In Silico Analysis of the Antidepressant Fluoxetine and Related Drugs at SARS-CoV-2 Main Protease (Mpro) and Papain-like Protease (PLpro)

Article ID: e101022209771 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: SARS-CoV-2 main protease (Mpro or 3CLpro) and papain-like protease (PLpro) are common viral targets for repurposed drugs to combat COVID-19 disease. Recently, several antidepressants (such as fluoxetine, venlafaxine and citalopram) belonging to the Selective Serotonin Reuptake Inhibitors (SSRIs) and the Serotonin-Norepinephrine Reuptake Inhibitors (SNRI) classes have been shown to in vitro inhibit viral replication.

Aim: Investigate a possible action of fluoxetine and derivatives on SARS-CoV-2 protease sites.

Methods: Molecular docking was performed using AutoDock Vina. Both protease structures and different drug conformations were used to explore the possibility of SARS-CoV-2 inhibition on a Mpro or PLpro related pathway. Drug structures were obtained by optimization with the Avogadro software and MOPAC using the PM6 method. Results were analysed on Discovery Studio Visualizer.

Results: The results indicated that Mpro interacted in a thermodynamically favorable way with fluoxetine, venlafaxine, citalopram, atomoxetine, nisoxetine and norfluoxetine in the region of the active site, whether PLpro conformers did not come close to the active site.

Conclusion: In an in silico perspective, it is likely that the SSRIs and other anti-depressants could interact with Mpro and cause the enzyme to malfunction. Unfortunately, the same drugs did not present similar results on PLpro crystal, therefore, no inhibition is expected in an in vitro trial. Anyway, in vitro tests are necessary for a better understanding of the links between SARS-CoV-2 proteases and antidepressants.

Graphical Abstract

[1]
Brunotte L, Zheng S, Mecate ZA, et al. Combination therapy with fluoxetine and the nucleoside analog gs-441524 exerts synergistic antiviral effects against different sars-cov-2 variants in vitro. Pharmaceutics 2021; 13(9): 1400.
[http://dx.doi.org/10.3390/pharmaceutics13091400] [PMID: 34575474]
[2]
Dechaumes A, Nekoua MP, Belouzard S, et al. Fluoxetine can inhibit SARS-CoV-2 in vitro. Microorganisms 2021; 9(2): 339.
[http://dx.doi.org/10.3390/microorganisms9020339] [PMID: 33572117]
[3]
Cavasotto CN, Di Filippo JI. In silico drug repurposing for COVID‐19: Targeting SARS‐CoV‐2 proteins through docking and consensus ranking. Mol Inform 2021; 40(1): 2000115.
[http://dx.doi.org/10.1002/minf.202000115] [PMID: 32722864]
[4]
Koulgi S, Jani V, Uppuladinne M, et al. Drug repurposing studies targeting SARS-CoV-2: An ensemble docking approach on drug target 3C-Like Protease (3CLpro). J Biomol Struct Dyn 2021; 39(15): 5735-55.
[http://dx.doi.org/10.1080/07391102.2020.1792344] [PMID: 32679006]
[5]
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: Progress, challenges and recommendations. Nat Rev Drug Discov 2019; 18(1): 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[6]
Wei TZ, Wang H, Wu XQ, et al. In silico screening of potential spike glycoprotein inhibitors of SARS-CoV-2 with drug repurposing strategy. Chin J Integr Med 2020; 26(9): 663-9.
[http://dx.doi.org/10.1007/s11655-020-3427-6]
[7]
Sadegh S, Matschinske J, Blumenthal DB, et al. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat Commun 2020; 11(1): 3518.
[http://dx.doi.org/10.1038/s41467-020-17189-2] [PMID: 32665542]
[8]
Sharma S, Deep S. In-silico drug repurposing for targeting SARS-CoV-2 main protease (M pro). J Biomol Struct Dyn 2022; 40(7): 3003-10.
[http://dx.doi.org/10.1080/07391102.2020.1844058] [PMID: 33179568]
[9]
Ashburn TT, Thor KB. Drug repositioning: Identifying and developing new uses for existing drugs. Nat Rev Drug Discov 2004; 3(8): 673-83.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[10]
Hoertel N, Rico MS, Vernet R, et al. Association between SSRI antidepressant use and reduced risk of intubation or death. Mol Psychiatry 2021; 26(9): 5199-212.
[11]
Hoertel N, Sánchez RM, Vernet R, et al. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: Results from an observational study. Mol Psychiatry 2021; 26: 5199-212.
[http://dx.doi.org/10.1038/s41380-021-01021-4]
[12]
Hoertel N, Sánchez RM, Gulbins E, et al. Association between FIASMAs and reduced risk of intubation or death in individuals hospitalized for severe COVID‐19: An observational multicenter study. Clin Pharmacol Ther 2021; 110(6): 1498-511.
[http://dx.doi.org/10.1002/cpt.2317] [PMID: 34050932]
[13]
Rauchman SH, Mendelson SG, Rauchman C, Kasselman LJ, Pinkhasov A, Reiss AB. Ongoing use of SSRIs and the hospital course of COVID-19 patients: A retrospective outcome analysis. J Clin Med 2021; 11(1): 70.
[http://dx.doi.org/10.1101/2021.10.25.21265218]
[14]
Mandrioli R, Forti G, Raggi M. Fluoxetine metabolism and pharmacological interactions: The role of cytochrome p450. Curr Drug Metab 2006; 7(2): 127-33.
[http://dx.doi.org/10.2174/138920006775541561] [PMID: 16472103]
[15]
DeVane CL. Pharmacokinetics of the selective serotonin reuptake inhibitors. J Clin Psychiatry 1992; 53(2) (Suppl.): 13-20.
[PMID: 1531816]
[16]
Kaserer T, Hçferl M, Müller K, Elmer S, Ganzera M, Jäger W. In silico predictions of drug – drug interactions caused by CYP1A2, 2C9 and 3A4 inhibition – A comparative study of virtual screening performance. Mol Inform 2015; 431-57.
[http://dx.doi.org/10.1002/minf.201400192]
[17]
Ghanizadeh A, Freeman RD, Berk M. Efficacy and adverse effects of venlafaxine in children and adolescents with ADHD: A systematic review of non-controlled and controlled trials. Rev Recent Clin Trials 2013; 8(1): 2-8.
[http://dx.doi.org/10.2174/1574887111308010002] [PMID: 23157376]
[18]
Joffe H, Guthrie KA, LaCroix AZ, et al. Low-dose estradiol and the serotonin-norepinephrine reuptake inhibitor venlafaxine for vasomotor symptoms: A randomized clinical trial. JAMA Intern Med 2014; 174(7): 1058-66.
[http://dx.doi.org/10.1001/jamainternmed.2014.1891] [PMID: 24861828]
[19]
Zimniak M, Kirschner L, Hilpert H, et al. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci Rep 2021; 11(1): 5890.
[http://dx.doi.org/10.1038/s41598-021-85049-0] [PMID: 33723270]
[20]
Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K. Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine show antiviral activity against the novel variants in vitro. Front Pharmacol 2022; 12: 755600.
[21]
Egziabher TBG, Edwards S. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine 2 and itraconazole effectively impairs SARS-CoV-2 infection in vitro. Africa’s potential. Ecol Intensif Agric 2020; 53(9): 1689-99.
[22]
Carpinteiro A, Edwards MJ, Hoffmann M, et al. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Rep Med 2020; 1(8): 100142.
[http://dx.doi.org/10.1016/j.xcrm.2020.100142] [PMID: 33163980]
[23]
Schloer S, Brunotte L, Goretzko J, et al. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerg Microbes Infect 2020; 9(1): 2245-55.
[http://dx.doi.org/10.1080/22221751.2020.1829082] [PMID: 32975484]
[24]
Amsterdam JD, Fawcett J, Quitkin FM, et al. Fluoxetine and norfluoxetine plasma concentrations in major depression: A multicenter study. Am J Psychiatry 1997; 154(7): 963-9.
[http://dx.doi.org/10.1176/ajp.154.7.963] [PMID: 9210747]
[25]
Pato MT, Murphy DL, Devane LC. Sustained plasma concentrations of fluoxetine and/or norfluoxetine four and eight weeks after fluoxetine discontinuation. J Clin Psychopharmacol 1991; 11(3): 224-5.
[http://dx.doi.org/10.1097/00004714-199106000-00024] [PMID: 1741813]
[26]
Norman TR, Gupta RK, Burrows GD, Parker G, Judd FK. Relationship between antidepressant response and plasma concentrations of fluoxetine and norfluoxetine. Int Clin Psychopharmacol 1993; 8(1): 25-30.
[http://dx.doi.org/10.1097/00004850-199300810-00004] [PMID: 8473717]
[27]
Ferguson JM, Hill H. Pharmacokinetics of fluoxetine in elderly men and women. Gerontology 2006; 52(1): 45-50.
[http://dx.doi.org/10.1159/000089825] [PMID: 16439824]
[28]
Lancaster SG, Gonzalez JP. Lofepramine. Drugs 1989; 37(2): 123-40.
[http://dx.doi.org/10.2165/00003495-198937020-00003] [PMID: 2649353]
[29]
Ibrahim TM, Ismail MI, Bauer MR, Bekhit AA, Boeckler FM. Supporting SARS-CoV-2 papain-like protease drug discovery: In silico methods and benchmarking. Front Chem 2020; 8(November): 592289.
[http://dx.doi.org/10.3389/fchem.2020.592289] [PMID: 33251185]
[30]
Osipiuk J, Azizi SA, Dvorkin S, et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat Commun 2021; 12(1): 743.
[http://dx.doi.org/10.1038/s41467-021-21060-3] [PMID: 33531496]
[31]
Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020; 587(7835): 657-62.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[32]
Amporndanai K, Meng X, Shang W, et al. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat Commun 2021; 12(1): 3061.
[http://dx.doi.org/10.1038/s41467-021-23313-7] [PMID: 34031399]
[33]
Qiao J, Li YS, Zeng R, et al. SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Science 2021; 371(6536): 1374-8.
[34]
Lewis DSM, Ho J, Wills S, et al. Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of Papain Like Protease (PLpro) of SARS-CoV-2 in vitro. Sci Rep 2022; 12(1): 2145.
[http://dx.doi.org/10.1038/s41598-022-06104-y] [PMID: 35140265]
[35]
Woo B, Baek KH. Regulatory interplay between deubiquitinating enzymes and cytokines. Cytokine Growth Factor Rev 2019; 48: 40-51.
[http://dx.doi.org/10.1016/j.cytogfr.2019.06.001] [PMID: 31208841]
[36]
Pitsillou E, Liang J, Ververis K, Lim KW, Hung A, Karagiannis TC. Identification of small molecule inhibitors of the deubiquitinating activity of the SARS-CoV-2 papain-like protease: in silico molecular docking studies and in vitro enzymatic activity assay. Front Chem 2020; 8: 623971.
[http://dx.doi.org/10.3389/fchem.2020.623971] [PMID: 33364229]
[37]
Lindner HA, Fotouhi AN, Lytvyn V, Lachance P, Sulea T, Ménard R. The papain-like protease from the severe acute respiratory syn-drome coronavirus is a deubiquitinating enzyme. J Virol 2005; 79(24): 15199-208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005] [PMID: 16306591]
[38]
Francés MA, Hognon C, Miclot T, et al. Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: Modeling and simulation approaches. J Proteome Res 2020; 19(11): 4291-315.
[http://dx.doi.org/10.1021/acs.jproteome.0c00779] [PMID: 33119313]
[39]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[40]
Oleg TAJO. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading OLEG. J Comput Chem 2012; 32: 174-82.
[http://dx.doi.org/10.1002/jcc]
[41]
Nogara PA, Omage FB, Bolzan GR, et al. In silico studies on the interaction between mpro and PLpro from SARS‐CoV‐2 and ebselen, its metabolites and derivatives. Mol Inform 2021; 40(8): 2100028.
[http://dx.doi.org/10.1002/minf.202100028] [PMID: 34018687]
[42]
Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera?A visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605-12.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[43]
Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 2012; 4(1): 17.
[http://dx.doi.org/10.1186/1758-2946-4-17] [PMID: 22889332]
[44]
Stewart JJP. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J Mol Model 2007; 13(12): 1173-213.
[http://dx.doi.org/10.1007/s00894-007-0233-4] [PMID: 17828561]
[45]
Chang MW, Ayeni C, Breuer S, Torbett BE. Virtual screening for HIV protease inhibitors: A comparison of AutoDock 4 and Vina. PLoS One 2010; 5(8): e11955.
[http://dx.doi.org/10.1371/journal.pone.0011955] [PMID: 20694138]
[46]
Case DA, Aktulga HM, Belfon K, et al. Amber 2021. Available from 2021. https://ambermd.org/doc12/Amber21.pdf
[47]
Guern J, Felle H, Mathieu Y, Kurkdjian A. Regulation of intracellular pH in eukaryotic Cells. Int Rev Cytol 1991; 127(C): 111-73.
[http://dx.doi.org/10.1016/S0074-7696(08)60693-2]
[48]
Garrido EM, Garrido J, Calheiros R, Marques MPM, Borges F. Fluoxetine and norfluoxetine revisited: New insights into the electrochem-ical and spectroscopic properties. J Phys Chem A 2009; 113(36): 9934-44.
[http://dx.doi.org/10.1021/jp904306b] [PMID: 19685890]
[49]
Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 2011; 51(1): 69-82.
[http://dx.doi.org/10.1021/ci100275a] [PMID: 21117705]
[50]
Oehme DP, Brownlee RTC, Wilson DJD. Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. J Comput Chem 2012; 33(32): 2566-80.
[http://dx.doi.org/10.1002/jcc.23095] [PMID: 22915442]
[51]
Paul AS, Islam R, Parves MR, et al. Cysteine focused covalent inhibitors against the main protease of SARS-CoV-2. J Biomol Struct Dyn 2020; 40(4): 1639-58.
[http://dx.doi.org/10.1080/07391102.2020.1831610] [PMID: 33047658]
[52]
Yin C, Huo F, Zhang J, et al. Thiol-addition reactions and their applications in thiol recognition. Chem Soc Rev 2013; 42(14): 6032-59.
[http://dx.doi.org/10.1039/c3cs60055f] [PMID: 23703585]
[53]
Lowe AB. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: A first update. Polym Chem 2014; 5(17): 4820-70.
[http://dx.doi.org/10.1039/C4PY00339J]
[54]
Ochtrop P, Hackenberger CPR. Recent advances of thiol-selective bioconjugation reactions. Curr Opin Chem Biol 2020; 58: 28-36.
[http://dx.doi.org/10.1016/j.cbpa.2020.04.017] [PMID: 32645576]
[55]
Srinivasan B. Explicit treatment of non‐michaelis‐menten and atypical kinetics in early drug discovery**. ChemMedChem 2021; 16(6): 899-918.
[http://dx.doi.org/10.1002/cmdc.202000791] [PMID: 33231926]
[56]
Rajpoot S, Alagumuthu M, Baig MS. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr Res Struct Biol 2021; 3(3): 9-18.
[http://dx.doi.org/10.1016/j.crstbi.2020.12.001] [PMID: 33319212]
[57]
Kouznetsova VL, Zhang A, Tatineni M, Miller MA, Tsigelny IF. Potential COVID-19 papain-like protease PL pro inhibitors: Repurposing FDA-approved drugs. PeerJ 2020; 8: e9965.
[http://dx.doi.org/10.7717/peerj.9965] [PMID: 32999768]
[58]
Verma D, Mitra D, Paul M, et al. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: Molecular docking and simulation studies of three pertinent medicinal plant natural components. Curr Res Pharmacol Drug Disc 2021; 2(June): 100038.
[http://dx.doi.org/10.1016/j.crphar.2021.100038] [PMID: 34870149]
[59]
Zrieq R, Ahmad I, Snoussi M, et al. Tomatidine and patchouli alcohol as inhibitors of SARS-CoV-2 enzymes (3CLpro, PLpro and NSP15) by molecular docking and molecular dynamics simulations. Int J Mol Sci 2021; 22(19): 10693.
[http://dx.doi.org/10.3390/ijms221910693] [PMID: 34639036]