HDAC3 Impairs Cardiac Function in Chronic Heart Failure Rats via Mediating MicroRNA-26b-3p to Target High Mobility Group AT-Hook 2

Page: [2577 - 2589] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Histone deacetylase 3 (HDAC3) has been studied in chronic heart failure (CHF), while the regulatory mechanism of HDAC3 on the development of CHF in regulating microRNA (miR)-26b-3p/high mobility group AT-hook 2 (HMGA2) axis has not been extensively investigated. This study aimed to probe the effects of HDAC3, miR-26b-3p and HMGA2 on CHF.

Methods: CHF rat models were established using aortic coarctation. HDAC3, miR-26b-3p and HMGA2 levels in CHF rats were examined. Thereafter, the CHF rats were injected with relative oligonucleotides and plasmids of HDAC3, miR-26b-3p and HMGA2 to detect the cardiac function, inflammatory reaction, myocardial tissue pathological changes, and cardiomyocyte apoptosis. The binding relationship between miR-26b-3p and HMGA2 and the interaction between HDAC3 and miR-26b-3p were validated.

Results: HDAC3 and HMGA2 were elevated, while miR-26b-3p was decreased in CHF rats. The reduced HDAC3 or HMGA2 or enriched miR-26b-3p attenuated cardiac dysfunction, inflammatory reaction, myocardial tissue pathological changes and cardiomyocyte apoptosis in CHF rats, while the reduction of miR-26b-3p exerted the opposite effects. Furthermore, the inhibition of the miR-26b-3p or elevation of HMGA2 reversed the effect of reduced HDAC3 on mitigating CHF progression. Mechanically, miR-26b-3p targeted HMGA2 and HDAC3 bound to miR-26-3p.

Conclusion: Downregulation of HDAC3 relieves cardiac function in CHF rats via mediating miR-26b-3p/HMGA2 axis. This study provides novel theory references and a distinct direction for the therapy strategies of CHF.

Keywords: Chronic heart failure, Histone deacetylase 3, MicroRNA-26b-3p, High mobility group AT-hook 2, Cardiac function, Fibrosis

[1]
Špinar, J.; Špinarová, L.; Vítovec, J. Pathophysiology, causes and epidemiology of chronic heart failure. Vnitr. Lek., 2018, 64(9), 834-838.
[http://dx.doi.org/10.36290/vnl.2018.114] [PMID: 30441995]
[2]
Ponikowski, P.; Anker, S.D.; AlHabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; Samal, U.C.; Shimokawa, H.; Budi Siswanto, B.; Sliwa, K.; Filippatos, G. Heart failure: Preventing disease and death worldwide. ESC Heart Fail., 2014, 1(1), 4-25.
[http://dx.doi.org/10.1002/ehf2.12005] [PMID: 28834669]
[3]
Alem, M. Endothelial dysfunction in chronic heart failure: Assessment, findings, significance, and potential therapeutic targets. Int. J. Mol. Sci., 2019, 20(13), 3198.
[http://dx.doi.org/10.3390/ijms20133198] [PMID: 31261886]
[4]
Brennan, E.J. Chronic heart failure nursing: Integrated multidisciplinary care. Br. J. Nurs., 2018, 27(12), 681-688.
[http://dx.doi.org/10.12968/bjon.2018.27.12.681] [PMID: 29953279]
[5]
Butler, J. An overview of chronic heart failure management. Nurs. Times, 2012, 108(14-15), 16-20.
[PMID: 22662526]
[6]
Sarkar, R.; Banerjee, S.; Amin, S.A.; Adhikari, N.; Jha, T. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur. J. Med. Chem., 2020, 192, 112171.
[http://dx.doi.org/10.1016/j.ejmech.2020.112171] [PMID: 32163814]
[7]
Sharifi-Sanjani, M.; Shoushtari, A.H.; Quiroz, M.; Baust, J.; Sestito, S.F.; Mosher, M.; Ross, M.; McTiernan, C.F.; St Croix, C.M.; Bilonick, R.A.; Champion, H.C.; Isenberg, J.S. Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J. Am. Heart Assoc., 2014, 3(3), e000670.
[http://dx.doi.org/10.1161/JAHA.113.000670] [PMID: 24922625]
[8]
Na, J.; Jin, H.; Wang, X.; Huang, K.; Sun, S.; Li, Q.; Zhang, W. The crosstalk of HDAC3, microRNA-18a and ADRB3 in the progression of heart failure. Cell Biosci., 2021, 11(1), 31.
[http://dx.doi.org/10.1186/s13578-020-00523-y] [PMID: 33549119]
[9]
Zhang, M.; Yang, X.; Zimmerman, R.J.; Wang, Q.; Ross, M.A.; Granger, J.M.; Luczak, E.D.; Bedja, D.; Jiang, H.; Feng, N. CaMKII exacerbates heart failure progression by activating class I HDACs. J. Mol. Cell. Cardiol., 2020, 149, 73-81.
[http://dx.doi.org/10.1016/j.yjmcc.2020.09.007] [PMID: 32971072]
[10]
Jakob, P.; Kacprowski, T.; Briand-Schumacher, S.; Heg, D.; Klingenberg, R.; Stähli, B.E.; Jaguszewski, M.; Rodondi, N.; Nanchen, D.; Räber, L.; Vogt, P.; Mach, F.; Windecker, S.; Völker, U.; Matter, C.M.; Lüscher, T.F.; Landmesser, U. Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction. Eur. Heart J., 2017, 38(7), 511-515.
[PMID: 28011706]
[11]
Martinelli, N.C.; Cohen, C.R.; Santos, K.G.; Castro, M.A.; Biolo, A.; Frick, L.; Silvello, D.; Lopes, A.; Schneider, S.; Andrades, M.E.; Clausell, N.; Matte, U.; Rohde, L.E. An analysis of the global expression of microRNAs in an experimental model of physiological left ventricular hypertrophy. PLoS One, 2014, 9(4), e93271.
[http://dx.doi.org/10.1371/journal.pone.0093271] [PMID: 24751578]
[12]
Han, M.; Yang, Z.; Sayed, D.; He, M.; Gao, S.; Lin, L.; Yoon, S.; Abdellatif, M. GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy. Cardiovasc. Res., 2012, 93(4), 645-654.
[http://dx.doi.org/10.1093/cvr/cvs001] [PMID: 22219180]
[13]
Zhang, S.; Mo, Q.; Wang, X. Oncological role of HMGA2 (Review). Int. J. Oncol., 2019, 55(4), 775-788.
[PMID: 31432151]
[14]
Zhu, J.; Lin, X.; Yan, C.; Yang, S.; Zhu, Z. microRNA-98 protects sepsis mice from cardiac dysfunction, liver and lung injury by negatively regulating HMGA2 through inhibiting NF-κB signaling pathway. Cell Cycle, 2019, 18(16), 1948-1964.
[http://dx.doi.org/10.1080/15384101.2019.1635869] [PMID: 31234706]
[15]
Chen, X.; Ding, Z.; Li, T.; Jiang, W.; Zhang, J.; Deng, X. MicroR-26b targets high mobility group, AT-hook 2 to ameliorate myocardial infarction-induced fibrosis by suppression of cardiac fibroblasts activation. Curr. Neurovasc. Res., 2020, 17(2), 204-213.
[http://dx.doi.org/10.2174/1567202617666200506101258] [PMID: 32370714]
[16]
Su, Q.; Zhang, P.; Yu, D.; Wu, Z.; Li, D.; Shen, F.; Liao, P.; Yin, G. Upregulation of miR-93 and inhibition of LIMK1 improve ventricular remodeling and alleviate cardiac dysfunction in rats with chronic heart failure by inhibiting RhoA/ROCK signaling pathway activation. Aging (Albany NY), 2019, 11(18), 7570-7586.
[http://dx.doi.org/10.18632/aging.102272] [PMID: 31541994]
[17]
Wang, J.; Deng, B.; Liu, Q.; Huang, Y.; Chen, W.; Li, J.; Zhou, Z.; Zhang, L.; Liang, B.; He, J.; Chen, Z.; Yan, C.; Yang, Z.; Xian, S.; Wang, L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis., 2020, 11(7), 574.
[http://dx.doi.org/10.1038/s41419-020-02777-3] [PMID: 32710001]
[18]
Vileigas, D.F.; Marciano, C.L.C.; Mota, G.A.F.; Souza, S.L.B.; Sant’Ana, P.G.; Okoshi, K.; Padovani, C.R.; Cicogna, A.C. Temporal measures in cardiac structure and function during the development of obesity induced by different types of western diet in a rat model. Nutrients, 2019, 12(1), 68.
[http://dx.doi.org/10.3390/nu12010068] [PMID: 31888029]
[19]
Yang, P.; Wu, P.; Liu, X.; Feng, J.; Zheng, S.; Wang, Y.; Fan, Z. MiR-26b suppresses the development of stanford type a aortic dissection by regulating HMGA2 and TGF-beta/Smad3 signaling pathway. Ann. Thoracic Cardiovasc. Surg., 2020, 26(3), 140-150.
[20]
Huang, J.H.; Xu, Y.; Lin, F.Y. The inhibition of microRNA-326 by SP1/HDAC1 contributes to proliferation and metastasis of osteosarcoma through promoting SMO expression. J. Cell. Mol. Med., 2020, 24(18), 10876-10888.
[http://dx.doi.org/10.1111/jcmm.15716] [PMID: 32743904]
[21]
Zhang, R.; Li, Y.; Liu, X.; Qin, S.; Guo, B.; Chang, L.; Huang, L.; Liu, S. FOXO3a-mediated long non-coding RNA LINC00261 resists cardiomyocyte hypoxia/reoxygenation injury via targeting miR23b-3p/NRF2 axis. J. Cell. Mol. Med., 2020, 24(15), 8368-8378.
[http://dx.doi.org/10.1111/jcmm.15292] [PMID: 32558131]
[22]
Yang, Y.; Jiang, H.; Xiao, L.; Yang, X. MicroRNA-33b-5p is overexpressed and inhibits GLUT4 by targeting HMGA2 in polycystic ovarian syndrome: An in vivo and in vitro study. Oncol. Rep., 2018, 39(6), 3073-3085.
[http://dx.doi.org/10.3892/or.2018.6375] [PMID: 29693142]
[23]
Zhou, Y.; Richards, A.M.; Wang, P. MicroRNA-221 is cardioprotective and anti-fibrotic in a rat model of myocardial infarction. Mol. Ther. Nucleic Acids, 2019, 17, 185-197.
[http://dx.doi.org/10.1016/j.omtn.2019.05.018] [PMID: 31261033]
[24]
Lkhagva, B.; Lin, Y.K.; Kao, Y.H.; Chazo, T.F.; Chung, C.C.; Chen, S.A.; Chen, Y.J. Novel histone deacetylase inhibitor modulates cardiac peroxisome proliferator-activated receptors and inflammatory cytokines in heart failure. Pharmacology, 2015, 96(3-4), 184-191.
[http://dx.doi.org/10.1159/000438864] [PMID: 26304494]
[25]
Monzen, K.; Ito, Y.; Naito, A.T.; Kasai, H.; Hiroi, Y.; Hayashi, D.; Shiojima, I.; Yamazaki, T.; Miyazono, K.; Asashima, M.; Nagai, R.; Komuro, I. A crucial role of a high mobility group protein HMGA2 in cardiogenesis. Nat. Cell Biol., 2008, 10(5), 567-574.
[http://dx.doi.org/10.1038/ncb1719] [PMID: 18425117]
[26]
Lkhagva, B.; Kao, Y.H.; Lee, T.I.; Lee, T.W.; Cheng, W.L.; Chen, Y.J. Activation of class I histone deacetylases contributes to mitochondrial dysfunction in cardiomyocytes with altered complex activities. Epigenetics, 2018, 13(4), 376-385.
[http://dx.doi.org/10.1080/15592294.2018.1460032] [PMID: 29613828]
[27]
Li, H.; Xu, J.D.; Fang, X.H.; Zhu, J.N.; Yang, J.; Pan, R.; Yuan, S.J.; Zeng, N.; Yang, Z.Z.; Yang, H.; Wang, X.P.; Duan, J.Z.; Wang, S.; Luo, J.F.; Wu, S.L.; Shan, Z.X. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc. Res., 2020, 116(7), 1323-1334.
[http://dx.doi.org/10.1093/cvr/cvz215] [PMID: 31397837]
[28]
Lazzeroni, D.; Rimoldi, O.; Camici, P.G. From left ventricular hypertrophy to dysfunction and failure. Circulation, 2016, 80(3), 555-564.
[29]
Xiang, S.; Li, J.; Zhang, Z. [Corrigendum] miR-26b inhibits isoproterenol-induced cardiac fibrosis via the Keap1/Nrf2 signaling pathway. Exp. Ther. Med., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/etm.2020.9412] [PMID: 32104267]
[30]
Wang, D.; Liu, C.; Wang, Y.; Wang, W.; Wang, K.; Wu, X.; Li, Z.; Zhao, C.; Li, L.; Peng, L. Impact of miR-26b on cardiomyocyte differentiation in P19 cells through regulating canonical/non-canonical Wnt signalling. Cell Prolif., 2017, 50(6), e12371.
[http://dx.doi.org/10.1111/cpr.12371] [PMID: 28810055]
[31]
Shi, X.; Huang, T.; Wang, J.; Liang, Y.; Gu, C.; Xu, Y.; Sun, J.; Lu, Y.; Sun, K.; Chen, S.; Yu, Y. Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection. EBioMedicine, 2018, 38, 217-227.
[http://dx.doi.org/10.1016/j.ebiom.2018.11.008] [PMID: 30448225]