The LL-37 Antimicrobial Peptide as a Treatment for Systematic Infection of Acinetobacter baumannii in a Mouse Model

Page: [44 - 53] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The antimicrobial peptides (AMPs) played a critical role in the innate immunity of the host and are considered natural sources illustrating a broad-spectrum antimicrobial activity with high specificity and low cytotoxicity. AMPs generally possess a net positive charge and have amphipathic structures. Thus, AMPs can bind and interact with negatively charged bacterial cell membranes, leading to destructive defects in biomembranes and ending in cell death. LL37 is the only human cathelicidin-derived antimicrobial peptide that shows a broad spectrum of antimicrobial activity.

Materials and Methods: To determine the antibacterial efficiency of LL37 in a mouse model of systemic A. baumannii infection, LL37 corresponding gene was expressed in E. coli, purification and refolding situations were optimized. The antimicrobial performance of produced LL-37 against A. baumannii was evaluated in vitro via MIC and Time Kill assays, and its destructive effects on the bacterial cell were confirmed by SEM image.

Results: The recombinant LL37 showed strong antibacterial function against A. baumannii at 1.5 μg/mL concentration. Time kill assay showed a sharp reduction of cell viability during the first period of exposure, and complete cell death was recorded after 40 min exposure.

Conclusion: Furthermore, in vivo results represented a significant ability of LL37 in the treatment of systematic infected mouse models, and all infected mice receiving LL37 protein survived without no trace of bacteria in their blood samples.

Keywords: Recombinant LL-37, Antimicrobial activity, systematic infection, Acinetobacter baumannii

Graphical Abstract

[1]
Li, M.; Du, X.; Villaruz, A.E.; Diep, B.A.; Wang, D.; Song, Y.; Tian, Y.; Hu, J.; Yu, F.; Lu, Y.; Otto, M. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat. Med., 2012, 18(5), 816-819.
[http://dx.doi.org/10.1038/nm.2692] [PMID: 22522561]
[2]
Stefanucci, A.; Mosquera, J.; Vázquez, E.; Mascareñas, J.L.; Novellino, E.; Mollica, A. Synthesis, characterization, and DNA binding profile of a macrocyclic β-sheet analogue of ARC protein. ACS Med. Chem. Lett., 2015, 6(12), 1220-1224.
[3]
Mollica, A.; Macedonio, G.; Stefanucci, A.; Costante, R.; Carradori, S.; Cataldi, V.; Giulio, M.D.; Cellini, L.; Silvestri, R.; Giordano, C.; Scipioni, A.; Morosetti, S.; Punzi, P.; Mirzaie, S. Arginine- and lysine-rich peptides: Synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov., 2018, 15(3), 220-226.
[http://dx.doi.org/10.2174/1570180814666170213161341]
[4]
Azzurra, S.; Jussara, A.; Diego, B.; Bruno, P.; Antonio, R.; Federica, S.; Laura, M.; Soraya, L.A.; Jessica, R.; José Luis, M.; Ettore, N.; Alfonso, C.; Adriano, M. A novel β-hairpin peptide derived from the ARC repressor selectively interacts with the major groove of B-DNA. Bioorg. Chem., 2021, 2021, 104836.
[5]
De Smet, K.; Contreras, R. Human antimicrobial peptides: Defensins, cathelicidins and histatins. Biotechnol. Lett., 2005, 27(18), 1337-1347.
[http://dx.doi.org/10.1007/s10529-005-0936-5] [PMID: 16215847]
[6]
Bandurska, K.; Berdowska, A.; Barczyńska-Felusiak, R.; Krupa, P. Unique features of human cathelicidin LL-37. Biofactors, 2015, 41(5), 289-300.
[http://dx.doi.org/10.1002/biof.1225] [PMID: 26434733]
[7]
Ulrich, H.N.D. U.S, S.; Ayyalusamy, R. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta, 2006, 1758(9), 1408-1425.
[8]
Bucki, R.; Leszczyńska, K.; Namiot, A.; Sokołowski, W. Cathelicidin LL-37: A multitask antimicrobial peptide. Arch. Immunol. Ther. Exp. (Warsz.), 2010, 58(1), 15-25.
[http://dx.doi.org/10.1007/s00005-009-0057-2] [PMID: 20049649]
[9]
Constantiniu, S.; Romaniuc, A.; Iancu, L.S.; Filimon, R.; Taraşi, I. Cultural and biochemical characteristics of Acinetobacter spp. strains isolated from hospital units. AJPM, 2004, 12, 35-42.
[10]
Forsberg, K.J.; Patel, S.; Gibson, G.K.; Lauber, C.L.; Knight, R.; Fierer, N.; Dantas, G. Bacterial phylogeny structures soil resistomes across habitats. Nature, 2014, 509(7502), 612-616.
[11]
Fournier, P.E.; Richet, H.; Weinstein, R.A. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin. Infect. Dis., 2006, 42(5), 692-699.
[12]
Abtahi, H.; Salmanian, A.H.; Rafati, S.; Nejad, G.B.; Hassan, Z.M. High level expression of recombinant ribosomal protein (L7/L12) from Brucella abortus and its reaction with infected human sera. Iran. Biomed. J., 2004, 8(1), 13-18.
[13]
Modanloo Jouybari, R.; Sadeghi, A.; Khansarinejad, B.; Sadoogh Abbasian, S.; Abtahi, H. Production of recombinant streptavidin and optimization of refolding conditions for recovery of biological activity. Rep. Biochem. Mol. Biol., 2018, 6(2), 178-185.
[PMID: 29766001]
[14]
Sadoogh Abbasian, S.; Abtahi, H.; Zolfaghari, M.R.; Soufian, S.; Ghaznavi-Rad, E. Cloning, expression, purification and antigenic evaluation of hyaluronidase antigenic fragments recombinant protein of Streptococcus pyogenes. Afr. J. Biotechnol., 2012, 11, 2376-2380.
[15]
Sadoogh Abbasian, S.; Ghaznavi-Rad, E.; Akbari, N.; Zolfaghari, M.R.; Pakzad, I.; Abtahi, H. Overexpression and enzymatic assessment of antigenic fragments of hyaluronidase recombinant protein from Streptococcus pyogenes. Jundishapur J. Microbiol., 2014, 8(1), e13653.
[16]
Molaee, N.; Abtahi, H.; Mosayebi, G. Expression of recombinant streptokinase from Streptococcus pyogenes and its reaction with infected human and murine sera. Iran. J. Basic Med. Sci., 2013, 16(9), 985-989.
[PMID: 24171077]
[17]
Mahmoudi, S.; Abtahi, H.; Bahador, A.; Mosayebi, G.; Salmanian, A.H.; Teymuri, M. Optimizing of nutrients for high level expression of recombinant streptokinase using pET32a expression system. Maedica (Buchar.), 2012, 7(3), 241-246.
[PMID: 23400422]
[18]
Khaki, M.; Ganji, A.; Abtahi, H.; Mosayebi, G.; Baazm, M.; Abbasian, S.S.; Salmanian, A.H. Computer simulation and additive-based refolding process of cysteine-rich proteins: VEGF-A as a model. Int. J. Pept. Res. Ther., 2018, 24(4), 555-562.
[http://dx.doi.org/10.1007/s10989-017-9644-y]
[19]
Čabarkapa, I.; Čolović, R.; Đuragić, O.; Popović, S.; Kokić, B.; Milanov, D.; Pezo, L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella enteritidis. Biofouling, 2019, 35, 361-375.
[20]
Sadoogh Abbasian, S.; Soufian, S.; Ghaznavi-Rad, E.; Abtahi, H. High level activity of recombinant lysostaphin after computer simulation and additive-based refolding. Int. J. Pept. Res. Ther., 2018, 25, 1241-1249.
[21]
Elshikh, M.; Ahmed, S.; Funston, S.; Dunlop, P.; McGaw, M.; Marchant, R.; Banat, I.M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol. Lett., 2016, 38(6), 1015-1019.
[http://dx.doi.org/10.1007/s10529-016-2079-2] [PMID: 26969604]
[22]
Rudilla, H.; Fusté, E.; Cajal, Y.; Rabanal, F.; Vinuesa, T.; Viñas, M. Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules, 2016, 21(9), 1223-1234.
[http://dx.doi.org/10.3390/molecules21091223] [PMID: 27626405]
[23]
Sadelaji, S.; Ghaznavi-Rad, E.; Sadoogh Abbasian, S.; Fahimirad, S.; Abtahi, H. Ib-AMP4 antimicrobial peptide as a treatment for skin and systematic infection of methicillin-resistant Staphylococcus aureus (MRSA). Iran. J. Basic Med. Sci., 2022, 25(2), 232-238.
[PMID: 35655604]
[24]
Barańska-Rybak, W.; Sonesson, A.; Nowicki, R.; Schmidtchen, A. Glycosaminoglycans inhibit the antibacterial activity of LL-37 in biological fluids. J. Antimicrob. Chemother., 2006, 57(2), 260-265.
[http://dx.doi.org/10.1093/jac/dki460] [PMID: 16387752]
[25]
Soković, M.; Glamočlija, J.; Marin, P.D.; Brkić, D.; Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules, 2010, 15(11), 7532-7546.
[http://dx.doi.org/10.3390/molecules15117532] [PMID: 21030907]
[26]
Murakami, M.; Lopez-Garcia, B.; Braff, M.; Dorschner, R.A.; Gallo, R.L. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J. Immunol., 2004, 172(5), 3070-3077.
[27]
Antunes, L.C.S.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis., 2014, 71(3), 292-301.
[http://dx.doi.org/10.1111/2049-632X.12125] [PMID: 24376225]
[28]
Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms, 2020, 8(11), 1716.
[http://dx.doi.org/10.3390/microorganisms8111716] [PMID: 33147701]
[29]
Xhindoli, D.; Pacor, S.; Benincasa, M.; Scocchi, M.; Gennaro, R.; Tossi, A. The human cathelicidin LL-37-A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta, 2016, 1858(3), 546-566.
[30]
Ridyard, K.E.; Overhage, J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent. Antibiotics (Basel), 2021, 10(6), 650.
[http://dx.doi.org/10.3390/antibiotics10060650] [PMID: 34072318]
[31]
Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti-infect. Ther., 2012, 10(8), 917-934.
[32]
Turner, J.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob. Agents Chemother., 1998, 42(9), 2206-2214.
[http://dx.doi.org/10.1128/AAC.42.9.2206] [PMID: 9736536]
[33]
Feng, X.; Sambanthamoorthy, K.; Palys, T.; Paranavitana, C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides, 2013, 49(49), 131-137.
[http://dx.doi.org/10.1016/j.peptides.2013.09.007] [PMID: 24071034]
[34]
Guo, Y.; Wang, L.; Lei, J.; Xu, J.; Han, L. Antimicrobial and antibiofilm activity of human cationic Antibacterial peptide (LL-37) and its analogs against pan-drug-resistant Acinetobacter baumannii. Jundishapur J. Microbiol., 2017, 10(3), 1.
[35]
Cirioni, O.; Giacometti, A.; Ghiselli, R.; Bergnach, C.; Orlando, F.; Silvestri, C.; Mocchegiani, F.; Licci, A.; Skerlavaj, B.; Rocchi, M.; Saba, V.; Zanetti, M.; Scalise, G. LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob. Agents Chemother., 2006, 50(5), 1672-1679.
[http://dx.doi.org/10.1128/AAC.50.5.1672-1679.2006] [PMID: 16641434]
[36]
Fukumoto, K.; Nagaoka, I.; Yamataka, A.; Kobayashi, H.; Yanai, T.; Kato, Y.; Miyano, T. Effect of antibacterial cathelicidin peptide CAP18/LL-37 on sepsis in neonatal rats. Pediatr. Surg. Int., 2005, 21(1), 20-24.
[http://dx.doi.org/10.1007/s00383-004-1256-x] [PMID: 15645239]
[37]
Lisanby, M.W.; Swiecki, M.K.; Dizon, B.L.; Pflughoeft, K.J.; Koehler, T.M.; Kearney, J.F. Cathelicidin administration protectsmice from Bacillus anthracis spore challenge. J. Immunol., 2008, 181(7), 4989-5000.