Application of Electrospun Nanofiber as Drug Delivery Systems: A Review

Page: [10 - 24] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Recent advances in electrospinning have transformed the process of fabricating ultrafine nano-fiber scaffolds with side benefits to drug delivery systems and delivery systems in general. The extremely thin quality of electrospun nanofiber scaffolds, along with an effective area of high specificity and a stereological porous structure, capacitates them for the delivery of biomolecules, genes, and drugs. Accordingly, the present study gives a close preface on certain approaches to incorporating drugs and biomolecules into an electrospun nanofiber scaffold, including blending, surface engineering and modification, coaxial electrospinning and emulsion-based systems. The study further elaborates on certain biomedical applications of nanofibers as drug delivery systems, with case examples of Transdermal systems/ antibacterial agents/ wound dressing, cancer treatment, scaffolds for Growth Factor delivery and carriers for stem cell delivery systems.

Keywords: Drug Delivery System, Electrospun Nanofibers, Electrospinning, Growth Factor (GF), Stem Cell (SC), Wound Healing.

Graphical Abstract

[1]
Pant B, Park M, Park SJ. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics 2019; 11(7): 305.
[http://dx.doi.org/10.3390/pharmaceutics11070305] [PMID: 31266186]
[2]
Li Z, Mei S, Dong Y, et al. Functional nanofibrous biomaterials of tailored structures for drug delivery-a critical review. Pharmaceutics 2020; 12(6): 522.
[http://dx.doi.org/10.3390/pharmaceutics12060522] [PMID: 32521627]
[3]
Arabpour Z, Baradaran-Rafii A, Bakhshaiesh NL, et al. Design and characterization of biodegradable multi layered electrospun nanofibers for corneal tissue engineering applications. J Biomed Mater Res A 2019; 107(10): 2340-9.
[http://dx.doi.org/10.1002/jbm.a.36742] [PMID: 31161710]
[4]
Nazeri N, Tajerian R, Arabpour Z, et al. Bioinspired immobilization of carbon nanotubes on scaffolds for nerve regeneration. Bioinspired Biomimetic Nanobiomater 2019; 8: 198-205.
[5]
Arabpour Z. Designing biomaterials for regenerative medicine: State of the art and future perspectives. Tissue Engineering Strategies for Organ 2020; 1-9.
[6]
Tiwari G, Tiwari R, Bannerjee SK, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[7]
Thakkar S, Misra M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur J Pharm Sci 2017; 107: 148-67.
[http://dx.doi.org/10.1016/j.ejps.2017.07.001] [PMID: 28690099]
[8]
Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromol Mater Eng 2013; 298(5): 504-20.
[http://dx.doi.org/10.1002/mame.201200290]
[9]
Braghirolli DI, Steffens D, Pranke P. Electrospinning for regenerative medicine: A review of the main topics. Drug Discov Today 2014; 19(6): 743-53.
[http://dx.doi.org/10.1016/j.drudis.2014.03.024] [PMID: 24704459]
[10]
Ignatious F, Sun L, Lee CP, Baldoni J. Electrospun nanofibers in oral drug delivery. Pharm Res 2010; 27(4): 576-88.
[http://dx.doi.org/10.1007/s11095-010-0061-6] [PMID: 20143253]
[11]
Banani MA, Rahmatullah M, Farhan N, et al. Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration. Regen Med 2021; 16(1): 47-70.
[http://dx.doi.org/10.2217/rme-2020-0045]
[12]
Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 2008; 29(13): 1989-2006.
[http://dx.doi.org/10.1016/j.biomaterials.2008.01.011] [PMID: 18281090]
[13]
Liu M, Duan XP, Li YM, Yang DP, Long YZ. Electrospun nanofibers for wound healing. Mater Sci Eng C 2017; 76: 1413-23.
[http://dx.doi.org/10.1016/j.msec.2017.03.034] [PMID: 28482508]
[14]
Rošic R. Kocbek P, Pelipenko J, Kristl J, Baumgartner S. Nanofibers and their biomedical use. Acta Pharm 2013; 63(3): 295-304.
[http://dx.doi.org/10.2478/acph-2013-0024] [PMID: 24152893]
[15]
Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 2014; 185: 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.018] [PMID: 24768792]
[16]
Vojoudi E, Ai J, Eslaminejad MB, et al. A novel inexpensive method for preparation of silk nanofibers from cocoons. Quarterly J Iranian Chem Commun 2019; 7(324235124): 335-43.
[17]
Yin JY, Boaretti C, Lorenzetti A, Martucci A, Roso M, Modesti M. Effects of solvent and electrospinning parameters on the morphology and piezoelectric properties of PVDF nanofibrous membrane. Nanomaterials (Basel) 2022; 12(6): 962.
[http://dx.doi.org/10.3390/nano12060962] [PMID: 35335774]
[18]
Paaver U, Heinämäki J, Laidmäe I, et al. Electrospun nanofibers as a potential controlled-release solid dispersion system for poorly water-soluble drugs. Int J Pharm 2015; 479(1): 252-60.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.024] [PMID: 25549852]
[19]
Son YJ, Kim WJ, Yoo HS. Therapeutic applications of electrospun nanofibers for drug delivery systems. Arch Pharm Res 2014; 37(1): 69-78.
[http://dx.doi.org/10.1007/s12272-013-0284-2] [PMID: 24234913]
[20]
Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018; 132: 188-213.
[http://dx.doi.org/10.1016/j.addr.2018.05.001] [PMID: 29729295]
[21]
Meng ZX, Xu XX, Zheng W, et al. Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B Biointerfaces 2011; 84(1): 97-102.
[http://dx.doi.org/10.1016/j.colsurfb.2010.12.022] [PMID: 21227661]
[22]
Safari Z, Soudi S, Jafarzadeh N, Hosseini AZ, Vojoudi E, Sadeghizadeh M. Promotion of angiogenesis by M13 phage and RGD peptide in vitro and in vivo. Sci Rep 2019; 9(1): 11182.
[http://dx.doi.org/10.1038/s41598-019-47413-z] [PMID: 31371773]
[23]
Kim K, Luu YK, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 2004; 98(1): 47-56.
[http://dx.doi.org/10.1016/j.jconrel.2004.04.009] [PMID: 15245888]
[24]
Zamani M, Morshed M, Varshosaz J, Jannesari M. Controlled release of metronidazole benzoate from poly ε-caprolactone electrospun nanofibers for periodontal diseases. Eur J Pharm Biopharm 2010; 75(2): 179-85.
[http://dx.doi.org/10.1016/j.ejpb.2010.02.002] [PMID: 20144711]
[25]
Rujitanaroj P, Wang YC, Wang J, Chew SY. Nanofiber-mediated controlled release of siRNA complexes for long term gene-silencing applications. Biomaterials 2011; 32(25): 5915-23.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.065] [PMID: 21596430]
[26]
Lagaron J, Solouk A, Castro S, et al. 3-Biomedical applications of electrospinning, innovations, and products. Electrospun Mater Tissue Eng Biomed Appl 2017; 2017: 57-72.
[http://dx.doi.org/10.1016/B978-0-08-101022-8.00010-7]
[27]
Shahriar S, Mondal J, Hasan M, Revuri V, Lee D, Lee YK. Electrospinning nanofibers for therapeutics delivery. Nanomaterials 2019; 9(4): 532.
[http://dx.doi.org/10.3390/nano9040532] [PMID: 30987129]
[28]
Liu M, Zhang Y, Sun S, et al. Recent advances in electrospun for drug delivery purpose. J Drug Target 2019; 27(3): 270-82.
[http://dx.doi.org/10.1080/1061186X.2018.1481413] [PMID: 29798692]
[29]
Janjic M, Pappa F, Karagkiozaki V, Gitas C, Ktenidis K, Logothetidis S. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning. Int J Nanomedicine 2017; 12: 6343-55.
[http://dx.doi.org/10.2147/IJN.S138261] [PMID: 28919738]
[30]
Weng L, Xie J. Smart electrospun nanofibers for controlled drug release: Recent advances and new perspectives. Curr Pharm Des 2015; 21(15): 1944-59.
[http://dx.doi.org/10.2174/1381612821666150302151959] [PMID: 25732665]
[31]
Volpato ZF. Almodóvar J, Erickson K, Popat KC, Migliaresi C, Kipper MJ. Preservation of FGF-2 bioactivity using heparin-based nanoparticles, and their delivery from electrospun chitosan fibers. Acta Biomater 2012; 8(4): 1551-9.
[http://dx.doi.org/10.1016/j.actbio.2011.12.023] [PMID: 22210184]
[32]
Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 2013; 8: 2997-3017.
[PMID: 23976851]
[33]
Al-Enizi A, Zagho M, Elzatahry A. Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials 2018; 8(4): 259.
[http://dx.doi.org/10.3390/nano8040259] [PMID: 29677145]
[34]
Kim TH, Kim JJ, Kim HW. Basic fibroblast growth factor-loaded, mineralized biopolymer-nanofiber scaffold improves adhesion and proliferation of rat mesenchymal stem cells. Biotechnol Lett 2014; 36(2): 383-90.
[http://dx.doi.org/10.1007/s10529-013-1366-4] [PMID: 24101249]
[35]
Im JS, Bai BC, Lee YS. The effect of carbon nanotubes on drug delivery in an electro-sensitive transdermal drug delivery system. Biomaterials 2010; 31(6): 1414-9.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.004] [PMID: 19931904]
[36]
Su S, Bedir T, Kalkandelen C, et al. Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications. Eur Polym J 2021; 142: 110158.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110158]
[37]
Sultanova Z, Kaleli G, Kabay G, Mutlu M. Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers. Int J Pharm 2016; 505(1-2): 133-8.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.032] [PMID: 27012983]
[38]
Naeimirad M, Zadhoush A, Kotek R, Esmaeely Neisiany R, Nouri Khorasani S, Ramakrishna S. Recent advances in core/shell bicomponent fibers and nanofibers: A review. J Appl Polym Sci 2018; 135(21): 46265.
[http://dx.doi.org/10.1002/app.46265]
[39]
Moghe AK, Gupta BS. Co‐axial electrospinning for nanofiber structures: Preparation and applications. Polym Rev (Phila Pa) 2008; 48(2): 353-77.
[http://dx.doi.org/10.1080/15583720802022257]
[40]
Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release 2010; 143(1): 95-103.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.009] [PMID: 20006660]
[41]
Qin X. Coaxial electrospinning of nanofibers Electrospun nanofibers. Elsevier 2017; pp. 41-71.
[http://dx.doi.org/10.1016/B978-0-08-100907-9.00003-9]
[42]
Li J, Liu Y, Abdelhakim H. Drug delivery applications of coaxial electrospun nanofibres in cancer therapy. Molecules 2022; 27(6): 1803.
[http://dx.doi.org/10.3390/molecules27061803] [PMID: 35335167]
[43]
Khalf A, Madihally SV. Recent advances in multiaxial electrospinning for drug delivery. Eur J Pharm Biopharm 2017; 112: 1-17.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.010] [PMID: 27865991]
[44]
Xu X, Yang L, Xu X, et al. Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release 2005; 108(1): 33-42.
[http://dx.doi.org/10.1016/j.jconrel.2005.07.021] [PMID: 16165243]
[45]
Yang Y, Li X, Cheng L, et al. Core–sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomater 2011; 7(6): 2533-43.
[http://dx.doi.org/10.1016/j.actbio.2011.02.031] [PMID: 21345386]
[46]
Yang Y, Li X, Qi M, Zhou S, Weng J. Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur J Pharm Biopharm 2008; 69(1): 106-16.
[http://dx.doi.org/10.1016/j.ejpb.2007.10.016] [PMID: 18078743]
[47]
Abu Owida H, Al-Nabulsi JI, Alnaimat F, et al. Advancement of nanofibrous mats and common useful drug delivery applications. Adv Pharmacol Pharm Sci 2022; 2022: 9073837.
[http://dx.doi.org/10.1155/2022/9073837]
[48]
Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol Biosci 2014; 14(6): 772-92.
[http://dx.doi.org/10.1002/mabi.201300561] [PMID: 24678050]
[49]
Zhang Q, Li Y, Lin ZYW, et al. Electrospun polymeric micro/nanofibrous scaffolds for long-term drug release and their biomedical applications. Drug Discov Today 2017; 22(9): 1351-66.
[http://dx.doi.org/10.1016/j.drudis.2017.05.007] [PMID: 28552498]
[50]
Yan B, Zhang Y, Li Z, Zhou P, Mao Y. Electrospun nanofibrous membrane for biomedical application. SN Appl Sci 2022; 4(6): 172.
[http://dx.doi.org/10.1007/s42452-022-05056-2] [PMID: 35582285]
[51]
Prasad A, Kandasubramanian B. Fused deposition processing polycaprolactone of composites for biomedical applications. Polymer-Plastics Technol Mater 2019; 58(13): 1365-98.
[http://dx.doi.org/10.1080/25740881.2018.1563117]
[52]
Park SH, Lee HB, Yeon SM, Park J, Lee NK. Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Appl Mater Interfaces 2016; 8(37): 24773-81.
[http://dx.doi.org/10.1021/acsami.6b07833] [PMID: 27571166]
[53]
Davis A, Balasubramanian K. Bioactive hybrid composite membrane with enhanced antimicrobial properties for biomedical applications. Def Sci J 2016; 66(4): 434-8.
[http://dx.doi.org/10.14429/dsj.66.10218]
[54]
Mirjalili M, Zohoori S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostructure Chem 2016; 6(3): 207-13.
[http://dx.doi.org/10.1007/s40097-016-0189-y]
[55]
Castillo-Henríquez L. Vargas-Zúñiga R, Pacheco-Molina J, Vega-Baudrit J. Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET DMPK 2020; 8(4): 325-53.
[http://dx.doi.org/10.5599/admet.844] [PMID: 35300196]
[56]
Jiang H, Wang L, Zhu K. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents. J Control Release 2014; 193: 296-303.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.025] [PMID: 24780265]
[57]
Yoshii F, Zhanshan Y, Isobe K, Shinozaki K, Makuuchi K. Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat Phys Chem 1999; 55(2): 133-8.
[http://dx.doi.org/10.1016/S0969-806X(98)00318-1]
[58]
Xu L, Liu Y, Zhou W, Yu D. Electrospun medical sutures for wound healing: A review. Polymers 2022; 14(9): 1637.
[http://dx.doi.org/10.3390/polym14091637] [PMID: 35566807]
[59]
Fathi A, Khanmohammadi M, Goodarzi A, et al. Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model. J Biol Eng 2020; 18; 14(1): 27.
[http://dx.doi.org/10.1186/s13036-020-00249-y]
[60]
Kenawy ER, Bowlin GL, Mansfield K, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 2002; 81(1-2): 57-64.
[http://dx.doi.org/10.1016/S0168-3659(02)00041-X] [PMID: 11992678]
[61]
Alhusein N, Blagbrough IS, De Bank PA. Electrospun matrices for localised controlled drug delivery: Release of tetracycline hydrochloride from layers of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv Transl Res 2012; 2(6): 477-88.
[http://dx.doi.org/10.1007/s13346-012-0106-y] [PMID: 25787326]
[62]
Thakur RA, Florek CA, Kohn J, Michniak BB. Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int J Pharm 2008; 364(1): 87-93.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.033] [PMID: 18771719]
[63]
Alhusein N, De Bank PA, Blagbrough IS, Bolhuis A. Killing bacteria within biofilms by sustained release of tetracycline from triple-layered electrospun micro/nanofibre matrices of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv Transl Res 2013; 3(6): 531-41.
[http://dx.doi.org/10.1007/s13346-013-0164-9] [PMID: 25786373]
[64]
Ignatova М Rashkov I, Manolova N. Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opin Drug Deliv 2013; 10(4): 469-83.
[http://dx.doi.org/10.1517/17425247.2013.758103] [PMID: 23289491]
[65]
Cai Z, Mo X, Zhang K, et al. Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci 2010; 11(9): 3529-39.
[http://dx.doi.org/10.3390/ijms11093529] [PMID: 20957110]
[66]
Gizaw M, Thompson J, Faglie A, Lee SY, Neuenschwander P, Chou SF. Electrospun fibers as a dressing material for drug and biological agent delivery in wound healing applications. Bioengineering (Basel) 2018; 5(1): 9.
[http://dx.doi.org/10.3390/bioengineering5010009] [PMID: 29382065]
[67]
Dubey P, Bhushan B, Sachdev A, Matai I, Uday Kumar S, Gopinath P. Silver-nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. J Appl Polym Sci 2015; 132: 35.
[http://dx.doi.org/10.1002/app.42473]
[68]
Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 2009; 5(7): 2570-8.
[http://dx.doi.org/10.1016/j.actbio.2008.12.013] [PMID: 19162575]
[69]
Jannesari M, Varshosaz J, Morshed M, Zamani M. Composite poly(vinyl alcohol)/poly(vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs. Int J Nanomedicine 2011; 6: 993-1003.
[PMID: 21720511]
[70]
Wang A, Xu C, Zhang C, et al. Experimental investigation of the properties of electrospun nanofibers for potential medical application. J Nanomater 2015; 2015: 418932.
[http://dx.doi.org/10.1155/2015/418932]
[71]
GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, et al. Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application. ACS Appl Mater Interfaces 2015; 7(22): 12176-83.
[http://dx.doi.org/10.1021/acsami.5b02542] [PMID: 25989513]
[72]
Chutipakdeevong J, Ruktanonchai U, Supaphol P. Hybrid biomimetic electrospun fibrous mats derived from poly (ε‐caprolactone) and silk fibroin protein for wound dressing application. J Appl Polym Sci 2015; 132(11)
[73]
López-Esparza J, Espinosa-Cristóbal LF, Donohue-Cornejo A, Reyes-López SY. Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Ind Eng Chem Res 2016; 55(49): 12532-8.
[http://dx.doi.org/10.1021/acs.iecr.6b02300]
[74]
Pal P, Das B, Dadhich P, Achar A, Dhara S. Carbon nanodot impregnated fluorescent nanofibers for in vivo monitoring and accelerating full-thickness wound healing. J Mater Chem B Mater Biol Med 2017; 5(32): 6645-56.
[http://dx.doi.org/10.1039/C7TB00684E] [PMID: 32264427]
[75]
Augustine R, Nethi SK, Kalarikkal N, Thomas S, Patra CR. Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. J Mater Chem B Mater Biol Med 2017; 5(24): 4660-72.
[http://dx.doi.org/10.1039/C7TB00518K] [PMID: 32264308]
[76]
Preem L, Mahmoudzadeh M, Putrinš M, et al. Interactions between chloramphenicol, carrier polymers, and bacteria–implications for designing electrospun drug delivery systems countering wound infection. Mol Pharm 2017; 14(12): 4417-30.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00524] [PMID: 29099601]
[77]
Yu Q, Han Y, Tian T, et al. Chinese sesame stick-inspired nano-fibrous scaffolds for tumor therapy and skin tissue reconstruction. Biomaterials 2019; 194: 25-35.
[http://dx.doi.org/10.1016/j.biomaterials.2018.12.012] [PMID: 30572284]
[78]
Loiola LMD, Cortez Tornello PR, Abraham GA, Felisberti MI. Amphiphilic electrospun scaffolds of PLLA–PEO–PPO block copolymers: Preparation, characterization and drug-release behaviour. RSC Advances 2017; 7(1): 161-72.
[http://dx.doi.org/10.1039/C6RA25023H]
[79]
Fayemi OE, Ekennia AC, Katata-Seru L, et al. Antimicrobial and wound healing properties of polyacrylonitrile-moringa extract nanofibers. ACS Omega 2018; 3(5): 4791-7.
[http://dx.doi.org/10.1021/acsomega.7b01981] [PMID: 30023903]
[80]
Ahmed J, Matharu RK, Shams T, Illangakoon UE, Edirisinghe M. A comparison of electric‐field‐driven and pressure‐driven fiber generation methods for drug delivery. Macromol Mater Eng 2018; 303(5): 1700577.
[http://dx.doi.org/10.1002/mame.201700577]
[81]
Samadian H, Zamiri S, Ehterami A, et al. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: In vitro and in vivo studies. Sci Rep 2020; 10(1): 8312.
[http://dx.doi.org/10.1038/s41598-020-65268-7] [PMID: 32433566]
[82]
Salehi M, Farzamfar S, Ehterami A, et al. Kaolin-loaded chitosan/polyvinyl alcohol electrospun scaffold as a wound dressing material: In vitro and in vivo studies. J Wound Care 2020; 29(5): 270-80.
[http://dx.doi.org/10.12968/jowc.2020.29.5.270] [PMID: 32421483]
[83]
Salehi M, Shahporzadeh K, Ehterami A, et al. Electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing selenium as a potential wound dressing material: In vitro and in vivo study. Fibers Polym 2020; 21(8): 1713-21.
[http://dx.doi.org/10.1007/s12221-020-9825-8]
[84]
Salehi M, Niyakan M, Ehterami A, et al. Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: In vitro and in vivo study. Biomed Eng Lett 2020; 10(1): 149-61.
[http://dx.doi.org/10.1007/s13534-019-00138-4] [PMID: 32175135]
[85]
Zahiri M, Khanmohammadi M, Goodarzi A, et al. Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution. Int J Biol Macromol 2020; 153: 1241-50.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.255] [PMID: 31759002]
[86]
Liu S, Zhou G, Liu D, et al. Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers. J Mater Chem B Mater Biol Med 2013; 1(1): 101-9.
[http://dx.doi.org/10.1039/C2TB00121G] [PMID: 32260617]
[87]
Luo X, Xie C, Wang H, Liu C, Yan S, Li X. Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. Int J Pharm 2012; 425(1-2): 19-28.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.012] [PMID: 22265915]
[88]
Chen P, Wu QS, Ding YP, Chu M, Huang ZM, Hu W. A controlled release system of titanocene dichloride by electrospun fiber and its antitumor activity in vitro. Eur J Pharm Biopharm 2010; 76(3): 413-20.
[http://dx.doi.org/10.1016/j.ejpb.2010.09.005] [PMID: 20854905]
[89]
Shao S, Li L, Yang G, et al. Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. Int J Pharm 2011; 421(2): 310-20.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.033] [PMID: 21983092]
[90]
Liu D, Wang F, Yue J, Jing X, Huang Y. Metabolism targeting therapy of dichloroacetate-loaded electrospun mats on colorectal cancer. Drug Deliv 2015; 22(1): 136-43.
[http://dx.doi.org/10.3109/10717544.2013.870258] [PMID: 24359441]
[91]
Zhang J, Wang X, Liu T, Liu S, Jing X. Antitumor activity of electrospun polylactide nanofibers loaded with 5-fluorouracil and oxaliplatin against colorectal cancer. Drug Deliv 2016; 23(3): 784-90.
[http://dx.doi.org/10.3109/10717544.2014.916768] [PMID: 24870201]
[92]
Sridhar R, Ravanan S, Venugopal JR, et al. Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: In vitro efficacy evaluation. J Biomater Sci Polym Ed 2014; 25(10): 985-98.
[http://dx.doi.org/10.1080/09205063.2014.917039] [PMID: 24865590]
[93]
Xu X, Chen X, Wang Z, Jing X. Ultrafine PEG–PLA fibers loaded with both paclitaxel and doxorubicin hydrochloride and their in vitro cytotoxicity. Eur J Pharm Biopharm 2009; 72(1): 18-25.
[http://dx.doi.org/10.1016/j.ejpb.2008.10.015] [PMID: 19027067]
[94]
Liu S, Wang X, Zhang Z, et al. Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine 2015; 11(5): 1047-56.
[http://dx.doi.org/10.1016/j.nano.2015.03.001] [PMID: 25804412]
[95]
Zhang Z, Wu Y, Kuang G, et al. Pt(iv) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. J Mater Chem B Mater Biol Med 2017; 5(11): 2115-25.
[http://dx.doi.org/10.1039/C7TB00178A] [PMID: 32263684]
[96]
Chen M, Feng W, Lin S, He C, Gao Y, Wang H. Antitumor efficacy of a PLGA composite nanofiber embedded with doxorubicin@MSNs and hydroxycamptothecin@HANPs. RSC Advances 2014; 4(95): 53344-51.
[http://dx.doi.org/10.1039/C4RA09122A]
[97]
Wei J, Hu J, Li M, Chen Y, Chen Y. Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment. RSC Advances 2014; 4(53): 28011-9.
[http://dx.doi.org/10.1039/C4RA03722G]
[98]
Yang G, Wang J, Li L, Ding S, Zhou S. Electrospun micelles/drug-loaded nanofibers for time-programmed multi-agent release. Macromol Biosci 2014; 14(7): 965-76.
[http://dx.doi.org/10.1002/mabi.201300575] [PMID: 24634305]
[99]
Yuan Z, Pan Y, Cheng R, et al. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology 2016; 27(24): 245101.
[http://dx.doi.org/10.1088/0957-4484/27/24/245101] [PMID: 27172065]
[100]
Yuan Z, Zhao X, Zhao J, et al. Synergistic mediation of tumor signaling pathways in hepatocellular carcinoma therapy via dual-drug-loaded pH-responsive electrospun fibrous scaffolds. J Mater Chem B Mater Biol Med 2015; 3(17): 3436-46.
[http://dx.doi.org/10.1039/C5TB00206K] [PMID: 32262226]
[101]
Dubey P, Gopinath P. Fabrication of electrospun poly(ethylene oxide)–poly(capro lactone) composite nanofibers for co-delivery of niclosamide and silver nanoparticles exhibits enhanced anti-cancer effects in vitro. J Mater Chem B Mater Biol Med 2016; 4(4): 726-42.
[http://dx.doi.org/10.1039/C5TB02351C] [PMID: 32262954]
[102]
Chen Y, Hou Z, Liu B, Huang S, Li C, Lin J. DOX-Cu9S5 @mSiO 2 -PG composite fibers for orthotopic synergistic chemo- and photothermal tumor therapy. Dalton Trans 2015; 44(7): 3118-27.
[http://dx.doi.org/10.1039/C4DT03113J] [PMID: 25567415]
[103]
Ma Y, Wang X, Zong S, et al. Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances 2015; 5(129): 106325-32.
[http://dx.doi.org/10.1039/C5RA17230F]
[104]
Ni S, Fan X, Wang J, Qi H, Li X. Biodegradable implants efficiently deliver combination of paclitaxel and temozolomide to glioma C6 cancer cells in vitro. Ann Biomed Eng 2014; 42(1): 214-21.
[http://dx.doi.org/10.1007/s10439-013-0903-6] [PMID: 24018608]
[105]
Bazzazzadeh A, Dizaji BF, Kianinejad N, Nouri A, Irani M. Fabrication of poly(acrylic acid) grafted-chitosan/polyurethane/magnetic MIL-53 metal organic framework composite core-shell nanofibers for co-delivery of temozolomide and paclitaxel against glioblastoma cancer cells. Int J Pharm 2020; 587: 119674.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119674] [PMID: 32707243]
[106]
Ma’mani L, Nikzad S, Kheiri-manjili H, et al. Curcumin-loaded guanidine functionalized PEGylated I3ad mesoporous silica nanoparticles KIT-6: Practical strategy for the breast cancer therapy. Eur J Med Chem 2014; 83: 646-54.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.069] [PMID: 25014638]
[107]
Dizaji FB, Azerbaijan HM, Sheisi N, et al. Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward prostate cancer cells death. Int J Biol Macromol 2020; 164: 1461-74.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.228] [PMID: 32735933]
[108]
Varkey M, Gittens SA, Uludag H. Growth factor delivery for bone tissue repair: An update. Expert Opin Drug Deliv 2004; 1(1): 19-36.
[http://dx.doi.org/10.1517/17425247.1.1.19] [PMID: 16296718]
[109]
Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010; 31(24): 6279-308.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.053] [PMID: 20493521]
[110]
Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005; 6(4): 2017-24.
[http://dx.doi.org/10.1021/bm0501149] [PMID: 16004440]
[111]
Patel S, Kurpinski K, Quigley R, et al. Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 2007; 7(7): 2122-8.
[http://dx.doi.org/10.1021/nl071182z] [PMID: 17567179]
[112]
Sahoo S, Ang LT, Goh JC, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A 2010; 93(4): 1539-50.
[PMID: 20014288]
[113]
Zhang X, Shi Z, Fu W, et al. in vitro biocompatibility study of electrospun copolymer ethylene carbonate-ɛ-caprolactone and vascular endothelial growth factor blended nanofibrous scaffolds. Appl Surf Sci 2012; 258(7): 2301-6.
[http://dx.doi.org/10.1016/j.apsusc.2011.09.135]
[114]
Yu YQ, Jiang XS, Gao S, et al. Local delivery of vascular endothelial growth factor via nanofiber matrix improves liver regeneration after extensive hepatectomy in rats. J Biomed Nanotechnol 2014; 10(11): 3407-15.
[http://dx.doi.org/10.1166/jbn.2014.1872] [PMID: 26000399]
[115]
Wang J, An Q, Li D, et al. Heparin and vascular endothelial growth factor loaded poly (L-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment. J Biomed Nanotechnol 2015; 11(11): 1947-60.
[http://dx.doi.org/10.1166/jbn.2015.2138] [PMID: 26554154]
[116]
Baek J, Lee E, Lotz MK, D’Lima DD. Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration. Nanomedicine 2020; 23: 102090.
[http://dx.doi.org/10.1016/j.nano.2019.102090] [PMID: 31493556]
[117]
Hansen SG, Taskin MB, Chen M, Wogensen L, Vinge Nygaard J, Axelsen SM. Electrospun nanofiber mesh with fibroblast growth factor and stem cells for pelvic floor repair. J Biomed Mater Res B Appl Biomater 2020; 108(1): 48-55.
[http://dx.doi.org/10.1002/jbm.b.34364] [PMID: 30888115]
[118]
Mays EA, Kallakuri SS, Sundararaghavan HG. Heparin‐hyaluronic acid nanofibers for growth factor sequestration in spinal cord repair. J Biomed Mater Res A 2020; 108(10): 2023-31.
[http://dx.doi.org/10.1002/jbm.a.36962] [PMID: 32319183]
[119]
Kai D, Prabhakaran MP, Jin G, Tian L, Ramakrishna S. Potential of VEGF-encapsulated electrospun nanofibers for in vitro cardiomyogenic differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2017; 11(4): 1002-10.
[http://dx.doi.org/10.1002/term.1999] [PMID: 25631665]
[120]
Zhou Y, Zhao Q, Wang M. Dual release of VEGF and PDGF from emulsion electrospun bilayer scaffolds consisting of orthogonally aligned nanofibers for gastrointestinal tract regeneration. MRS Commun 2019; 9(3): 1098-104.
[http://dx.doi.org/10.1557/mrc.2019.104]
[121]
Yang B, Cao G, Cai K, et al. VEGF-modified PVA/silicone nanofibers enhance islet function transplanted in subcutaneous site followed by Device-less procedure. Int J Nanomedicine 2020; 15: 587-99.
[http://dx.doi.org/10.2147/IJN.S232224] [PMID: 32095072]
[122]
Rosa AR, Steffens D, Santi B, et al. Development of VEGF-loaded PLGA matrices in association with mesenchymal stem cells for tissue engineering. Braz J Med Biol Res 2017; 50(9): e5648.
[http://dx.doi.org/10.1590/1414-431x20175648] [PMID: 28793048]
[123]
Saremi J, Zarei-Behjani Z, Vojoudi E, Ebrahimi-Barough S. Evaluation of viability and cell attachment of human endometrial stem cells on electrospun silk scaffolds prepared under different degumming conditions and solvents. Regen Eng Transl Med 2022.
[http://dx.doi.org/10.1007/s40883-022-00258-x]
[124]
Schwab IR, Johnson NT, Harkin DG. Inherent risks associated with manufacture of bioengineered ocular surface tissue. Arch Ophthalmol 2006; 124(12): 1734-40.
[http://dx.doi.org/10.1001/archopht.124.12.1734] [PMID: 17159033]
[125]
Massumi M, Abasi M, Babaloo H, et al. The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds. Tissue Eng Part A 2012; 18(5-6): 609-20.
[http://dx.doi.org/10.1089/ten.tea.2011.0368] [PMID: 21981309]
[126]
Syková E. Jendelová P, Urdzíková L, Lesný P, Hejčl A. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair. Cell Mol Neurobiol 2006; 26(7-8): 1111-27.
[http://dx.doi.org/10.1007/s10571-006-9007-2] [PMID: 16633897]
[127]
Katoh H, Yokota K, Fehlings MG. Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Front Cell Neurosci 2019; 13: 248.
[http://dx.doi.org/10.3389/fncel.2019.00248] [PMID: 31244609]
[128]
Jankauskaite L, Malinauskas M, Aukstikalne L, et al. Functionalized electrospun scaffold–human-muscle-derived stem cell construct promotes in vivo neocartilage formation. Polymers (Basel) 2022; 14(12): 2498.
[http://dx.doi.org/10.3390/polym14122498] [PMID: 35746068]
[129]
Dubois G, Segers VFM, Bellamy V, et al. Self-assembling peptide nanofibers and skeletal myoblast transplantation in infarcted myocardium. J Biomed Mater Res B Appl Biomater 2008; 87B(1): 222-8.
[http://dx.doi.org/10.1002/jbm.b.31099] [PMID: 18386833]
[130]
Terraf P, Kouhsari SM, Ai J, Babaloo H. Tissue-engineered regeneration of hemisected spinal cord using human endometrial stem cells, poly ε-caprolactone scaffolds, and crocin as a neuroprotective agent. Mol Neurobiol 2017; 54(7): 5657-67.
[http://dx.doi.org/10.1007/s12035-016-0089-7] [PMID: 27624387]
[131]
Babaloo H, Ebrahimi-Barough S, Derakhshan MA, et al. PCL/gelatin nanofibrous scaffolds with human endometrial stem cells/Schwann cells facilitate axon regeneration in spinal cord injury. J Cell Physiol 2019; 234(7): 11060-9.
[http://dx.doi.org/10.1002/jcp.27936] [PMID: 30584656]
[132]
Terraf P, Babaloo H, Kouhsari SM. Directed differentiation of dopamine-secreting cells from Nurr1/GPX1 expressing murine embryonic stem cells cultured on Matrigel-coated PCL scaffolds. Mol Neurobiol 2017; 54(2): 1119-28.
[http://dx.doi.org/10.1007/s12035-016-9726-4] [PMID: 26803497]
[133]
Kheradmand H, Babaloo H, Vojgani Y, et al. PCL/gelatin scaffolds and beta‐boswellic acid synergistically increase the efficiency of CGR8 stem cells differentiation into dopaminergic neuron: A new paradigm of Parkinson’s disease cell therapy. J Biomed Mater Res A 2021; 109(4): 562-71.
[PMID: 32588502]
[134]
Kijeńska E, Prabhakaran MP, Swieszkowski W, Kurzydlowski KJ, Ramakrishna S. Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J Biomed Mater Res B Appl Biomater 2012; 100B(4): 1093-102.
[http://dx.doi.org/10.1002/jbm.b.32676] [PMID: 22438340]
[135]
Ebrahimi-Barough S, Norouzi Javidan A, Saberi H, et al. Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. Mol Neurobiol 2015; 52(3): 1704-13.
[http://dx.doi.org/10.1007/s12035-014-8931-2] [PMID: 25377792]
[136]
Narimanpour Z, Bojnordi NM, Somayeh EB, et al. Silk nanofibrous electrospun scaffold amplifies proliferation and stemness profile of mouse spermatogonial stem cells. Regen Eng Transl Med 2022; 8: 86-93.