule drugs with hepatoprotective activity. Some heterocycles, such as 1,4-dihydropyridines, are proven to be good hepatoprotectors.

Objective: This study aimed to prepare and investigate the hepatoprotective effects of some dihydro- and tetrahydro pyridines using the experimental rat model of tetrachloromethane (CCl4)- induced acute liver damage.

Methods: Several 1,4-dihydropyridines and 1,2,3,4-tetrahydropyridines were synthesized by the reaction of cyanothioacetamide with carbonyl compounds and active methylene compounds, such as Meldrum’s acid, ethyl cyanoacetate or β-keto esters, followed by S-alkylation of intermediate pyridine-2-thiolates. In silico prediction studies were performed to explore the possible protein targets. Using virtual bioscreening tools, we selected the six most promising compounds from the library of new partially saturated pyridines. Six novel compounds were characterized by IR, 1H, 13C DEPTQ NMR spectroscopy, 2D NMR experiments (1H–13C HSQC, 1H–13C HMBC), HRMS (ESI), and elemental analysis. The hepatoprotective effects were studied in vivo on eighty white rats with CCl4-induced liver damage. Biochemical studies, including thymol turbidity test and measurements of levels of bilirubin, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase in the blood of rats, were performed.

Results: Five of six studied compounds showed a good hepatoprotective effect on a rat model of tetrachloromethane (CCl4)-induced acute hepatitis. The blood of rats in the experimental groups revealed significantly lower levels of total bilirubin, alanine aminotransferases, aspartate aminotransferases, thymol turbidity and alkaline phosphatase compared to the control group of rats with acute toxic tetrachloromethane hepatitis.

Conclusion: Our results suggests that compound, (benzyl 4-(4-chlorophenyl)-5-cyano-6-({2-[(3,4- dimethylphenyl)amino]-2-oxoethyl}thio)-2-methyl-1,4-dihydropyridine-3-carboxylate), can be considered as candidate for further preclinical studies. Moreover, as per our knowledge, this is the first report on the hepatoprotective effects of the 1,2,3,4-tetrahydropyridine series.

Graphical Abstract

[1]
Farber, E. Orientation in liver toxicity by drugs. In: Drug-Induced Hepatotoxicity. Handbook of experimental pharmacology; Cameron, R.G.; Feuer, G.; De la Iglesia, F.A., Eds.; Springer: Berlin, Heidelberg, 1996; 121, pp. 1-23.
[http://dx.doi.org/10.1007/978-3-642-61013-4_1]
[2]
Navarro, V.J.; Senior, J.R. Drug-related hepatotoxicity. N. Engl. J. Med., 2006, 354(7), 731-739.
[http://dx.doi.org/10.1056/NEJMra052270] [PMID: 16481640]
[3]
Chayanupatkul, M.; Schiano, T.D. Acute liver failure secondary to drug-induced liver injury. Clin. Liver Dis., 2020, 24(1), 75-87.
[http://dx.doi.org/10.1016/j.cld.2019.09.005] [PMID: 31753252]
[4]
Teschke, R.; Frenzel, C.; Glass, X.; Schulze, J.; Eickhoff, A. Herbal hepatotoxicity: A critical review. Br. J. Clin. Pharmacol., 2013, 75(3), 630-636.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04395.x] [PMID: 22831551]
[5]
Chitturi, S.; Farrell, G.C. Herbal hepatotoxicity: An expanding but poorly defined problem. J. Gastroenterol. Hepatol., 2000, 15(10), 1093-1099.
[http://dx.doi.org/10.1046/j.1440-1746.2000.02349.x] [PMID: 11106086]
[6]
Teschke, R.; Schwarzenboeck, A.; Eickhoff, A.; Frenzel, C.; Wolff, A.; Schulze, J. Clinical and causality assessment in herbal hepatotoxicity. Expert Opin. Drug Saf., 2013, 12(3), 339-366.
[http://dx.doi.org/10.1517/14740338.2013.774371] [PMID: 23458441]
[7]
Licata, A.; Macaluso, F.S.; Craxì, A. Herbal hepatotoxicity: A hidden epidemic. Intern. Emerg. Med., 2013, 8(1), 13-22.
[http://dx.doi.org/10.1007/s11739-012-0777-x] [PMID: 22477279]
[8]
Pandit, A.; Sachdeva, T.; Bafna, P. Drug-induced hepatotoxicity: A review. J. Appl. Pharm. Sci., 2012, 2(5), 233-243.
[http://dx.doi.org/10.7324/JAPS.2012.2541]
[9]
Floyd, J.; Mirza, I.; Sachs, B.; Perry, M.C. Hepatotoxicity of chemotherapy. Semin. Oncol., 2006, 33(1), 50-67.
[http://dx.doi.org/10.1053/j.seminoncol.2005.11.002] [PMID: 16473644]
[10]
Mohi-ud-din, R.; Mir, R.H.; Sawhney, G.; Dar, M.A.; Bhat, Z.A. Possible pathways of hepatotoxicity caused by chemical agents. Curr. Drug Metab., 2019, 20(11), 867-879.
[http://dx.doi.org/10.2174/1389200220666191105121653] [PMID: 31702487]
[11]
Singh, D.; Cho, W.C.; Upadhyay, G. Drug-induced liver toxicity and prevention by herbal antioxidants: An overview. Front. Physiol., 2016, 6, 363.
[http://dx.doi.org/10.3389/fphys.2015.00363] [PMID: 26858648]
[12]
Teschke, R. Aliphatic halogenated hydrocarbons: Report and analysis of liver injury in 60 patients. J. Clin. Transl. Hepatol., 2018, 6(4), 350-361.
[http://dx.doi.org/10.14218/JCTH.2018.00040]
[13]
Shakya, A.K. Drug-induced hepatotoxicity and hepatoprotective medicinal plants: a review. Indian J. Pharm. Educ. Res., 2020, 54(2), 234-250.
[http://dx.doi.org/10.5530/ijper.54.2.28]
[14]
Dong, V.; Nanchal, R.; Karvellas, C.J. Pathophysiology of acute liver failure. Nutr. Clin. Pract., 2020, 35(1), 24-29.
[http://dx.doi.org/10.1002/ncp.10459] [PMID: 31840297]
[15]
Farkas, D.; Tannenbaum, S. In vitro methods to study chemically-induced hepatotoxicity: a literature review. Curr. Drug Metab., 2005, 6(2), 111-125.
[http://dx.doi.org/10.2174/1389200053586118] [PMID: 15853763]
[16]
Leise, M.D.; Poterucha, J.J.; Talwalkar, J.A. Drug-induced liver injury. Mayo Clin. Proc., 2014, 89(1), 95-106.
[http://dx.doi.org/10.1016/j.mayocp.2013.09.016] [PMID: 24388027]
[17]
Cano-Paniagua, A.; Amariles, P.; Angulo, N.; Restrepo-Garay, M. Epidemiology of drug-induced liver injury in a University Hospital from Colombia: Updated RUCAM being used for prospective causality assessment. Ann. Hepatol., 2019, 18(3), 501-507.
[http://dx.doi.org/10.1016/j.aohep.2018.11.008] [PMID: 31053545]
[18]
Erwin, E.R.; Addison, A.P.; John, S.F.; Olaleye, O.A.; Rosell, R.C. Pharmacokinetics of isoniazid: The good, the bad, and the alternatives. Tuberculosis (Edinb.), 2019, 116, S66-S70.
[http://dx.doi.org/10.1016/j.tube.2019.04.012] [PMID: 31076322]
[19]
Andrade, R.J.; Chalasani, N.; Björnsson, E.S.; Suzuki, A.; Kullak-Ublick, G.A.; Watkins, P.B.; Devarbhavi, H.; Merz, M.; Lucena, M.I.; Kaplowitz, N.; Aithal, G.P. Drug-induced liver injury. Nat. Rev. Dis. Primers, 2019, 5(1), 58.
[http://dx.doi.org/10.1038/s41572-019-0105-0] [PMID: 31439850]
[20]
Ram, V.J. Herbal preparations as a source of hepatoprotective agents. Drug News Perspect., 2001, 14(6), 353-363.
[PMID: 12813598]
[21]
Aeri, V.; Ilyas, U.; Katare, D.P.; Naseef, P. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn. Rev., 2016, 10(19), 66-70.
[http://dx.doi.org/10.4103/0973-7847.176544] [PMID: 27041876]
[22]
Xu, G.B.; Xiao, Y.H.; Zhang, Q.Y.; Zhou, M.; Liao, S.G. Hepatoprotective natural triterpenoids. Eur. J. Med. Chem., 2018, 145, 691-716.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.011] [PMID: 29353722]
[23]
Karimi-Sales, E.; Mohaddes, G.; Alipour, M.R. Chalcones as putative hepatoprotective agents: Preclinical evidence and molecular mechanisms. Pharmacol. Res., 2018, 129, 177-187.
[http://dx.doi.org/10.1016/j.phrs.2017.11.022] [PMID: 29175112]
[24]
Nair, D.G.; Weiskirchen, R.; Al-Musharafi, S.K. The use of marine-derived bioactive compounds as potential hepatoprotective agents. Acta Pharmacol. Sin., 2015, 36(2), 158-170.
[http://dx.doi.org/10.1038/aps.2014.114] [PMID: 25500871]
[25]
Weiskirchen, R. Hepatoprotective and anti-fibrotic agents: It’s time to take the next step. Front. Pharmacol., 2016, 6, 303.
[http://dx.doi.org/10.3389/fphar.2015.00303] [PMID: 26779021]
[26]
Jiménez-Arellanes, M.A.; Gutiérrez-Rebolledo, G.A.; Meckes-Fischer, M.; León-Díaz, R. Medical plant extracts and natural compounds with a hepatoprotective effect against damage caused by antitubercular drugs: A review. Asian Pac. J. Trop. Med., 2016, 9(12), 1141-1149.
[http://dx.doi.org/10.1016/j.apjtm.2016.10.010] [PMID: 27955741]
[27]
Asadi-Samani, M.; Kafash-Farkhad, N.; Azimi, N.; Fasihi, A.; Alinia-Ahandani, E.; Rafieian-Kopaei, M. Medicinal plants with hepatoprotective activity in Iranian folk medicine. Asian Pac. J. Trop. Biomed., 2015, 5(2), 146-157.
[http://dx.doi.org/10.1016/S2221-1691(15)30159-3]
[28]
Daoudi, N.E.; Bnouham, M. Hepatoprotective essential oils: A review. J. Pharmacopuncture, 2020, 23(3), 124-141.
[http://dx.doi.org/10.3831/KPI.2020.23.3.124] [PMID: 33072411]
[29]
Mangwani, N.; Singh, P.K.; Kumar, V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J. Ayurveda Integr. Med., 2020, 11(4), 522-528.
[http://dx.doi.org/10.1016/j.jaim.2019.02.004] [PMID: 31679802]
[30]
Iranshahy, M.; Rezaee, R.; Karimi, G. Hepatoprotective activity of metformin: A new mission for an old drug? Eur. J. Pharmacol., 2019, 850, 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.004] [PMID: 30753869]
[31]
Ram, V.J.; Haque, N.; Singh, S.K.; Nath, M.; Shoeb, A.; Tripathi, S.C.; Patnaik, G.K. Synthesis of sulphur heterocycles as hepatoprotectants: Part I. Bioorg. Med. Chem. Lett., 1994, 4(12), 1453-1456.
[http://dx.doi.org/10.1016/S0960-894X(01)80512-6]
[32]
Ishida, N.; Nakata, K.; Tanaka, M.; Takase, K.; Mita, S. The protective effects of (4R)-hexahydro-7,7-dimethyl-6-oxo-1,2,5-dithiazo-cine-4-carboxylic acid (SA3443), a novel cyclic disulfide, on chemically-induced acute liver injury. Jpn. J. Pharmacol., 1991, 55(2), 275-278.
[http://dx.doi.org/10.1016/S0021-5198(19)39959-7] [PMID: 2067142]
[33]
Chen, Z.Z.; Xie, Y.D.; Shao, L.H.; Wang, Q.T.; Xu, Y.H.; Bian, X.L. 5-(4-Hydroxyphenyl)-3H-1,2-dithiole-3-thione-based fibrates as potential hypolipidemic and hepatoprotective agents. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3787-3792.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.003] [PMID: 30337230]
[34]
Ram, V.J.; Goel, A.; Sarkhel, S.; Maulik, P.R. A convenient synthesis and hepatoprotective activity of imidazo[1,2-c]pyrimido[5,4-e]pyrimidine, tetraazaacenaphthene and tetraazaphenalene from cyclic ketene aminals through tandem addition-cyclization reactions. Bioorg. Med. Chem., 2002, 10(5), 1275-1280.
[http://dx.doi.org/10.1016/S0968-0896(01)00423-0] [PMID: 11886790]
[35]
Pingili, R.B.; Pawar, A.K.; Challa, S.R.; Kodali, T.; Koppula, S.; Toleti, V. A comprehensive review on hepatoprotective and nephroprotective activities of chrysin against various drugs and toxic agents. Chem. Biol. Interact., 2019, 308, 51-60.
[http://dx.doi.org/10.1016/j.cbi.2019.05.010] [PMID: 31085170]
[36]
Triggle, D.J. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol., 2003, 23(3), 293-303.
[http://dx.doi.org/10.1023/A:1023632419813] [PMID: 12825828]
[37]
Edraki, N.; Mehdipour, A.R.; Khoshneviszadeh, M.; Miri, R. Dihydropyridines: Evaluation of their current and future pharmacological applications. Drug Discov. Today, 2009, 14(21-22), 1058-1066.
[http://dx.doi.org/10.1016/j.drudis.2009.08.004] [PMID: 19729074]
[38]
Kastron, V.V.; Vitolin’, R.O.; Dubur, G.Y. Synthesis and pharmacological actiivty of 1,4-dihydropyridines. (review) Pharm. Chem. J., 1990, 24(6), 394-403.
[http://dx.doi.org/10.1007/BF00765785]
[39]
Lavilla, R. Recent developments in the chemistry of dihydropyridines. J. Chem. Soc., Perkin Trans. 1, 2002, (9), 1141-1156.
[http://dx.doi.org/10.1039/b101371h]
[40]
Sepehri, S.; Sanchez, H.P.; Fassihi, A. Hantzsch-Type dihydropyridines and Biginelli-type tetra-hydropyrimidines: A review of their chemotherapeutic activities. J. Pharm. Pharm. Sci., 2015, 18(1), 1-52.
[http://dx.doi.org/10.18433/J3Q01V] [PMID: 25877440]
[41]
Chekavichus, B.S.; Odynets, A.G.; Sausin’, A.; Berzinya, D.A.; Zolotoyabko, R.M. Liepin’sh; Dubur, G.Y. Synthesis and hepatoprotectant properties of 4-pyrazolyl-1,4-dihydropyridines. Pharm. Chem. J., 1987, 21(8), 581-587.
[http://dx.doi.org/10.1007/BF00759436]
[42]
Krauze, A.A.; Odynets, A.G.; Verreva, A.A.; Germane, S.K.; Kozhukhov, A.N.; Dubur, G.Y. Synthesis and hepatoprotectant activity of 5-carbamoyl- and 5-acetyl-2-alkylthio-6-methyl-4-aryl-3-cyano-1,4-dihydropyridines. Pharm. Chem. J., 1991, 25(7), 477-481.
[http://dx.doi.org/10.1007/BF00772003]
[43]
Asish, Bhaumik Shaik Shareef; Rekkala Nagababu; Shareef, S.; Nagababu, R. Synthetic novel 1,4-dihydropyridine derivatives act as potential hepatoprotective agent against CCl4 induced rat hepatocytes. J. Pharm. Pharmacol., 2015, 3(2), 80-89.
[http://dx.doi.org/10.17265/2328-2150/2015.02.005]
[44]
Wei, Y.; Lu, Y.; Zhu, Y.; Zheng, W.; Guo, F.; Yao, B.; Xu, S.; Wang, Y.; Jin, L.; Li, Y. Structural basis for the hepatoprotective effects of antihypertensive 1,4-dihydropyridine drugs. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(10), 2261-2270.
[http://dx.doi.org/10.1016/j.bbagen.2018.07.022] [PMID: 30048741]
[45]
Drocourt, L.; Pascussi, J.M.; Assenat, E.; Fabre, J.M.; Maurel, P.; Vilarem, M.J. Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab. Dispos., 2001, 29(10), 1325-1331.
[PMID: 11560876]
[46]
Ellouk-Achard, S.; Mawet, E.; Thibault, N.; Dutertre-Catella, H.; Thevenin, M.; Claude, J.R. Protective effect of nifedipine against cytotoxicity and intracellular calcium alterations induced by acetaminophen in rat hepatocyte cultures. Drug Chem. Toxicol., 1995, 18(2-3), 105-117.
[http://dx.doi.org/10.3109/01480549509014315] [PMID: 7497906]
[47]
Soliman, A.M.; Karam, H.M.; Mekkawy, M.H.; Ghorab, M.M. Antioxidant activity of novel quinazolinones bearing sulfonamide: Potential radiomodulatory effects on liver tissues via NF-k;B/PON1 pathway. Eur. J. Med. Chem., 2020, 197112333
[http://dx.doi.org/10.1016/j.ejmech.2020.112333] [PMID: 32361176]
[48]
Dotsenko, V.V.; Krivokolysko, S.G.; Polovinko, V.V.; Litvinov, V.P. On the regioselectivity of the reaction of cyanothioacetamide with 2-acetylcyclo-hexanone, 2-acetylcyclopentanone, and 2-acetyl-1-(morpholin-4-yl)-1-cycloalkenes. Chem. Heterocycl. Compd., 2012, 48(2), 309-319.
[http://dx.doi.org/10.1007/s10593-012-0991-5]
[49]
Nesterova, I.N.; Shanazarov, A.K.; Poznyak, A.M.; Lakoza, M.I.; Shemeryankin, B.V.; Granik, V.G. Improved method of synthesizing 2,2-dimethyl-4,6-dioxo-1,3-dioxane (Meldrum’s Acid). Pharm. Chem. J., 1994, 28(8), 583-585.
[http://dx.doi.org/10.1007/BF02219035]
[50]
Dotsenko, V.V.; Krivokolysko, S.G.; Litvinov, V.P. The Radziszewski oxidation of cycloalkylidene-α;-(thiazol- 2-yl)acetonitriles: A new approach toward spirooxiranes. J. Heterocycl. Chem., 2011, 48(1), 162-167.
[http://dx.doi.org/10.1002/jhet.493]
[51]
Krauze, A.A. Liepin’sh; Pelcher, Y.; Kalme, Z.A.; Dubur, G.Y. Preparation and properties of piperidine salts of 6-hydroxy-4,6-diaryl-5-ethoxycarbonyl-3-cyanopiperidine-2-thiones. Chem. Heterocycl. Compd., 1987, 23(1), 61-65.
[http://dx.doi.org/10.1007/BF00475477]
[52]
Krauze, A.A. Liepin’sh; Pelcher, Y.; Dubur, G.Y. Synthesis of 3-amino-6-methyl-5-ethoxycarbonyl-4,7-dihydrothieno[2,3-b]pyridine derivatives. Chem. Heterocycl. Compd., 1987, 23(1), 102-106.
[http://dx.doi.org/10.1007/BF00475486]
[53]
Krauze, A.; Duburs, G. Synthesis and properties of 3-cyano-4-(4-cyanophenyl)-1,4-dihydropyridine-2(3H)-thiones. Chem. Heterocycl. Compd., 2000, 36(6), 693-697.
[http://dx.doi.org/10.1007/BF02297678]
[54]
Krivokolysko, S.G.; Dyachenko, V.D.; Litvinov, V.P. Three-component condensation in the synthesis of 4-(2-chlorophenyl)-3-cyano-5-ethoxycarbonyl-6-propyl-3,4-dihydropyridine-2(1H)-thione. Russ. Chem. Bull., 1990, 49(1), 176-178.
[http://dx.doi.org/10.1007/BF02499088]
[55]
Sander, T. OSIRIS Property Explorer Available from:, https://www.organic-chemistry.org/prog/peo/
[56]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[57]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42(W1), W32-W38.
[http://dx.doi.org/10.1093/nar/gku293] [PMID: 24792161]
[58]
Molinspiration Property Calculation Service. Molinspiration Cheminformatics, Slovak Republic. 2002. Available from: www.molinspiration.com [Accessed on: August 14, 2022].
[59]
PASS Online Laboratory for structure-function based drug design, Institute of biomedical chemistry (IBMC). Available from: http://www.pharmaexpert.ru/passonline/predict.php [Accessed on: August 14, 2022]
[60]
Filz, O.A.; Poroikov, V.V. Fragment-based lead design. Russ. Chem. Rev., 2012, 81(2), 158-174.
[http://dx.doi.org/10.1070/RC2012v081n02ABEH004222]
[61]
Way2Drug, AntiBac-Pred. Laboratory for structure-function based drug design, Institute of biomedical chemistry (IBMC), Moscow, Russia. Available from: http://way2drug.com/antibac/ [Accessed on: August 14, 2022].
[62]
Fraschini, F.; Demartini, G.; Esposti, D. Pharmacology of Silymarin. Clin. Drug Investig., 2002, 22(1), 51-65.
[http://dx.doi.org/10.2165/00044011-200222010-00007]
[63]
Mayer, K.E.; Myers, R.P.; Lee, S.S. Silymarin treatment of viral hepatitis: a systematic review. J. Viral Hepat., 2005, 12(6), 559-567.
[http://dx.doi.org/10.1111/j.1365-2893.2005.00636.x] [PMID: 16255756]
[64]
Kshirsagar, A.; Ingawale, D.; Ashok, P.; Vyawahare, N. Silymarin: A comprehensive review. Pharmacogn. Rev., 2009, 3(5), 126-134.
[65]
Nesterov, V.N.; Krivokolysko, S.G.; Dotsenko, V.V.; Litvinov, V.P.; Litvinov, V.P. Synthesis, properties, and structures of ammonium 4-aryl-5-cyano-2-oxo-1,2,3,4-tetrahydropyridine-6-thiolates. Russ. Chem. Bull., 1997, 46(5), 990-996.
[http://dx.doi.org/10.1007/BF02496132]
[66]
Dyachenko, V.D.; Krivokolysko, S.G.; Litvinov, V.P. A new method for the synthesis ofN-methylmorpholinium 4-aryl-5-cyano-2-oxo-1,2,3,4-tetrahydropyridine-6-thiolates and their properties. Russ. Chem. Bull., 1997, 46(10), 1758-1762.
[http://dx.doi.org/10.1007/BF02495131]
[67]
Krivokolysko, S.G.; Dotsenko, V.V.; Litvinov, V.P. New multicomponent condensations leading to sulfur containing 1,2,3,4-tetrahydro-2-pyridinones. Chem. Heterocycl. Compd., 2000, 36(9), 1108-1109.
[http://dx.doi.org/10.1023/A:1002750402772]
[68]
Osolodkin, D.I.; Kozlovskaya, L.I.; Dueva, E.V.; Dotsenko, V.V.; Rogova, Y.V.; Frolov, K.A.; Krivokolysko, S.G.; Romanova, E.G.; Morozov, A.S.; Karganova, G.G.; Palyulin, V.A.; Pentkovski, V.M.; Zefirov, N.S. Inhibitors of tick-borne flavivirus reproduction from structure based virtual screening. ACS Med. Chem. Lett., 2013, 4(9), 869-874.
[http://dx.doi.org/10.1021/ml400226s] [PMID: 24900762]
[69]
Dotsenko, V.V.; Frolov, K.A.; Pekhtereva, T.M.; Papaianina, O.S.; Suykov, S.Y.; Krivokolysko, S.G. Design and synthesis of pyrido[2,1-b][1,3,5]thiadiazine library via uncatalyzed Mannich-type reaction. ACS Comb. Sci., 2014, 16(10), 543-550.
[http://dx.doi.org/10.1021/co5000807] [PMID: 25191927]
[70]
Dotsenko, V.V.; Krivokolysko, S.G.; Chernega, A.N.; Litvinov, V.P. Fused sulfur-containing pyridine systems. 1. Synthesis and structures of tetrahydropyridothienopyridinone and tetrahydropyridothiopyranopyridinone derivatives. Russ. Chem. Bull., 2003, 52(4), 969-977.
[http://dx.doi.org/10.1023/A:1024420930528]
[71]
Dyachenko, V.D.; Mitroshin, A.E.; Litvinov, V.P. Synthesis and properties of 6-oxo-3,5-dicyano-1,4,5,6tetrahydrospiro-(4?-r-cyclohexane-1?4-pyridine)-2thiols and -selenols. Chem. Heterocycl. Compd., 1996, 32(9), 1058-1065.
[http://dx.doi.org/10.1007/BF01164713]
[72]
Krivokolysko, S.G.; Dyachenko, V.D.; Rusanov, E.B.; Litvinov, V.P. Synthesis and alkylation of N-methylmorpholinium 4-aryl-3,5-dicyano-6-oxo-1,4,5,6-tetrahydro-2-pyridinethiolates. Molecular and crystal structure of 4,5-trans-3,5-dicyano-4-(2-methoxyphenyl)-2-methylthio-6-oxo-1,4,5,6-tetrahydropyridine. Chem. Heterocycl. Compd., 2001, 37(4), 477-483.
[http://dx.doi.org/10.1023/A:1017656005767]
[73]
Krivokolysko, S.G.; Frolov, K.A.; Litvinov, V.P. Multicomponent synthesis of piperidinium 3,5-dicyano-4-cyclohexanespiro-2-oxo-1,2,3,4-tetrahydropyridine-6-thiolate. Chem. Heterocycl. Compd., 2001, 37(5), 645-646.
[http://dx.doi.org/10.1023/A:1011673009239]
[74]
Dotsenko, V.V.; Krivokolysko, S.G.; Litvinov, V.P. 1-(Cyanoacetyl)-3,5-dimethylpyrazole as active methylene compound in Hantzsch-type pyridine synthesis: a convenient and highly effective approach to 3,5-dicyano-4-(het)aryl-6-oxo-1,4,5,6-tetrahydropyridine-2-thiolates. Monatsh. Chem., 2007, 138(6), 607-613.
[http://dx.doi.org/10.1007/s00706-007-0664-8]
[75]
Dotsenko, V.V.; Krivokolysko, S.G.; Litvinov, V.P. The Mannich reaction in the synthesis of N,S-containing heterocycles 8. Aminomethylation of 3,5-dicyano-6-oxo-1,4,5,6-tetrahydropyridine-2-thiolates as a method for the synthesis of new functionally substituted 3,7-diazabicyclo[3.3.1]nonane derivatives. Russ. Chem. Bull., 2007, 56(12), 2482-2486.
[http://dx.doi.org/10.1007/s11172-007-0395-3]
[76]
Chigorina, E.A. 1-(Cyanoacetyl)-3,5-dimethylpyrazole as an effective alternative to cyanoacetic ester in the synthesis of 2,6-dioxopiperidine-3,5-dicarbonitrile derivatives. Chem. Heterocycl. Compd., 2013, 49(4), 574-585.
[http://dx.doi.org/10.1007/s10593-013-1284-3]
[77]
Chigorina, E.A.; Dotsenko, V.V.; Krivokolysko, S.G. New approach to the synthesis of 4-aryl-3,5-dicyano-6-oxo- 1,4,5,6-tetrahy-dropyridin-2-olates (salts of guareschi imides). Chem. Heterocycl. Compd., 2011, 47(7), 913-915.
[http://dx.doi.org/10.1007/s10593-011-0855-4]
[78]
Frolov, K.A.; Dotsenko, V.V.; Krivokolysko, S.G.; Litvinov, V.P. Synthesis and properties of triethylammonium 4-aryl(hetaryl)-3,5-dicyano-6-oxo-1,4,5,6-tetrahydro-pyridine-2-selenolates. Chem. Heterocycl. Compd., 2012, 48(3), 442-447.
[http://dx.doi.org/10.1007/s10593-012-1012-4]