Oxadiazole Derivatives as Anticancer and Immunomodulatory Agents: A Systematic Review

Page: [3472 - 3485] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Tumor plasticity processes impact the treatment of different types of cancer; as an effect of this, the bioprospecting of therapies from natural and/or synthetic compounds that can regulate or modulate the immune system has increased considerably. Oxadiazole derivatives are structures that exhibit diverse biological activities. Therefore, this review aimed to evaluate the activity of oxadiazole compounds against tumor cell lines and their possible immune-mediated mechanisms.

Methods: A search in PubMed, Web of Science, and Science Direct databases was carried out on studies published from January 1, 2004, to January 31, 2022, using “oxadiazole” in combination with the other descriptors “cancer” and “macrophage”. Only experimental in vitro and in vivo articles were included. A similar search strategy was used in the Derwent Innovation Index database for technology mapping. The search was performed on Drugbank using the descriptor oxadiazole for commercial mapping.

Results: 23 oxadiazole studies were included in this review, and some biological activities linked to antitumoral and immunomodulation were listed. Oxadiazole derivatives inhibited tumor cell growth and proliferation, blocked cell cycle, modulated mitochondrial membrane potential, presented immunoregulatory activity by different mechanisms reducing proinflammatory cytokines levels and acted directly as selective inhibitors of the COX enzyme. There was an increase in oxadiazole patent publications in the last 11 years, with emphasis on chemistry, pharmacy and biotechnology applied to microbiology areas. Compounds with 1,2,4-oxadiazole isomer are predominant in patent publications and approved drugs as observed in the technological and commercial mapping.

Conclusion: Therefore, oxadiazole derivatives are therapeutic molecules that can be considered promising for the development of cancer therapies.

Keywords: Oxadiazoles, Cancer, Immunomodulation, Inflammatory mediators, Macrophages, Chemotherapy

[1]
Moura, G.A.; Monteiro, P.B. Cytotoxic activity of antineoplastic agents on fertility: A systematic review. Rev. Bras. Ginecol. Obstet., 2020, 42(11), 759-768.
[http://dx.doi.org/10.1055/s-0040-1713911] [PMID: 33254272]
[2]
Park, J.H.; Pyun, W.Y.; Park, H.W. Cancer metabolism: Phenotype, signaling and therapeutic targets. Cells, 2020, 9(10), 2308-2339.
[http://dx.doi.org/10.3390/cells9102308] [PMID: 33081387]
[3]
Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science, 2020, 368(6487), eaaw5473.
[http://dx.doi.org/10.1126/science.aaw5473] [PMID: 32273439]
[4]
Igarashi, Y.; Sasada, T. Cancer vaccines: Toward the next breakthrough in cancer immunotherapy. J. Immunol. Res., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/5825401] [PMID: 33282961]
[5]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[6]
Zhang, Y.; Zhang, Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol., 2020, 17(8), 807-821.
[http://dx.doi.org/10.1038/s41423-020-0488-6] [PMID: 32612154]
[7]
Salassa, G.; Terenzi, A. Metal complexes of oxadiazole ligands: An overview. Int. J. Mol. Sci., 2019, 20(14), 3483.
[http://dx.doi.org/10.3390/ijms20143483] [PMID: 31315181]
[8]
Kapoor, G.; Butão, R.; Pathak, D.; Chauhan, D.; Kant, R.; Grover, P.; Nagarajan, K.; Siddiqui, S. Current advancement in the oxadiazole-based scaffolds as anticancer agents. Polycicl. Aromat. Compd., 2021, 2021, 1886123.
[http://dx.doi.org/10.1080/10406638.2021.1886123]
[9]
Carbone, M.; Li, Y.; Irace, C.; Mollo, E.; Castelluccio, F.; Di Pascale, A.; Cimino, G.; Santamaria, R.; Guo, Y.W.; Gavagnin, M. Structure and cytotoxicity of phidianidines A and B: First finding of 1,2,4-oxadiazole system in a marine natural product. Org. Lett., 2011, 13(10), 2516-2519.
[http://dx.doi.org/10.1021/ol200234r] [PMID: 21506595]
[10]
Liu, D.; Luo, L.; Wang, Z.; Ma, X.; Gan, X. Design, synthesis and antifungal/nematicidal activity of novel 1,2,4-oxadiazole derivatives containing amide fragments. Int. J. Mol. Sci., 2022, 23(3), 1596.
[http://dx.doi.org/10.3390/ijms23031596] [PMID: 35163522]
[11]
Jafari, E.; Mohammadi, T.; Jahanian-Najafabadi, A.; Hassanzadeh, F. Synthesis and antimicrobial evaluation of some 2,5 disubstituted 1,3,4-oxadiazole derivatives. Res. Pharm. Sci., 2017, 12(4), 330-336.
[http://dx.doi.org/10.4103/1735-5362.212051] [PMID: 28855945]
[12]
Singh, P.; Sharma, P.; Sharma, J.; Upadhyay, A.; Kumar, N. Synthesis and evaluation of substituted diphenyl-1,3,4-oxadiazole derivatives for central nervous system depressant activity. Org. Med. Chem. Lett., 2012, 2(1), 8.
[http://dx.doi.org/10.1186/2191-2858-2-8] [PMID: 22380426]
[13]
PRISMA. 2022. Available from: http://www.prisma- statement.org/ (Accessed on: March 07, 2022).
[14]
Norouzi, S.; Norouzi, M.; Amini, M.; Amanzadeh, A.; Nabiuni, M.; Irian, S.; Salimi, M. Two COX-2 inhibitors induce apoptosis in human erythroleukemia K562cells by modulating NF-κB and FHC pathways. Daru, 2016, 24(1), 1-9.
[http://dx.doi.org/10.1186/s40199-015-0139-0] [PMID: 26739353]
[15]
Kamal, A; Srikanth, P; Vishnurvardhan, M; Kumar, G; Babu, K; Hussaini, S; Sonparao, J; Alarifi, A. Combretastatin linked 1,3,4-oxadiazole conjugates as a potent tubulin polymerization inhibitors. Bioorg. Chem., 2016, 65, 1126-1136.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.007]
[16]
Tian, K.; Xu, F.; Gao, X.; Han, T.; Li, J.; Pan, H.; Zang, L.; Li, D.; Li, Z.; Uchita, T.; Gao, M.; Hua, H. Nitric oxide-releasing derivatives of brefeldin A as potent and highly selective anticancer agents. Eur. J. Med. Chem., 2017, 136, 131-143.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.018] [PMID: 28494251]
[17]
Ingold, M.; Dapueto, R.; Victoria, S.; Galliusi, G.; Batthyàny, C.; Bollati-Fogolín, M.; Tejedor, D.; García-Tellado, F.; Padrón, J.M.; Porcal, W.; López, G.V. A green multicomponent synthesis of tocopherol analogues with antiproliferative activities. Eur. J. Med. Chem., 2018, 143, 1888-1902.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.003] [PMID: 29129514]
[18]
Jiao, R.; Xu, F.; Huang, X.; Li, H.; Liu, W.; Cao, H.; Zang, L.; Li, Z.; Hua, H.; Li, D. Antiproliferative chromone derivatives induce K562 cell death through endogenous and exogenous pathways. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 759-772.
[http://dx.doi.org/10.1080/14756366.2020.1740696] [PMID: 32183548]
[19]
Markov, A.; Senkova, A.; Popadiuk, I.; Solomatina, O.; Logashenko, E.; Komarova, C.; Llyinna, A.; Salakhutdinov, N.; Zenkova, M. Novel 30 -substituted-10, 20, 40 -Oxadiazole derivatives of 18βH-Glycyrrhetinic acid and their O-Acylated Amidoximes: Synthesis and evaluation of antitumor and anti-inflammatory potential in vitro and in vivo. Int. J. Mol. Sci., 2020, 21, 3511.
[http://dx.doi.org/10.3390/ijms21103511] [PMID: 32429154]
[20]
Zhang, F.; Wang, X.L.; Shi, J.; Wang, S.F.; Yin, Y.; Yang, Y.S.; Zhang, W.M.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of N-benzylidene-2-((5- (pyridin-4-yl)-1,3,4-oxadiazol-2-yl)thio)acetohydrazide derivatives as potential anticancer agents. Bioorg. Med. Chem., 2014, 22(1), 468-477.
[http://dx.doi.org/10.1016/j.bmc.2013.11.004] [PMID: 24286761]
[21]
Youssif, B.G.M.; Gouda, A.M.; Moustafa, A.H.; Abdelhamid, A.A.; Gomaa, H.A.M.; Kamal, I.; Marzouk, A.A. Design and synthesis of new triarylimidazole derivatives as dual inhibitors of BRAFV600E/p38α with potential antiproliferative activity. J. Mol. Struct., 2022, 1253, 132218.
[http://dx.doi.org/10.1016/j.molstruc.2021.132218]
[22]
Nampurath, G.K.; Durgashivaprasad, E.; Mathew, G.; Sebastian, S.; Reddy, S.A.M.; Mudgal, J. Novel 2,5-disubstituted-1,3,4-oxadiazoles as anti-inflammatory drugs. Indian J. Pharmacol., 2014, 46(5), 521-526.
[http://dx.doi.org/10.4103/0253-7613.140584] [PMID: 25298582]
[23]
Abd-Ellah, H.S.; Abdel-Aziz, M.; Shoman, M.E.; Beshr, E.A.M.; Kaoud, T.; Ahmed, A.S.F.F. New 1,3,4-oxadiazole/oxime hybrids: Design, synthesis, anti-inflammatory, COX inhibitory activities and ulcerogenic liability. Bioorg. Chem., 2017, 74, 15-29.
[http://dx.doi.org/10.1016/j.bioorg.2017.06.003] [PMID: 28738249]
[24]
Potenza, M.; Sciarretta, M.; Chini, M.G.; Saviano, A.; Maione, F.; D’Auria, M.V.; De Marino, S.; Giordano, A.; Hofstetter, R.K.; Festa, C.; Werz, O.; Bifulco, G. Structure-based screening for the discovery of 1,2,4-oxadiazoles as promising hits for the development of new anti-inflammatory agents interfering with eicosanoid biosynthesis pathways. Eur. J. Med. Chem., 2021, 224, 113693.
[http://dx.doi.org/10.1016/j.ejmech.2021.113693] [PMID: 34315041]
[25]
Gobec, M.; Tomašič, T.; Markovič, T.; Mlinarič-Raščan, I.; Dolenc, M.S.; Jakopin, Ž. Antioxidant and anti-inflammatory properties of 1,2,4-oxadiazole analogs of resveratrol. Chem. Biol. Interact., 2015, 240, 200-207.
[http://dx.doi.org/10.1016/j.cbi.2015.08.018] [PMID: 26335192]
[26]
Zhang, Y.Y.; Zhang, Q.Q.; Zhang, J.; Song, J.L.; Li, J.C.; Han, K.; Huang, J.T.; Jiang, C.S.; Zhang, H. Synthesis and evaluation of 1,2,4-oxadiazole derivatives as potential anti-inflammatory agents by inhibiting NF-κB signaling pathway in LPS-stimulated RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2020, 30(17), 127373.
[http://dx.doi.org/10.1016/j.bmcl.2020.127373] [PMID: 32738985]
[27]
Abd El-Hameed, R.H.; Mahgoub, S.; El-Shanbaky, H.M.; Mohamed, M.S.; Ali, S.A. Utility of novel 2-furanones in synthesis of other heterocyclic compounds having anti-inflammatory activity with dual COX2/LOX inhibition. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 977-986.
[http://dx.doi.org/10.1080/14756366.2021.1908277] [PMID: 33957835]
[28]
Wu, Y.; Li, J.; Wu, J.; Morgan, P.; Xu, X.; Rancati, F.; Vallese, S.; Raveglia, L.; Hotchandani, R.; Fuller, N.; Bard, J.; Cunningham, K.; Fish, S.; Krykbaev, R.; Tam, S.; Goldman, S.J.; Williams, C.; Mansour, T.S.; Saiah, E.; Sypek, J.; Li, W. Discovery of potent and selective matrix metalloprotease 12 inhibitors for the potential treatment of chronic obstructive pulmonary disease (COPD). Bioorg. Med. Chem. Lett., 2012, 22(1), 138-143.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.046] [PMID: 22153340]
[29]
Chen, S.; Guo, W.; Liu, X.; Sun, P.; Wang, Y.; Ding, C.; Meng, L.; Zhang, A. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. Eur. J. Med. Chem., 2019, 179, 38-55.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.037] [PMID: 31233921]
[30]
Esser, A.K.; Ross, M.H.; Fontana, F.; Su, X.; Gabay, A.; Fox, G.C.; Xu, Y.; Xiang, J.; Schmieder, A.H.; Yang, X.; Cui, G.; Scott, M.; Achilefu, S.; Chauhan, J.; Fletcher, S.; Lanza, G.M.; Weilbaecher, K.N. Nanotherapy delivery of c-myc inhibitor targets Protumor macrophages and preserves antitumor macrophages in breast cancer. Theranostics, 2020, 10(17), 7510-7526.
[http://dx.doi.org/10.7150/thno.44523] [PMID: 32685002]
[31]
Fu, R.; Zhang, Y.W.; Li, H.M.; Lv, W.C.; Zhao, L.; Guo, Q.L.; Lu, T.; Weiss, S.J.; Li, Z.Y.; Wu, Z.Q. LW106, a novel indoleamine 2,3-dioxygenase 1 inhibitor, suppresses tumour progression by limiting stroma-immune crosstalk and cancer stem cell enrichment in tumour micro-environment. Br. J. Pharmacol., 2018, 175(14), 3034-3049.
[http://dx.doi.org/10.1111/bph.14351] [PMID: 29722898]
[32]
Wang, T.; van der Vlies, A.J.; Uyama, H.; Hasegawa, U. Nitric oxide-releasing polymeric furoxan conjugates. Polym. Chem., 2015, 6(44), 7737-7748.
[http://dx.doi.org/10.1039/C5PY01335F]
[33]
Wu, C.; Li, M.; Meng, H.; Liu, Y.; Niu, W.; Zhou, Y.; Zhao, R.; Duan, Y.; Zeng, Z.; Li, X.; Li, G.; Xiong, W.; Zhou, M. Analysis of status and countermeasures of cancer incidence and mortality in China. Sci. China Life Sci., 2019, 62(5), 640-647.
[http://dx.doi.org/10.1007/s11427-018-9461-5] [PMID: 30900169]
[34]
Zhang, M.; Zhang, Y.Y.; Chen, Y.; Wang, J.; Wang, Q.; Lu, H. TGF-β signaling and resistance to cancer therapy. Front. Cell Dev. Biol., 2021, 9, 786728.
[http://dx.doi.org/10.3389/fcell.2021.786728] [PMID: 34917620]
[35]
Runbeck, E.; Crescioli, S.; Karagiannis, S.N.; Papa, S. Utilizing immunocytokines for cancer therapy. Antibodies (Basel), 2021, 10(1), 10.
[http://dx.doi.org/10.3390/antib10010010] [PMID: 33803078]
[36]
Kemnitzer, W.; Kuemmerle, J.; Zhang, H.Z.; Kasibhatla, S.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery of 3-aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers. 2. Identification of more aqueous soluble analogs as potential anticancer agents. Bioorg. Med. Chem. Lett., 2009, 19(15), 4410-4415.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.052] [PMID: 19500976]
[37]
Ziedan, N.I.; Stefanelli, F.; Fogli, S.; Westwell, A.D.; Westwell, A. Design, synthesis and pro-apoptotic antitumour properties of indole-based 3,5-disubstituted oxadiazoles. Eur. J. Med. Chem., 2010, 45(10), 4523-4530.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.012] [PMID: 20705365]
[38]
Krasavin, M.; Sosnov, A.V.; Karapetian, R.; Konstantinov, I.; Soldatkina, O.; Godovykh, E.; Zubkov, F.; Bai, R.; Hamel, E.; Gakh, A.A. Antiproliferative 4-(1,2,4-oxadiazol-5-yl)piperidine-1-carboxamides, a new tubulin inhibitor chemotype. Bioorg. Med. Chem. Lett., 2014, 24(18), 4477-4481.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.089] [PMID: 25155551]
[39]
Yi, X.; Zhong, B.; Smith, K.; Geldenhuys, W.; Feng, Y.; Pink, J.; Dowlati, A.; Xu, Y.; Zhou, A.; Su, A. Antiproliferative 4-(1,2,4-oxadiazol-5-yl)piperidine-1-carboxamides, a novel tubulin inhibitor chemotype. Bioorg. Med. Chem. Lett., 2012, 55, 3425-3435.
[http://dx.doi.org/10.1021/jm300100d] [PMID: 22435708]
[40]
Bajaj, S.; Asati, V.; Singh, J.; Roy, P.P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur. J. Med. Chem., 2015, 97, 124-141.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.051] [PMID: 25965776]
[41]
Trotta, A.P.; Chipuk, J.E. Mitochondrial dynamics as regulators of cancer biology. Cell. Mol. Life Sci., 2017, 74(11), 1999-2017.
[http://dx.doi.org/10.1007/s00018-016-2451-3] [PMID: 28083595]
[42]
Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.S.; Kroemer, G.; Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res., 2018, 28(3), 265-280.
[http://dx.doi.org/10.1038/cr.2017.155] [PMID: 29219147]
[43]
Subba Rao, A.V.; Vishnu Vardhan, M.V.P.S.; Subba Reddy, N.V.; Srinivasa Reddy, T.; Shaik, S.P.; Bagul, C.; Kamal, A. Synthesis and biological evaluation of imidazopyridinyl-1,3,4-oxadiazole conjugates as apoptosis inducers and topoisomerase IIα inhibitors. Bioorg. Chem., 2016, 69, 7-19.
[http://dx.doi.org/10.1016/j.bioorg.2016.09.002] [PMID: 27656775]
[44]
Chauhan, J.; Wang, H.; Yap, J.L.; Sabato, P.E.; Hu, A.; Prochownik, E.V.; Fletcher, S. Discovery of Methyl 4′-Methyl-5-(7-nitrobenzo[ c ][1,2,5]oxadiazol-4-yl) -[1,1′-biphenyl]-3-carboxylate, an Improved Small-Molecule Inhibitor of c-Myc-Max Dimerization. ChemMedChem, 2014, 9(10), 2274-2285.
[http://dx.doi.org/10.1002/cmdc.201402189] [PMID: 24976143]
[45]
Pidugu, V.R.; Yarla, N.S.; Bishayee, A.; Kalle, A.M.; Satya, A.K. Novel histone deacetylase 8-selective inhibitor 1,3,4-oxadiazole-alanine hybrid induces apoptosis in breast cancer cells. Apoptosis, 2017, 22(11), 1394-1403.
[http://dx.doi.org/10.1007/s10495-017-1410-2] [PMID: 28840369]
[46]
Alvi, A.M.; Shah, F.A.; Muhammad, A.J.; Feng, J.; Li, S. 1,3,4, oxadiazole compound A3 Provides robust protection against PTZ-induced neuroinflammation and oxidative stress by regulating Nrf2-pathway. J. Inflamm. Res., 2021, 14, 7393-7409.
[http://dx.doi.org/10.2147/JIR.S333451] [PMID: 35002275]
[47]
Mohsin Alvi, A.; Tariq Al Kury, L.; Umar Ijaz, M.; Ali Shah, F.; Tariq Khan, M.; Sadiq Sheikh, A.; Nadeem, H.; Khan, A.; Zeb, A.; Li, S. Post-treatment of synthetic polyphenolic 1,3,4 oxadiazole compound A3, attenuated ischemic stroke-induced neuroinflammation and neurodegeneration. Biomolecules, 2020, 10(6), 816.
[http://dx.doi.org/10.3390/biom10060816] [PMID: 32466476]
[48]
Sava, A.; Buron, F.; Routier, S.; Panainte, A.; Bibire, N.; Constantin, S.M.; Lupașcu, F.G.; Focșa, A.V.; Profire, L. Design, Synthesis, in silico and in vitro studies for new nitric oxide-releasing indomethacin derivatives with 1,3,4-Oxadiazole-2-thiol scaffold. Int. J. Mol. Sci., 2021, 22(13), 7079.
[http://dx.doi.org/10.3390/ijms22137079] [PMID: 34209248]
[49]
Rai, G.; Sayed, A.A.; Lea, W.A.; Luecke, H.F.; Chakrapani, H.; Prast-Nielsen, S.; Jadhav, A.; Leister, W.; Shen, M.; Inglese, J.; Austin, C.P.; Keefer, L.; Arnér, E.S.J.; Simeonov, A.; Maloney, D.J.; Williams, D.L.; Thomas, C.J. Structure mechanism insights and the role of nitric oxide donation guide the development of oxadiazole-2-oxides as therapeutic agents against schistosomiasis. J. Med. Chem., 2009, 52(20), 6474-6483.
[http://dx.doi.org/10.1021/jm901021k] [PMID: 19761212]
[50]
Jin, X.Y.; Chen, H.; Li, D.D.; Li, A.L.; Wang, W.Y.; Gu, W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 955-972.
[http://dx.doi.org/10.1080/14756366.2019.1605364] [PMID: 31072147]
[51]
Szczukowski, Ł.; Krzyżak, E.; Zborowska, A.; Zając, P.; Potyrak, K.; Peregrym, K.; Wiatrak, B.; Marciniak, A.; Świątek, P. Design, synthesis and comprehensive investigations of pyrrolo [3, 4-d] pyridazinone-based 1, 3, 4-oxadiazole as novel class of selective cox-2 inhibitors. Int. J. Mol. Sci., 2020, 21(24), 9623.
[http://dx.doi.org/10.3390/ijms21249623] [PMID: 33348757]
[52]
Santos Costa, E.C.; Rufino de Freitas, J.J. Innovation and intellectual property of the 1,2,4-oxadiazoles: A technological survey based on patent and periodical databases. Quim, 2018, 6, 713-718.
[53]
Freitas, J.J.R.; Silva, E.E.; Regueira, J.L.L.F.; Andrade, S.A.; Calvalcante, P.M.M.; Oliveira, R.N.; Freitas Filho, J.R. 1,2,4-Oxadiazoles: Synthesis and applications. Rev. Vir. Quím., 2012, 4(6), 670-691.
[http://dx.doi.org/10.5935/1984-6835.20120051]
[54]
Deore, A.B.; Dhumane, J.R.; Wagh, R.; Sonawane, R. The stages of drug discovery and development process. Asian J. Pharm. Res. Dev., 2019, 7(6), 62-67.
[http://dx.doi.org/10.22270/ajprd.v7i6.616]
[55]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[56]
Pace, A.; Pierro, P. The new era of 1,2,4-oxadiazoles. Org. Biomol. Chem., 2009, 7(21), 4337-4348.
[http://dx.doi.org/10.1039/b908937c] [PMID: 19830279]
[57]
Silvestrini, B.; Pozzatti, C. Pharmacological properties of 3-phenyl-5 β diethylaminoethyl-1,2,4-oxadiazole. Br. J. Pharmacol. Chemother., 1961, 16(3), 209-217.
[http://dx.doi.org/10.1111/j.1476-5381.1961.tb01080.x] [PMID: 19108149]
[58]
DRUGBANK. 2022. Available from: https://go.drugbank.com// (Accessed on: April 11, 2022).
[59]
Reden, J. Molsidomine. J. Vasc. Res., 1990, 27(2-5), 282-294.
[http://dx.doi.org/10.1159/000158820] [PMID: 2242448]
[60]
Chaves, J.D.S.; Tunes, L.G.; de J Franco, C.H.; Francisco, T.M.; Corrêa, C.C.; Murta, S.M.F.; Monte-Neto, R.L.; Silva, H.; Fontes, A.P.S.; de Almeida, M.V. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. Eur. J. Med. Chem., 2017, 127, 727-739.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.052] [PMID: 27823888]
[61]
Espinosa, A.V.; Costa, D.S.; Tunes, L.G.; Monte-Neto, R.L.; Grazul, R.M.; Almeida, M.V.; Silva, H. Anticancer and antileishmanial in vitro activity of gold(I) complexes with 1,3,4-oxadiazole-2( 3H )-thione ligands derived from δ-D-gluconolactone. Chem. Biol. Drug Des., 2021, 97(1), 41-50.
[http://dx.doi.org/10.1111/cbdd.13757] [PMID: 32657521]
[62]
Niu, X.; Rothe, K.; Chen, M.; Grasedieck, S.; Li, R.; Nam, S.E.; Zhang, X.; Novakovskiy, G.E.; Ahn, Y.H.; Maksakova, I.; Lai, S.; Zhang, H.; Yan, J.; Liu, H.; Zhao, Y.; Wu, D.; Ge, Y.; Wasserman, W.W.; Rouhi, A.; Kuchenbauer, F.; Yip, C.K.; Zhang, Z.; Jiang, X. Targeting AXL kinase sensitizes leukemic stem and progenitor cells to venetoclax treatment in acute myeloid leukemia. Blood, 2021, 137(26), 3641-3655.
[http://dx.doi.org/10.1182/blood.2020007651] [PMID: 33786587]
[63]
Melo de Oliveira, V.N.; Flávia do Amaral Moura, C.; Peixoto, A.S.; Gonçalves Ferreira, V.P.; Araújo, H.M.; Lapa Montenegro Pimentel, L.M.; Pessoa, C.Ó.; Nicolete, R.; Versiani dos Anjos, J.; Sharma, P.P.; Rathi, B.; Pena, L.J.; Rollin, P.; Tatibouët, A.; Nascimento de Oliveira, R. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 220, 113472.
[http://dx.doi.org/10.1016/j.ejmech.2021.113472] [PMID: 33940463]