A Review of Perception-Based Navigation System for Autonomous Mobile Robots

Article ID: e290922209298 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Perception-based navigation systems have become more popular in robotic applications such as autonomous moving vehicles in hospitals, logistics, packing and forwarding, mines, military, defense, consumer robots, building surveillance, rescuing and carrying a child or physically challenged people, and so on, due to the need, advanced development, and large influence. To improve positioning, localization, and path planning on obstacle-free trajectories, several navigation designs have been developed. In this study, we attempt to analyze various navigation methods and technologies applied by mobile robots in various applications. On paths without obstacles, a number of navigation designs have been created to enhance positioning, localization, and path planning. An overview of many navigation technologies is given in this article. The paper focuses on Measurand- based navigation of mobile robot applications in a diverse environment by taking into account previous research works. Additionally, there is a comparison of technologies, methodologies, applications, algorithms for error reduction, and different kinds of perception systems, in addition to metrics like accuracy and usability. This limited study focuses on the integration of an antenna with an IMUbased navigation system that is suited for all environments, as well as some future trends to detect to aid in the profound-implication of navigation system enhancement in robotic applications.

Keywords: Measurand Navigation, environment positioning system, perception systems, Antenna, Mobile robot, Autonomous vehicles.

Graphical Abstract

[1]
Z. Li, C. Yang, C. Su, J. Deng, and W. Zhang, "Vision-based model predictive control for steering of a nonholonomic mobile robot", IEEE Trans. Control Syst. Technol., vol. 24, no. 2, pp. 553-564, 2016.
[2]
A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, "A comprehensive survey of visual slam algorithms", Robotics, vol. 11, no. 1, p. 24, 2022.
[http://dx.doi.org/10.3390/robotics11010024]
[3]
O. Zahra, S. Tolu, P. Zhou, A. Duan, and D. Navarro-Alarcon, "A bio-inspired mechanism for learning robot motion from mirrored human demonstrations", Front. Neurorobot., vol. 16, p. 826410, 2022.
[http://dx.doi.org/10.3389/fnbot.2022.826410] [PMID: 35360830]
[4]
Y. Li, J. Li, Q. Yao, W. Zhou, and J. Nie, "Research on predictive control algorithm of vehicle turning path based on monocular vision", Processes (Basel), vol. 10, no. 2, p. 417, 2022.
[http://dx.doi.org/10.3390/pr10020417]
[5]
H. Rajput, T. Som, and S. Kar, "Vehicular license plate localization using principal component analysis", IETE Tech. Rev., vol. 34, no. 2, pp. 214-219, 2017.
[http://dx.doi.org/10.1080/02564602.2016.1166074]
[6]
F. Belkhouche, "Reactive path planning in a dynamic environment", IEEE Trans. Robot., vol. 25, no. 4, pp. 902-911, 2009.
[http://dx.doi.org/10.1109/TRO.2009.2022441]
[7]
I. Ardiyanto, and J. Miura, "Real-time navigation using randomized kinodynamic planning with arrival time field", J. Robotics Auto. Syst., vol. 60, no. 12, pp. 1579-1591, 2012.
[http://dx.doi.org/10.1016/j.robot.2012.09.011]
[8]
DHL. Self-driving vehicle in logistics, DHL customer solution and innovation (Bosch). Germany, 2014. Available from: https://www.dhl.com/de-en/home/insights-and-innovation/thought-leadership/trend-reports/self-driving-vehicles.html
[9]
W. Sakpere, M. Adeyeye-Oshin, and N.B.W. Mlitwa, "A state-of-the-art survey of indoor positioning and navigation systems and technologies", South Afr. Comput. J., vol. 29, no. 3, pp. 145-197, 2017.
[http://dx.doi.org/10.18489/sacj.v29i3.452]
[10]
J. O'Keefe, and L. Nadel, The Hippocampus as a Cognitive Map, Oxford University Press, 1978.
[11]
J.M. Loomis, R.G. Golledge, and R.L. Klatzky, "Navigation system for the blind: Auditory display modes and guidance", Presence: Teleop. Virtual Environ., vol. 7, pp. 193-203, 1998.
[http://dx.doi.org/10.1162/105474698565677]
[12]
G. Goggin, "Cell phone culture: Mobile technology in everyday life", Routledge, Madison Avenue, New york, 2006.
[13]
A. Aijaz, H. Aghvami, and M. Amani, "A survey on mobile data offloading: Technical and business perspectives", IEEE Wirel. Commun., vol. 20, no. 2, pp. 104-112, 2013.
[http://dx.doi.org/10.1109/MWC.2013.6507401]
[14]
M.S. Grewal, L.R. Weill, and A.P. Andrews, Global positioning systems, inertial navigation, and integration., 2nd ed John Wiley & Sons: Hoboken, 2007.
[http://dx.doi.org/10.1002/0470099720]
[15]
L. Jurišica, "High precision GNSS guidance for field mobile robots", Int. J. Adv. Robot. Syst., vol. 9, no. 169, 2012.
[http://dx.doi.org/10.5772/52554]
[16]
D. Kugler, "Integration of GPS & LORAN-C/Chakya : An European perspective", Navig. J. Inst. Navig., vol. 46, pp. 1-13, 1999.
[17]
O. Kazunori, T. Takashi, S. Bunji, and Y. Shin’Ichi, "Differential GPS and odometry-based outdoor navigation of a mobile robot", Adv. Robot., vol. 18, no. 6, pp. 611-635, 2004.
[http://dx.doi.org/10.1163/1568553041257431]
[18]
V. Nerlekar, T. Mamtura, and S. Parihar, "Implementation of A* algorithm for optimal path planning for mobile robots", 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), 2022, pp. 382-390. IEEE., 2022, .
[19]
A. Noureldin, A. El-Shafie, and M. Bayoumi, "GPS/INS integration utilizing dynamic neural networks for vehicular navigation", Inf. Fusion, vol. 12, no. 1, pp. 48-57, 2011.
[http://dx.doi.org/10.1016/j.inffus.2010.01.003]
[20]
B-F. Wu, T-T. Lee, H-H. Chang, J-J. Jiang, C-N. Lien, T-Y. Liao, and J-W. Perng, "GPS navigation based autonomous driving system design for intelligent vehicles", Proceedings of the ISIC/IEEE International Conference on Systems, Man and Cybernetics, pp. 3294-3299. Montreal, Quebec, 2007.
[21]
M. Kleinert, and S. Schleith, "Inertial aided monocular SLAM for GPS-denied navigation", Proceedings of the IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 20-25.
Salt Lake City, UT, USA, 2010. [http://dx.doi.org/10.1109/MFI.2010.5604453]
[22]
Jian Tang, "LiDAR scan matching aided inertial navigation system in GNSS-denied environments", Sensors, p. 15, 2015.
[http://dx.doi.org/10.3390/s150716710]
[23]
D.H. Won, "Improving mobile robot navigation performance using vision based SLAM and distributed filter", IEEE International Conference on Control, Automation and Systems, 2008.
[24]
L. Ojeda, and J. Borenstein, "Methods for the reduction of odometry errors in over-constrained mobile robots", Auton. Robots, 2004.
[http://dx.doi.org/10.1023/B:AURO.0000025791.45313.01]
[25]
Y. Zhang, and D.P. Hong, "Navigation of Mobile robot using lowcost GPS", Int. J. Precis. Eng. Manuf., vol. 16, no. 4, pp. 847-850, .
[http://dx.doi.org/10.1007/s12541-015-0111-4]
[26]
G. Anousaki, and K.J. Kyriakopoulos, "A dead-reckoning scheme for skid-steered vehicles in outdoor environments", IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 26 April 2004 - 01 May 2004, New Orleans, LA, USA, IEEE, pp. 580-585, 2004.
[http://dx.doi.org/10.1109/ROBOT.2004.1307211]
[27]
F.P. Panzieri, and G. Ulivi, "An outdoor navigation system using gps and inertial platform", IEEE/ASME Trans. Mechatron., vol. 7, no. 2, pp. 134-142, 2002.
[http://dx.doi.org/10.1109/TMECH.2002.1011250]
[28]
N. Bulusu, J. Heidemann, and D. Estrin, "Gps-less low-cost outdoor localization for very small devices", IEEE Pers. Commun. Mag., vol. 7, pp. 28-34, 2000.
[http://dx.doi.org/10.1109/98.878533]
[29]
X. Li, S. Li, S. Jia, and C. Xu, "Mobile robot map building based on laser ranging and kinect", 2016 IEEE International Conference on Information and Automation (ICIA), 01-03 August 2016, Ningbo, China, IEEE, pp. 819-824, 2016.
[http://dx.doi.org/10.1109/ICInfA.2016.7831932]
[30]
F. Van Diggelen, and C. Abraham, “Indoor GPS Technology,”, CTIA Wireless-Agenda, Dallas, pp. 1-10, 2001.
[31]
G. Dedes, and A.G. Dempster, "Indoor GPS positioning", Proceedings of the IEEE Semiannual Vehicular Technology Conference, Dallas, TX, USA, 2005.
[32]
R. Mautz, and S. Tilch, "Survey of optical indoor positioning systems", 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 21-23 September 2011, Guimaraes, Portugal, IEEE, pp. 1-7, 2011.
[33]
E. Aitenbichler, and M. Muhlhauser, "An IR local positioning system for smart items and devices", 23rd IEEE International Conference on Distributed Computing Systems Workshops, 19-22 May 2003, Providence, RI, USA, IEEE, pp. 334-339, 2003.
[http://dx.doi.org/10.1109/ICDCSW.2003.1203576]
[34]
Y.M. Abdelkader, and M. Ahmed, "Localization based on DGPS for autonomous robots in precision agriculture", 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 03-04 March 2022, Meknes, Morocco, IEEE, pp. 1-4, 2022.
[35]
J. Borenstein, and Y. korren, "Obstacle avoidance with ultrasonic sensors", IEEE J. Robot. Autom., vol. 4, no. 2, 1988.
[36]
D. Nakhaeinia, S.H. Tang, S.B.M. Noor, and O. Motlagh, "A review of control architectures for autonomous navigation of mobile robot", Int. J. Phys. Sci., vol. 6, no. 2, pp. 169-174, 2011.
[37]
A. Hopper, and M. Hazas, "Broadband ultrasonic location systems for improved indoor positioning", IEEE Transact. Mobile Comput., vol. 5, pp. 536-547, 2006.
[38]
I.H. Kartowisastro, "Local positioning system of mobile robot: A practical perspective", 9th International Conference on Control, Automation, Robotics and Vision, 05-08 December 2006, Singapore, IEEE, 2006.
[39]
A. Bartoli, and P. Sturm, "Structure-from-motion using lines: Representation, triangulation, and bundle adjustment", Comput. Vis. Image Underst., vol. 100, no. 3, 2005.
[http://dx.doi.org/10.1016/j.cviu.2005.06.001]
[40]
Gerald P Roston, and Eric P. Krotkov, "Dead reckoning navigation for walking robots", Carnegie-Mellon University, Pittsburgh, USA, 1991.
[41]
K.C. Park, "Dead reckoning navigation of autonomous mobile robots", IFAC Proceedings, vol. 31, no. 3, pp. 219-224, 1998.
[42]
B. Barshan, and H.F. Durrant-Whyte, "Inertial navigation systems for mobile robots", IEEE Trans. Robot. Autom., vol. 11, no. 3, pp. 328-342, 1995.
[http://dx.doi.org/10.1109/70.388775]
[43]
B.S. Cho, W. Moon, W.J. Seo, and K.R. Baek, "A study on localization of the mobile robot using inertial sensors and wheel revolutions, intelligent robotics and applications", In: ICIRA, vol. 7101. Springer: Berlin, Heidelberg, 2011.
[44]
L Cheng, "Position and navigation of mobile robot with asynchronous fusion of binocular vision system and inertial navigation system", Int. J. Adv. Robot. Syst., vol. 14, no. 6, 2017.
[45]
M.B. Alatise, and G.P. Hancke, "Pose estimation of a mobile robot based on fusion of imu data and vision data using an extended kalman filter", Sensors (Basel), vol. 17, no. 10, p. 2164, 2017.
[http://dx.doi.org/10.3390/s17102164] [PMID: 28934102]
[46]
P. Goyal, V.J. Ribeiro, H. Saran, and A. Kumar, "Strap-down pedestrian dead-reckoning system", 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 21-23 September 2011, Guimaraes, Portugal, IEEE, pp. 1-7, 2011.
[47]
J. Xiao, Z. Liu, Y. Yang, D. Liu, and X. Han, "Comparison and analysis of indoor wireless positioning techniques", International Conference on Computer Science and Service System, pp. 293-296, 2011.
[48]
Y. Xue, W. Su, H. Wang, D. Yang, and J. Ma, "A model on indoor localization system based on the time difference without synchronization", Access IEEE, vol. 6, pp. 34179-34189, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2850660]
[49]
A. Nosaiba, "Autonomous mobile robot localization based on RSSI measurements using an RFID sensor and neural network BPANN", J. King Saud Univ. Comput. Inf. Sci., vol. 25, no. 2, pp. 137-143, 2013.
[50]
M. Ciężkowski, "A prototype of static IR beacon-receiver positioning system based on triangulation method", Measurement, vol. 128, pp. 149-159, 2018.
[http://dx.doi.org/10.1016/j.measurement.2018.06.039]
[51]
F.A.X. Da Mota, M.X. Rocha, J.J.P.C. Rodrigues, V.H.C. De Albuquerque, and A.R. De Alexandria, "Localization and navigation for autonomous mobile robots using petri nets in indoor environments", IEEE Access, vol. 6, pp. 31665-31676, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2846554]
[52]
Z. Xiang, S. Song, J. Chen, H. Wang, J. Huang, and X. Gao, "A wireless lan-based indoor positioning technology", IBM J. Res. Develop., vol. 48, no. 5/6, pp. 617-626, 2004.
[53]
A. Ladd, K. Bekris, A. Rudys, G. Marceau, L. Kavraki, and D. Wallach, "Robotics based location sensing using wireless ethernet", Proc. Mobicom., pp. 227-238, 2002.
[54]
Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, "Indoor localization using FM signals", IEEE Trans. Mobile Comput., vol. 12, no. 8, pp. 1502-1517, 2013.
[http://dx.doi.org/10.1109/TMC.2013.58]
[55]
R. Dagher, N. Mitton, and I. Amadou, "Towards WSN-aided navigation for vehicles in smart cities: An application case study", IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), 24-28 March 2014, Budapest, Hungary, IEEE, 2014.
[http://dx.doi.org/10.1109/PerComW.2014.6815178]
[56]
Wang, "Bluetooth indoor positioning using RSSI and triangulation methods", IEEE 10th Consumer Communications and Networking Conference (CCNC), 2013. Available from: https://paperzz.com/doc/7079166/bluetooth-positioning-using-rssi-and-triangulation-methods
[57]
S. Yogendra, D. Tanmoy Maity, P.S. Das, and P.S. Paul, "Wireless communication and environment monitoring in underground coal mines-Review", IETE Tech. Rev., vol. 32, no. 2, pp. 140-150, 2015.
[http://dx.doi.org/10.1080/02564602.2014.995142]
[58]
K. Khoshelham, and S.O. Elberink, "Accuracy and resolution of Kinect depth data for indoor mapping applications", Sensors (Basel), vol. 12, no. 2, pp. 1437-1454, 2012.
[http://dx.doi.org/10.3390/s120201437] [PMID: 22438718]
[59]
M. Jalobeanu, G. Shirakyan, G. Parent, H. Kikkeri, B. Peasley, and A. Feniello, "Reliable kinect-based navigation in large indoor environments", 2015 IEEE International Conference on Robotics and Automation (ICRA), 26-30 May 2015, Seattle, WA, USA, IEEE, 2015.
[http://dx.doi.org/10.1109/ICRA.2015.7139225]
[60]
X.K. Amundson, J. Sallai, and A. Ledeczi, "Mobile sensor navigation using rapid RF-based angle of arrival localization", Proc. 17th IEEE Real-Time Embedded Technol. Appl. Symp., pp. 316-325, 2011.
[61]
Jonathan Dixon, "Mobile robot navigation", Imperial College London, Inf. Syst. Eng., 1997.
[62]
A. Chehri, P. Fortier, and P.M. Tardif, "UWB-based sensor networks for localization in mining environments", Ad Hoc Netw., vol. 7, no. 5, pp. 987-1000, 2009.
[http://dx.doi.org/10.1016/j.adhoc.2008.08.007]
[63]
F. Mazhar, M.G. Khan, and B. Sällberg, "Precise indoor positioning using UWB: A review of methods, algorithms and implementations", Wirel. Pers. Commun., 2017.
[http://dx.doi.org/10.1007/s11277-017-4734-x]
[64]
B. Song, S. Zhang, J. Long, and Q. Hu, "Fingerprinting localization method based on TOA and particle filtering for mines", Math. Probl. Eng., 2017.
[http://dx.doi.org/10.1155/2017/3215978]
[65]
X. Jiang, Y. Chen, J. Liu, D. Liu, Y. Gu, and Z. Chen, "Real-time and accurate indoor localization with fusion model of Wi-Fi fingerprint and motion particle filter", Math. Probl. Eng., 2015.
[http://dx.doi.org/10.1155/2015/545792]
[66]
G. Wang, H. Chen, Y. Li, and N. Ansari, "NLOS error mitigation for TOA-based localization via convex relaxation", IEEE Trans. Wirel. Commun., vol. 13, no. 8, pp. 4119-4131, 2014.
[http://dx.doi.org/10.1109/TWC.2014.2314640]
[67]
A. Heber Sobreira, P. Moreira, P. Costa, and J. Lima, "Robust mobile robot localization based on a security laser: An industry case study", Indust. Robot Int. J., vol. 43, no. 6, pp. 596-606, 2016.
[68]
M. Horiba, E. Okamoto, T. Shinohara, and K. Matsumura, "An accurate indoor-localization scheme with NLOS detection and elimination exploiting stochastic characteristics", IEICE Trans. Commun., vol. 9, pp. 1758-1767, 2015.
[http://dx.doi.org/10.1587/transcom.E98.B.1758]
[69]
J. Sun, and C. Li, "Tunnel personnel positioning method based on TOA and modified location-fingerprint positioning", Int. J. Min. Sci. Technol., vol. 26, no. 3, pp. 429-436, 2016.
[http://dx.doi.org/10.1016/j.ijmst.2016.02.010]
[70]
S.Y. Jung, S. Hann, and C.S. Park, "TDOA-based optical wireless indoor localization using LED ceiling lamps", IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592-1597, 2011.
[http://dx.doi.org/10.1109/TCE.2011.6131130]
[71]
Y. Abe, M. Shikano, T. Fukuda, F. Arai, and Y. Tanaka, "Vision based navigation system for autonomous mobile robot with global matching", IEEE Int. Conf. Robot. Autom., vol. 20, pp. 1299-1304, 1999.
[http://dx.doi.org/10.1109/ROBOT.1999.772540]
[72]
C. Siagian, and L. Itti, "Gist: A mobile robotics application of context-based vision in outdoor environment", 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) – Workshops, 21-23 September 2005, San Diego, CA, USA, 2006.
[http://dx.doi.org/10.1109/CVPR.2005.465]
[73]
S. Kotani, "Mobile robot navigation based on vision and DGPS information", Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), 20-20 May 1998, Leuven, Belgium, IEEE, 1998.
[http://dx.doi.org/10.1109/ROBOT.1998.680721]
[74]
E. Royer, M. Lhuillier, and M. Dhome, "Monocular vision for mobile robot localization and autonomous navigation", Int. J. Comput. Vis., vol. 74, p. 237, 2007.
[http://dx.doi.org/10.1007/s11263-006-0023-y]
[75]
J Gaspar, "Vision-based navigation and environmental representations with an omnidirectional camera", IEEE Transac. Robotics Auto., vol. 16, no. 6, pp. 890-898, 2000.
[76]
J. Zhao, J. Gao, F. Zhao, and Y. Liu, "A search-and-rescue robot system for remotely sensing the underground coal mine environment", Sensors (Basel), vol. 17, no. 10, p. 2426, 2017.
[http://dx.doi.org/10.3390/s17102426] [PMID: 29065560]
[77]
E. Menegatti, G. Gatto, E. Pagello, T. Minato, and H. Ishiguro, "Robot localisation enhanced by a distributed vision system in dynamic environments", Sens. Rev., vol. 28, no. 3, pp. 222-228, 2008.
[http://dx.doi.org/10.1108/02602280810882571]
[78]
Y. Hada, and K. Takase, "Multiple mobile robot navigation using the indoor global positioning system (iGPS)", Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1005-1010, 2001.
[http://dx.doi.org/10.1109/IROS.2001.976300]
[79]
M. Saifizi, and D. Hazry, "Vision based mobile robot navigation system", Int. J. Control Sci. Eng, vol. 2, no. 4, pp. 83-87, 2012.
[80]
S. Julius Fusic, K. Hariharan, and L. Irudhayaraj, "Modeling and analysis of GPS–GLONASS navigation for car like mobile robot", J. Electr. Eng. Technol., vol. 15, pp. 927-935, 2020.
[http://dx.doi.org/10.1007/s42835-020-00365-1]
[81]
S. Thrun, "MINERVA: A second-generation museum tour-guide robot", Proceedings 1999 IEEE International Conference on Robotics and Automation Detroit, vol. 3. pp. 1999-2005. MI, USA, 1999.
[82]
X. Liang, H. Wang, W. Chen, D. Guo, and T. Liu, "Adaptive image-based trajectory tracking control of wheeled mobile robots with an uncalibrated fixed camera", IEEE Trans. Control Syst. Technol., vol. 23, no. 6, pp. 2266-2282, 2015.
[http://dx.doi.org/10.1109/TCST.2015.2411627]
[83]
K. Das Sharma, A. Chatterjee, and A. Rakshit, "A PSO–lyapunov hybrid stable adaptive fuzzy tracking control approach for vision-based robot navigation", IEEE Trans. Instrum. Meas., vol. 61, no. 7, pp. 1908-1914, 2012.
[http://dx.doi.org/10.1109/TIM.2012.2182868]
[84]
S. Lee, G.S. Tewolde, J. Lim, and J. Kwon, "Vision based localization for multiple mobile robots using low-cost vision sensor", IEEE International Conference on Electro/Information Technology (EIT), pp. 280-285, .
Dekalb, IL, 2015. [http://dx.doi.org/10.1109/EIT.2015.7293353]
[85]
H. Song, W. Choi, and H. Kim, "Robust vision-based relativelocalization approach using an RGB-depth camera and LiDAR sensor fusion", IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3725-3736, 2016.
[http://dx.doi.org/10.1109/TIE.2016.2521346]
[86]
I.H. Li, M.C. Chen, W.Y. Wang, S.F. Su, T.W. Lai, and I.-H. Lee, "Mobile robot self-localization system using single webcam distance measurement technology in indoor environments", Sensors (Basel), vol. 14, no. 2, pp. 2089-2109, 2014.
[http://dx.doi.org/10.3390/s140202089] [PMID: 24473282]
[87]
H. Wang, D. Guo, X. Liang, W. Chen, G. Hu, and K. K. Leang, "Adaptive vision-based leader–follower formation control of mobile robots", IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2893-2902, 2017.
[http://dx.doi.org/10.1109/TIE.2016.2631514]
[88]
A.I. Mourikis, and S. Roumeliotis, "A multi-state constraint Kalman filter for vision-aided inertial navigation", 2007 IEEE International Conference on Robotics and Automation, 10-14 April 2007, Roma, Italy, pp. 3565-3572, 2007.
[http://dx.doi.org/10.1109/ROBOT.2007.364024]
[89]
G. Zhang, J.H. Lee, J. Lim, and I.H. Suh, "Building a 3-D linebased map using stereo SLAM", IEEE Trans. Robot., vol. 31, no. 6, pp. 1364-1377, 2015.
[http://dx.doi.org/10.1109/TRO.2015.2489498]
[90]
B. Schmidt, and L. Wang, "Depth camera-based collision avoidance via active robot control", J. Manuf. Syst., vol. 33, no. 4, pp. 711-718, 2014.
[http://dx.doi.org/10.1016/j.jmsy.2014.04.004]
[91]
S. Julius Fusic, K. Hariharan, R. Sitharthan, and S. Karthikeyan, "Scene terrain classification for autonomous vehicle navigation based on semantic segmentation method", Trans. Inst. Meas. Contr., p. 01423312211062972, 2021.
[http://dx.doi.org/10.1177/01423312211062972]