Plant Lectins: A Review on their Biotechnological Potential Toward Human Pathogens

Page: [851 - 861] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The indiscriminate use of antibiotics is associated with the appearance of bacterial resistance. In light of this, plant-based products treating infections are considered potential alternatives. Lectins are a group of proteins widely distributed in nature, capable of reversibly binding carbohydrates. Lectins can bind to the surface of pathogens and cause damage to their structure, thus preventing host infection. The antimicrobial activity of plant lectins results from their interaction with carbohydrates present in the bacterial cell wall and fungal membrane. The data about lectins as modulating agents of antibiotic activity, potentiates the effect of antibiotics without triggering microbial resistance. In addition, lectins play an essential role in the defense against fungi, reducing their infectivity and pathogenicity. Little is known about the antiviral activity of plant lectins. However, their effectiveness against retroviruses and parainfluenza is reported in the literature. Some authors still consider mannose/ glucose/N-Acetylglucosamine binding lectins as potent antiviral agents against coronavirus, suggesting that these lectins may have inhibitory activity against SARS-CoV-2. Thus, it was found that plant lectins are an alternative for producing new antimicrobial drugs, but further studies still need to decipher some mechanisms of action.

[1]
Adedeji, W.A. The treasure called antibiotics. Ann. Ib. Postgrad. Med., 2016, 14(2), 56-57.
[PMID: 28337088]
[2]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther, 2015, 40, 277.
[3]
Gross, M. Antibiotics in crisis. Curr. Biol., 2013, 23(24), R1063-R1065.
[http://dx.doi.org/10.1016/j.cub.2013.11.057] [PMID: 24501765]
[4]
Gottesman, B.S.; Carmeli, Y.; Shitrit, P.; Chowers, M. Impact of quinolone restriction on resistance patterns of Escherichia coli isolated from urine by culture in a community setting. Clin. Infect. Dis., 2009, 49(6), 869-875.
[http://dx.doi.org/10.1086/605530] [PMID: 19686074]
[5]
Costelloe, C.; Metcalfe, C.; Lovering, A.; Mant, D.; Hay, A.D. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: Systematic review and metaanalysis. BMJ, 2010, 340(may18 2), c2096-c2096.
[http://dx.doi.org/10.1136/bmj.c2096] [PMID: 20483949]
[6]
Fonseca, V.J.A.; Braga, A.L.; Filho, J.R.; Teixeira, C.S.; da Hora, G.C.A.; Morais-Braga, M.F.B. A review on the antimicrobial properties of lectins. Int. J. Biol. Macromol., 2022, 195, 163-178.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.209] [PMID: 34896466]
[7]
Komath, S.S.; Kavitha, M.; Swamy, M.J. Beyond carbohydrate binding: New directions in plant lectin research. Org. Biomol. Chem., 2006, 4(6), 973-988.
[http://dx.doi.org/10.1039/b515446d] [PMID: 16525538]
[8]
Peumans, W.J.; Van Damme, E. Lectins as plant defense proteins. Plant Physiol., 1995, 109(2), 347-352.
[http://dx.doi.org/10.1104/pp.109.2.347] [PMID: 7480335]
[9]
Koeppe, S.J.; Rupnow, J.H. Purification and characterization of a Lectin from the Seeds of Amaranth (Amaranthus cruentus). J. Food Sci., 1988, 53(5), 1412-1417.
[http://dx.doi.org/10.1111/j.1365-2621.1988.tb09289.x]
[10]
Nagata, Y.; Goldberg, A.R.; Burger, M.M. The isolation and purification of wheat germ and other agglutinins. Methods Enzymol., 1974, 32, 611-615.
[http://dx.doi.org/10.1016/0076-6879(74)32061-7] [PMID: 4444540]
[11]
Beintema, J.J.; Peumans, W.J. The primary structure of stinging nettle (Urtica dioica) agglutinin A two-domain member of the hevein family. FEBS Lett., 1992, 299(2), 131-134.
[http://dx.doi.org/10.1016/0014-5793(92)80231-5] [PMID: 1544484]
[12]
Sankaranarayanan, R.; Sekar, K.; Banerjee, R.; Sharma, V.; Surolia, A.; Vijayan, M. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nat. Struct. Biol., 1996, 3(7), 596-603.
[http://dx.doi.org/10.1038/nsb0796-596] [PMID: 8673603]
[13]
Peumans, W.J.; van Damme, J.M.; Barre, A.; Rougé, P. Classification of plant lectins in families of structurally and evolutionary related proteins. Adv. Exp. Med. Biol., 2001, 491, 27-54.
[http://dx.doi.org/10.1007/978-1-4615-1267-7_3] [PMID: 14533788]
[14]
Hester, G.; Kaku, H.; Goldstein, I.J.; Wright, C.S. Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat. Struct. Mol. Biol., 1995, 2(6), 472-479.
[http://dx.doi.org/10.1038/nsb0695-472] [PMID: 7664110]
[15]
Barbieri, L.; Battelli, M.G.; Stirpe, F. Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta Rev. Biomembr., 1993, 1154(3-4), 237-282.
[http://dx.doi.org/10.1016/0304-4157(93)90002-6] [PMID: 8280743]
[16]
Sheehan, S.A.; Hamilton, K.L.; Retzbach, E.P.; Balachandran, P.; Krishnan, H.; Leone, P.; Lopez-Gonzalez, M.; Suryavanshi, S.; Kumar, P.; Russo, R.; Goldberg, G.S. Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells with potential to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Exp. Cell Res., 2021, 403(1), 112594.
[http://dx.doi.org/10.1016/j.yexcr.2021.112594] [PMID: 33823179]
[17]
Guimarães, D.O.; Momesso, L.S.; Pupo, M.T. Antibióticos: Importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Quim. Nova, 2010, 33(3), 667-679.
[http://dx.doi.org/10.1590/S0100-40422010000300035]
[18]
Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf., 2013, 91, 1-9.
[http://dx.doi.org/10.1016/j.ecoenv.2013.01.016] [PMID: 23414720]
[19]
Tortora, G.J.; Case, C.L. FUNKE, B.R. Microbiologia, 12th ed.; , 2016.
[20]
Linares, J.F.; Gustafsson, I.; Baquero, F.; Martinez, J.L. Antibiotics as intermicrobial signaling agents instead of weapons. Proc. Natl. Acad. Sci. USA, 2006, 103(51), 19484-19489.
[http://dx.doi.org/10.1073/pnas.0608949103] [PMID: 17148599]
[21]
Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and ele-vated minimum inhibitory concentrations. Clin. Infect. Dis., 2013, 56(12), 1724-1732.
[http://dx.doi.org/10.1093/cid/cit136] [PMID: 23487382]
[22]
Mediavilla, J.R.; Patrawalla, A.; Chen, L.; Chavda, K.D.; Mathema, B.; Vinnard, C.; Dever, L.L.; Kreiswirth, B.N. Colistin- and car-bapenem-resistant Escherichia coli harboring mcr-1 and blaNDM-5, causing a complicated urinary tract infection in a patient from the United States. MBio, 2016, 7(4), e01191-e16.
[http://dx.doi.org/10.1128/mBio.01191-16] [PMID: 27578755]
[23]
Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ., 2020, 739, 139076.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139076] [PMID: 32758929]
[24]
Ferreira, R.L.; Terra Júnior, A.T. Estudo sobre a automedicação, o uso irracional de medicamentos e o papel do farmacêutico na sua pre-venção. Revista Científica FAEMA, 2018, 9(edesp), 570-576.
[http://dx.doi.org/10.31072/rcf.v9iedesp.617]
[25]
Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis., 2013, 56(10), 1445-1450.
[http://dx.doi.org/10.1093/cid/cit070] [PMID: 23403172]
[26]
Madigan, M.T.; Martinko, J.M. Parker, J. Microbiologia de Brock, 10th ed.; São Paulo , 2004.
[27]
Mallik, D.; Kumar, A.; Sarkar, S.K.; Ghosh, A.S. Multiple resistance mechanisms acting in unison in an Escherichia coli clinical isolate. Curr. Microbiol., 2013, 67(6), 748-753.
[http://dx.doi.org/10.1007/s00284-013-0431-5] [PMID: 23907493]
[28]
Oliveira, M.T.A.; Moura, G.M.M.; da Cruz, J.I.O.; Lima, R.V.C.; dos Santos, E.A.; Andrade, J.C.; Alencar, M.V.O.B.; Landim, V.P.A.; Coutinho, H.D.M.; Uchoa, A.F. Serine protease inhibition and modulatory-antibiotic activity of the proteic extract and fractions from Am-burana cearensis. Food Chem. Toxicol., 2020, 135, 110946.
[http://dx.doi.org/10.1016/j.fct.2019.110946] [PMID: 31712106]
[29]
Qiao, M.; Ying, G.G.; Singer, A.C.; Zhu, Y.G. Review of antibiotic resistance in China and its environment. Environ. Int., 2018, 110, 160-172.
[http://dx.doi.org/10.1016/j.envint.2017.10.016] [PMID: 29107352]
[30]
von Baum, H.; Marre, R. Antimicrobial resistance of Escherichia coli and therapeutic implications. Int. J. Med. Microbiol., 2005, 295(6-7), 503-511.
[http://dx.doi.org/10.1016/j.ijmm.2005.07.002] [PMID: 16238024]
[31]
Schindler, B.D.; Jacinto, P.; Kaatz, G.W. Inhibition of drug efflux pumps in Staphylococcus aureus: Current status of potentiating existing antibiotics. Future Microbiol., 2013, 8(4), 491-507.
[http://dx.doi.org/10.2217/fmb.13.16] [PMID: 23534361]
[32]
Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 2019, 37(1), 177-192.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.013] [PMID: 30500353]
[33]
Drescher, S.M.; von Wyl, V.; Yang, W.L.; Böni, J.; Yerly, S.; Shah, C.; Aubert, V.; Klimkait, T.; Taffé, P.; Furrer, H.; Battegay, M.; Am-brosioni, J.; Cavassini, M.; Bernasconi, E.; Vernazza, P.L.; Ledergerber, B.; Günthard, H.F.; Kouyos, R.D.; Aubert, V.; Barth, J.; Battegay, M.; Bernasconi, E.; Böni, J.; Bucher, H.C.; Burton-Jeangros, C.; Calmy, A.; Cavassini, M.; Egger, M.; Elzi, L.; Fehr, J.; Fellay, J.; Furrer, H.; Fux, C.A.; Gorgievski, M.; Günthard, H.; Haerry, D.; Hasse, B.; Hirsch, H.H.; Hösli, I.; Kahlert, C.; Kaiser, L.; Keiser, O.; Klimkait, T.; Kovari, H.; Kouyos, R.; Ledergerber, B.; Martinetti, G.; Martinez de Tejada, B.; Metzner, K.; Müller, N.; Nadal, D.; Pantaleo, G.; Rauch, A.; Regenass, S.; Rickenbach, M.; Rudin, C.; Schmid, P.; Schultze, D.; Schöni-Affolter, F.; Schüpbach, J.; Speck, R.; Staehelin, C.; Tarr, P.; Telenti, A.; Trkola, A.; Vernazza, P.; Weber, R.; Yerly, S. Treatment-naive individuals are the major source of transmitted HIV-1 drug re-sistance in men who have sex with men in the Swiss HIV Cohort Study. Clin. Infect. Dis., 2014, 58(2), 285-294.
[http://dx.doi.org/10.1093/cid/cit694] [PMID: 24145874]
[34]
Mourad, R.; Chevennet, F.; Dunn, D.T.; Fearnhill, E.; Delpech, V.; Asboe, D.; Gascuel, O.; Hue, S. A phylotype-based analysis highlights the role of drug-naive HIV-positive individuals in the transmission of antiretroviral resistance in the UK. AIDS, 2015, 29(15), 1917-1925.
[http://dx.doi.org/10.1097/QAD.0000000000000768] [PMID: 26355570]
[35]
Wertheim, J.O.; Oster, A.M.; Johnson, J.A.; Switzer, W.M.; Saduvala, N.; Hernandez, A.L.; Hall, H.I.; Heneine, W. Transmission fitness of drug-resistant HIV revealed in a surveillance system transmission network. Virus Evol., 2017, 3(1), vex008.
[http://dx.doi.org/10.1093/ve/vex008] [PMID: 28458918]
[36]
Chowdhary, A.; Voss, A.; Meis, J.F. Multidrug-resistant Candida auris: ‘new kid on the block’ in hospital-associated infections? J. Hosp. Infect., 2016, 94(3), 209-212.
[http://dx.doi.org/10.1016/j.jhin.2016.08.004] [PMID: 27634564]
[37]
Lockhart, S.R. Candida auris and multidrug resistance: Defining the new normal. Fungal Genet. Biol., 2019, 131, 103243.
[http://dx.doi.org/10.1016/j.fgb.2019.103243] [PMID: 31228646]
[38]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[http://dx.doi.org/10.1038/nrmicro3380] [PMID: 25435309]
[39]
Salimiyan Rizi, K.; Ghazvini, K.; Noghondar, M. Adaptive antibiotic resistance: Overview and perspectives. J. Infect. Dis. Ther., 2018, 6(3)
[http://dx.doi.org/10.4172/2332-0877.1000363]
[40]
Ribeiro, A.C.; Ferreira, R.; Freitas, R. Plant Lectins: Bioactivities and Bioapplications. In: Atta-ur-Rehman, Eds.; Studies in Natural Products Chemistry; Elsevier: London;, 2018; pp. 1-42.
[http://dx.doi.org/10.1016/B978-0-444-64056-7.00001-5]
[41]
Van Damme, E.J.M. 35 years in plant lectin research: A journey from basic science to applications in agriculture and medicine. Glycoconj. J., 2022, 39(1), 83-97.
[http://dx.doi.org/10.1007/s10719-021-10015-x] [PMID: 34427812]
[42]
Ramos, D.B.M.; Gomes, F.S.; Napoleão, T.H.; Paiva, P.M.G.; da Silva, M.D.C.; Barroso Coelho, L.C.B. Antimicrobial activity of Cladonia verticillaris lichen preparations on bacteria and fungi of medical importance. Zhongguo Shengwuzhipinxue Zazhi, 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/219392]
[43]
Dias, L.P.; Santos, A.L.E.; Araújo, N.M.S.; Silva, R.R.S.; Santos, M.H.C.; Roma, R.R.; Rocha, B.A.M.; Oliveira, J.T.A.; Teixeira, C.S. Machaerium acutifolium lectin alters membrane structure and induces ROS production in Candida parapsilosis. Int. J. Biol. Macromol., 2020, 163, 19-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.236] [PMID: 32599250]
[44]
Breitenbach Barroso Coelho, L.C.; Marcelino dos Santos Silva, P.; Felix de Oliveira, W.; de Moura, M.C.; Viana Pontual, E.; Soares Gomes, F.; Guedes Paiva, P.M.; Napoleão, T.H.; dos Santos Correia, M.T. Lectins as antimicrobial agents. J. Appl. Microbiol., 2018, 125(5), 1238-1252.
[http://dx.doi.org/10.1111/jam.14055] [PMID: 30053345]
[45]
Pichl, C.; Dunkl, B.; Brauner, B.; Gabor, F.; Wirth, M.; Neutsch, L. Biomimickry of UPEC cytoinvasion: A novel concept for improved drug delivery in UTI. Pathogens, 2016, 5(1), 16.
[http://dx.doi.org/10.3390/pathogens5010016] [PMID: 26861401]
[46]
Lagarda-Diaz, I.; Guzman-Partida, A.; Vazquez-Moreno, L. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci., 2017, 18(6), 1242.
[http://dx.doi.org/10.3390/ijms18061242] [PMID: 28604616]
[47]
Qadir, S.; Hussain Wani, I.; Rafiq, S.; Ahmad Ganie, S.; Masood, A.; Hamid, R. Evaluation of antimicrobial activity of a lectin isolated and purified from Indigofera heterantha. Adv. Biosci. Biotechnol., 2013, 04, 999-1006.
[http://dx.doi.org/10.4236/abb.2013.411133]
[48]
Cavada, B.S.; Osterne, V.J.S.; Oliveira, M.V.; Pinto-Junior, V.R.; Silva, M.T.L.; Bari, A.U.; Lima, L.D.; Lossio, C.F.; Nascimento, K.S. Reviewing Mimosoideae lectins: A group of under explored legume lectins. Int. J. Biol. Macromol., 2020, 154, 159-165.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.113] [PMID: 32184140]
[49]
Nascimento, K.S.; Silva, M.T.L.; Oliveira, M.V.; Lossio, C.F.; Pinto-Junior, V.R.; Osterne, V.J.S.; Cavada, B.S. Dalbergieae lectins: A re-view of lectins from species of a primitive Papilionoideae (leguminous) tribe. Int. J. Biol. Macromol., 2020, 144, 509-526.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.117] [PMID: 31857177]
[50]
Cavada, B.S.; Pinto-Junior, V.R.; Osterne, V.J.S.; Oliveira, M.V.; Lossio, C.F.; Silva, M.T.L.; Bari, A.U.; Lima, L.D.; Souza-Filho, C.H.D.; Nascimento, K.S. Comprehensive review on Caelsalpinioideae lectins: From purification to biological activities. Int. J. Biol. Macromol., 2020, 162, 333-348.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.161] [PMID: 32574746]
[51]
Katoch, R.; Tripathi, A. Research advances and prospects of legume lectins. J. Biosci., 2021, 46(4), 104.
[http://dx.doi.org/10.1007/s12038-021-00225-8] [PMID: 34815374]
[52]
Cagliari, R.; Kremer, F.S.; Pinto, L.S. Bauhinia lectins: Biochemical properties and biotechnological applications. Int. J. Biol. Macromol., 2018, 119, 811-820.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.156] [PMID: 30071232]
[53]
Uematsu, J.; Koyama, A.; Takano, S.; Ura, Y.; Tanemura, M.; Kihira, S.; Yamamoto, H.; Kawano, M.; Tsurudome, M.; O’Brien, M.; Komada, H. Legume lectins inhibit human parainfluenza virus type 2 infection by interfering with the entry. Viruses, 2012, 4(7), 1104-1115.
[http://dx.doi.org/10.3390/v4071104] [PMID: 22852043]
[54]
Akkouh, O.; Ng, T.; Singh, S.; Yin, C.; Dan, X.; Chan, Y.; Pan, W.; Cheung, R. Lectins with anti-HIV activity: A review. Molecules, 2015, 20(1), 648-668.
[http://dx.doi.org/10.3390/molecules20010648] [PMID: 25569520]
[55]
da Silva, P.M.; da Silva, B.R.; de Oliveira Silva, J.N.; de Moura, M.C.; Soares, T.; Feitosa, A.P.S.; Brayner, F.A.; Alves, L.C.; Paiva, P.M.G.; Damborg, P.; Ingmer, H.; Napoleão, T.H. Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic ef-fects with antibiotics against β-lactamase-producing Escherichia coli. Int. J. Biol. Macromol., 2019, 135, 931-939.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.011] [PMID: 31170488]
[56]
Coriolano, M.C.; Brito, J.S.; Ferreira, G.R.S.; Moura, M.C.; Melo, C.M.L.; Soares, A.K.A.; Lorena, V.M.B.; Figueiredo, R.C.B.Q.; Paiva, P.M.G.; Napoleão, T.H.; Coelho, L.C.B.B. Antibacterial lectin from Moringa oleifera seeds (WSMoL) has differential action on growth, membrane permeability and protease secretory ability of Gram-positive and Gram-negative pathogens. S. Afr. J. Bot., 2020, 129, 198-205.
[http://dx.doi.org/10.1016/j.sajb.2019.06.014]
[57]
Santos, V.F.; Araújo, A.C.J.; Freitas, P.R.; Silva, A.L.P.; Santos, A.L.E.; Matias da Rocha, B.A.; Silva, R.R.S.; Almeida, D.V.; Garcia, W.; Coutinho, H.D.M.; Teixeira, C.S. Enhanced antibacterial activity of the gentamicin against multidrug-resistant strains when complexed with Canavalia ensiformis lectin. Microb. Pathog., 2021, 152, 104639.
[http://dx.doi.org/10.1016/j.micpath.2020.104639] [PMID: 33238197]
[58]
Suarez Carneiro, M.A.M.; Silva, L.S.; Diniz, R.M.; Saminez, W.F.S.; Oliveira, P.V.; Pereira Mendonça, J.S.; Colasso, A.H.M.; Soeiro Silva, I.S.; Jandú, J.J.B.; Sá, J.C.; Figueiredo, C.S.S.S.; Correia, M.T.S.; Nascimento da Silva, L.C. Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. Int. Immunopharmacol., 2021, 100, 108094.
[http://dx.doi.org/10.1016/j.intimp.2021.108094] [PMID: 34508942]
[59]
Moura, M.C.; Trentin, D.S.; Napoleão, T.H.; Primon-Barros, M.; Xavier, A.S.; Carneiro, N.P.; Paiva, P.M.G.; Macedo, A.J.; Coelho, L.C.B.B. Multi-effect of the water-soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: Antibacterial, antibiofilm and anti-adhesive properties. J. Appl. Microbiol., 2017, 123(4), 861-874.
[http://dx.doi.org/10.1111/jam.13556] [PMID: 28792661]
[60]
de Souza Feitosa Lima, I.M.; Zagmignan, A.; Santos, D.M.; Maia, H.S.; dos Santos Silva, L.; da Silva Cutrim, B.; Vieira, S.L.; Bezerra Filho, C.M.; de Sousa, E.M.; Napoleão, T.H.; Krogfelt, K.A.; Løbner-Olesen, A.; Paiva, P.M.G.; Nascimento da Silva, L.C. Schinus tere-binthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci. Rep., 2019, 9(1), 18159.
[http://dx.doi.org/10.1038/s41598-019-54616-x] [PMID: 31796807]
[61]
Santos, L.M.M.; Silva, P.M.; Moura, M.C.; Carvalho, Junior, A.R.; Amorim, P.K.; Procópio, T.F.; Coelho, L.C.B.B.; Silva, L.C.N.; Paiva, P.M.G.; Santos, N.D.L.; Napoleão, T.H. Anti-Candida activity of the water-soluble lectin from Moringa oleifera seeds (WSMoL). J. Mycol. Med., 2021, 31(2), 101074.
[http://dx.doi.org/10.1016/j.mycmed.2020.101074] [PMID: 33183973]
[62]
Silva, P.M.; Silva, J.N.O.; Silva, B.R.; Ferreira, G.R.S.; Gaião, W.D.C.; Recio, M.V.; Gonçalves, G.G.A.; Rodrigues, C.G.; Medeiros, P.L.; Brayner, F.A.; Alves, L.C.; Larsen, M.H.; Ingmer, H.; Napoleão, T.H.; Paiva, P.M.G. Antibacterial effects of the lectin from pomegranate sarcotesta (PgTeL) against Listeria monocytogenes. J. Appl. Microbiol., 2021, 131(2), 671-681.
[http://dx.doi.org/10.1111/jam.14978] [PMID: 33342053]
[63]
de Albuquerque, L.P.; de Sá Santana, G.M.; Napoleão, T.H.; Coelho, L.C.B.B.; da Silva, M.V.; Paiva, P.M.G. Antifungal activity of Mi-crogramma vacciniifolia rhizome lectin on genetically distinct Fusarium oxysporum f. sp. lycopersici races. Appl. Biochem. Biotechnol., 2014, 172(2), 1098-1105.
[http://dx.doi.org/10.1007/s12010-013-0600-9] [PMID: 24142386]
[64]
da Silva, P.M.; de Moura, M.C.; Gomes, F.S.; da Silva Trentin, D.; Silva de Oliveira, A.P.; de Mello, G.S.V.; da Rocha Pitta, M.G.; de Melo Rego, M.J.B.; Coelho, L.C.B.B.; Macedo, A.J.; de Figueiredo, R.C.B.Q.; Paiva, P.M.G.; Napoleão, T.H. PgTeL, the lectin found in Punica granatum juice, is an antifungal agent against Candida albicans and Candida krusei. Int. J. Biol. Macromol., 2018, 108, 391-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.039] [PMID: 29225175]
[65]
Ruiz-Herrera, J.; Elorza, M.V.; Valentín, E.; Sentandreu, R. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res., 2006, 6(1), 14-29.
[http://dx.doi.org/10.1111/j.1567-1364.2005.00017.x] [PMID: 16423067]
[66]
Leal, A.F.G.; Lopes, N.E.P.; Clark, A.T.R.; de Pontes Filho, N.T.; Beltrão, E.I.C.; Neves, R.P. Carbohydrate profiling of fungal cell wall surface glycoconjugates of Aspergillus species in brain and lung tissues using lectin histochemistry. Med. Mycol., 2012, 50(7), 756-759.
[http://dx.doi.org/10.3109/13693786.2011.631946] [PMID: 22103341]
[67]
Lima, S.L.; Colombo, A.L.; de Almeida, Junior, J.N. Fungal Cell Wall: Emerging antifungals and drug resistance. Front. Microbiol., 2019, 10, 2573.
[http://dx.doi.org/10.3389/fmicb.2019.02573] [PMID: 31824443]
[68]
Regente, M.; Taveira, G.B.; Pinedo, M.; Elizalde, M.M.; Ticchi, A.J.; Diz, M.S.S.; Carvalho, A.O.; de la Canal, L.; Gomes, V.M. A sun-flower lectin with antifungal properties and putative medical mycology applications. Curr. Microbiol., 2014, 69(1), 88-95.
[http://dx.doi.org/10.1007/s00284-014-0558-z] [PMID: 24623187]
[69]
Del Rio, M.; de la Canal, L.; Pinedo, M.; Mora-Montes, H.M.; Regente, M. Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells. Phytomedicine, 2019, 58, 152875.
[http://dx.doi.org/10.1016/j.phymed.2019.152875] [PMID: 30884454]
[70]
Oliveira, W.F.; Cabrera, M.P.; Santos, N.R.M.; Napoleão, T.H.; Paiva, P.M.G.; Neves, R.P.; Silva, M.V.; Santos, B.S.; Coelho, L.C.B.B.; Cabral Filho, P.E.; Fontes, A.; Correia, M.T.S. Evaluating glucose and mannose profiles in Candida species using quantum dots conjugat-ed with Cramoll lectin as fluorescent nanoprobes. Microbiol. Res., 2020, 230, 126330.
[http://dx.doi.org/10.1016/j.micres.2019.126330] [PMID: 31541842]
[71]
Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(5), 877-886.
[http://dx.doi.org/10.1007/s10096-015-2323-z] [PMID: 25630538]
[72]
Covés-Datson, E.M.; King, S.R.; Legendre, M.; Gupta, A.; Chan, S.M.; Gitlin, E.; Kulkarni, V.V.; Pantaleón García, J.; Smee, D.F.; Lipka, E.; Evans, S.E.; Tarbet, E.B.; Ono, A.; Markovitz, D.M. A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo. Proc. Natl. Acad. Sci. USA, 2020, 117(4), 2122-2132.
[http://dx.doi.org/10.1073/pnas.1915152117] [PMID: 31932446]
[73]
Favero, J.; Corbeau, P.; Nicolas, M.; Benkirane, M.; Travé, G.; Dixon, J.F.P.; Aucouturier, P.; Rasheed, S.; Parker, J.W.; Liautard, J.P.; Devaux, C.; Dornand, J. Inhibition of human immunodeficiency virus infection by the lectin jacalin and by a derived peptide showing a sequence similarity with gp120. Eur. J. Immunol., 1993, 23(1), 179-185.
[http://dx.doi.org/10.1002/eji.1830230128] [PMID: 8419169]
[74]
Kaur, R. Neetu; Mudgal, R.; Jose, J.; Kumar, P.; Tomar, S. Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology, 2019, 526, 91-98.
[http://dx.doi.org/10.1016/j.virol.2018.10.009] [PMID: 30388630]
[75]
Hansen, J.E.S.; Nielsen, C.; Heegaard, P.; Mathiesen, L.R.; Nielsen, J.O.; Nielsen, J.O. Correlation between carbohydrate structures on the envelope glycoprotein gp120 of.HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS, 1989, 3(10), 635-642.
[http://dx.doi.org/10.1097/00002030-198910000-00003] [PMID: 2574581]
[76]
Wang, W.; Li, Q.; Wu, J.; Hu, Y.; Wu, G.; Yu, C.; Xu, K.; Liu, X.; Wang, Q.; Huang, W.; Wang, L.; Wang, Y. Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerg. Microbes Infect., 2021, 10(1), 1519-1529.
[http://dx.doi.org/10.1080/22221751.2021.1957720] [PMID: 34278967]
[77]
Ramírez Hernández, E.; Hernández-Zimbrón, L.F.; Martínez Zúñiga, N.; Leal-García, J.J.; Ignacio Hernández, V.; Ucharima-Corona, L.E.; Pérez Campos, E.; Zenteno, E. The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immu-nological Responses. Viral Immunol., 2021, 34(3), 165-173.
[http://dx.doi.org/10.1089/vim.2020.0174] [PMID: 33605822]
[78]
El-Maradny, Y.A.; El-Fakharany, E.M.; Abu-Serie, M.M.; Hashish, M.H.; Selim, H.S. Lectins purified from medicinal and edible mush-rooms: Insights into their antiviral activity against pathogenic viruses. Int. J. Biol. Macromol., 2021, 179, 239-258.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.015] [PMID: 33676978]
[79]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[80]
WORLD HEALTH ORGANIZATION [WHO]. Antibacterial agents in clinical and preclinical development: An overview and analysis. 2020.
[81]
Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. (Tokyo), 2017, 70(5), 520-526.
[http://dx.doi.org/10.1038/ja.2017.30] [PMID: 28246379]
[82]
Sultan, I.; Rahman, S.; Jan, A.T.; Siddiqui, M.T.; Mondal, A.H.; Haq, Q.M.R. Antibiotics, resistome and resistance mechanisms: A bacteri-al perspective. Front. Microbiol., 2018, 9, 2066.
[http://dx.doi.org/10.3389/fmicb.2018.02066] [PMID: 30298054]
[83]
Kovač J.; Šimunović K.; Wu, Z.; Klančnik, A.; Bucar, F.; Zhang, Q.; Možina, S.S. Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS One, 2015, 10(4), e0122871.
[http://dx.doi.org/10.1371/journal.pone.0122871] [PMID: 25830640]
[84]
de Araújo, R.S.A.; Barbosa-Filho, J.M.; Scotti, M.T.; Scotti, L.; Cruz, R.M.D.; Falcão-Silva, V.S.; Siqueira-Júnior, J.P.; Mendonça-Junior, F.J.B. Modulation of drug resistance in Staphylococcus aureus with coumarin derivatives. Scientifica (Cairo), 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/6894758] [PMID: 27200211]
[85]
Santos, V.F.; Araújo, A.C.J.; Silva, A.L.F.; Almeida, D.V.; Freitas, P.R.; Santos, A.L.E.; Rocha, B.A.M.; Garcia, W.; Leme, A.M.; Bondan, E.; Borges, F.T.; Cutrim, B.S.; Silva, L.C.N.; Coutinho, H.D.M.; Teixeira, C.S. Dioclea violacea lectin modulates the gentamicin activity against multi-resistant strains and induces nefroprotection during antibiotic exposure. Int. J. Biol. Macromol., 2020, 146, 841-852.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.207] [PMID: 31726163]
[86]
Freitas, C.L.A.; Santos, F.F.P.; Dantas-Junior, O.M.; Inácio, V.V.; Matias, E.F.F.; Quintans-Júnior, L.J.; Aguiar, J.J.S.; Coutinho, H.D.M. Enhancement of antibiotic activity by phytocompounds of Turnera subulata. Nat. Prod. Res., 2020, 34(16), 2384-2388.
[http://dx.doi.org/10.1080/14786419.2018.1537273] [PMID: 30761908]
[87]
Ncube, B.; Finnie, J.F.; Van Staden, J. In vitro antimicrobial synergism within plant extract combinations from three South African medici-nal bulbs. J. Ethnopharmacol., 2012, 139(1), 81-89.
[http://dx.doi.org/10.1016/j.jep.2011.10.025] [PMID: 22075455]
[88]
Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobi-al agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact., 2019, 308, 294-303.
[http://dx.doi.org/10.1016/j.cbi.2019.05.050] [PMID: 31158333]
[89]
Santos, V.F.; Costa, M.S.; Campina, F.F.; Rodrigues, R.R.; Santos, A.L.E.; Pereira, F.M.; Batista, K.L.R.; Silva, R.C.; Pereira, R.O.; Rocha, B.A.M.; Coutinho, H.D.M.; Teixeira, C.S. The galactose-binding lectin isolated from vatairea macrocarpa seeds enhances the effect of an-tibiotics against Staphylococcus aureus-Resistant strain. Probiotics Antimicrob. Proteins, 2020, 12(1), 82-90.
[http://dx.doi.org/10.1007/s12602-019-9526-z] [PMID: 30737650]
[90]
Wang, Y.; Chang, R.Y.K.; Britton, W.J.; Chan, H.K. Advances in the development of antimicrobial peptides and proteins for inhaled thera-py. Adv. Drug Deliv. Rev., 2022, 180, 114066.
[http://dx.doi.org/10.1016/j.addr.2021.114066] [PMID: 34813794]
[91]
Elezagic, D.; Mörgelin, M.; Hermes, G.; Hamprecht, A.; Sengle, G.; Lau, D.; Höllriegl, S.; Wagener, R.; Paulsson, M.; Streichert, T.; Klatt, A.R. Antimicrobial peptides derived from the cartilage.-specific C-type Lectin Domain Family 3 Member A (CLEC3A) - potential in the prevention and treatment of septic arthritis. Osteoarthritis Cartilage, 2019, 27(10), 1564-1573.
[http://dx.doi.org/10.1016/j.joca.2019.06.007] [PMID: 31279936]
[92]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[93]
Lima, F.O.; Silva, L.C.L.; Favarim, H.R.; De Campos, C.I. Adição de nanopartículas em painéis engenheirados de madeira/Addition of nanoparticles in engineered wood panels. Brazilian J. Develop., 2022, 8(1), 2659-2667.
[http://dx.doi.org/10.34117/bjdv8n1-173]
[94]
Subramaniyan, S.B.; Megarajan, S.; Dharshini, K.S.; Veerappan, A. Artocarpus integrifolia seed lectin enhances membrane damage, oxida-tive stress and biofilm inhibition activity of silver nanoparticles against Staphylococcus aureus. Colloids Surf. A Physicochem. Eng. Asp., 2021, 624, 126842.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126842]
[95]
Zhang, D.; Ma, X.; Gu, Y.; Huang, H.; Zhang, G. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem., 2020, 8, 799.
[http://dx.doi.org/10.3389/fchem.2020.00799] [PMID: 33195027]
[96]
Hossain, M.A.; Evan, M.S.S.; Moazzem, M.S.; Roy, M.; Zzaman, W. Response surface optimization for antioxidant extraction from Jack-fruit (Artocarpus heterophyllus Lam.) seed and pulp. J. Sci. Res., 2020, 12(3), 397-409.
[http://dx.doi.org/10.3329/jsr.v12i3.44459]
[97]
Gasparyan, V.K.; Bazukyan, I.L. Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria. Anal. Chim. Acta, 2013, 766, 83-87.
[http://dx.doi.org/10.1016/j.aca.2012.12.015] [PMID: 23427804]
[98]
Ahmed, K.B.A.; Subramaniyan, S.B.; Banu, S.F.; Nithyanand, P.; Veerappan, A. Jacalin-copper sulfide nanoparticles complex enhance the antibacterial activity against drug resistant bacteria via cell surface glycan recognition. Colloids Surf. B Biointerfaces, 2018, 163, 209-217.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.053] [PMID: 29304435]