The Synthesis of Amides from Benzoic Acids and Dicarbodiimides Under Catalyst-Free Conditions

Page: [221 - 229] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Amides are a critical class of widely distributed heterocycles in nature. The preparation of amides from benzoic acids and dicarbodiimides under catalyst-free conditions was reported. Various products were obtained in good to high yields. The model reaction could be scaled up to the gramscale level. A reaction mechanism was proposed based on control experiments and relevant literatures.

Keywords: Amides, benzoic acid, dicarbodiimide, catalyst-free conditions, reaction mechanism

Graphical Abstract

[1]
Patel, K.P.; Gayakwad, E.M.; Patil, V.V.; Shankarling, G.S. Adv. Synth. Catal., 2019, 361(9), 2107-2116.
[http://dx.doi.org/10.1002/adsc.201801673]
[2]
Rao, S.N.; Mohan, D.C.; Adimurthy, S. Org. Lett., 2013, 15(7), 1496-1499.
[http://dx.doi.org/10.1021/ol4002625] [PMID: 23473076]
[3]
Thuo, M.M.; Reus, W.F.; Simeone, F.C.; Kim, C.; Schulz, M.D.; Yoon, H.J.; Whitesides, G.M. J. Am. Chem. Soc., 2012, 134(26), 10876-10884.
[http://dx.doi.org/10.1021/ja301778s] [PMID: 22676159]
[4]
Yoon, H.J.; Bowers, C.M.; Baghbanzadeh, M.; Whitesides, G.M. J. Am. Chem. Soc., 2014, 136(1), 16-19.
[http://dx.doi.org/10.1021/ja409771u] [PMID: 24350722]
[5]
Belding, L.; Root, S.E.; Li, Y.; Park, J.; Baghbanzadeh, M.; Rojas, E.; Pieters, P.F.; Yoon, H.J.; Whitesides, G.M. J. Am. Chem. Soc., 2021, 143(9), 3481-3493.
[http://dx.doi.org/10.1021/jacs.0c12571] [PMID: 33621090]
[6]
Yoon, H.J.; Shapiro, N.D.; Park, K.M.; Thuo, M.M.; Soh, S.; Whitesides, G.M. Angew. Chem., 2012, 124(19), 4736-4739.
[http://dx.doi.org/10.1002/ange.201201448]
[7]
Scollo, F.; Tempra, C.; Lolicato, F.; Sciacca, M.F.M.; Raudino, A.; Milardi, D.; La Rosa, C. J. Phys. Chem. Lett., 2018, 9(17), 5125-5129.
[http://dx.doi.org/10.1021/acs.jpclett.8b02241] [PMID: 30126267]
[8]
Perez, C.E.; Park, H.B.; Crawford, J.M. Biochemistry, 2018, 57(3), 354-361.
[http://dx.doi.org/10.1021/acs.biochem.7b00863] [PMID: 29111689]
[9]
Golzari, S.E.J.; Soleimanpour, H.; Mahmoodpoor, A.; Safari, S.; Ala, A. Pain Med., 2014, 4(1), e15444.
[10]
Naluyange, R.; Mboowa, G.; Komakech, K.; Semugenze, D.; Kateete, D.P.; Ssengooba, W. PLoS One, 2020, 15(5), e0232543.
[http://dx.doi.org/10.1371/journal.pone.0232543] [PMID: 32413052]
[11]
Chen, Z.; Jiang, Q. S. China J. Prev. Med, 2018, 44, 484-487.
[12]
Roughley, S.D.; Jordan, A.M. J. Med. Chem., 2011, 54(10), 3451-3479.
[http://dx.doi.org/10.1021/jm200187y] [PMID: 21504168]
[13]
Arnold, K.; Davies, B.; Hérault, D.; Whiting, A. Angew. Chem. Int. Ed., 2008, 47(14), 2673-2676.
[http://dx.doi.org/10.1002/anie.200705643]
[14]
Gustafsson, T.; Pontén, F.; Seeberger, P.H. Chem. Commun., 2008, 10(9), 1100-1102.
[http://dx.doi.org/10.1039/b719603b] [PMID: 18292903]
[15]
Bode, J.W.; Sohn, S.S. J. Am. Chem. Soc., 2007, 129(45), 13798-13799.
[http://dx.doi.org/10.1021/ja0768136] [PMID: 17956104]
[16]
Upadhyay, S.K.; Pingali, S.R.K.; Jursic, B.S. Tetrahedron Lett., 2010, 51(17), 2215-2217.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.092]
[17]
Vaddula, B.R.; Varma, R.S.; Leazer, J. Tetrahedron Lett., 2013, 54(12), 1538-1541.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.029]
[18]
Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Org. Process Res. Dev., 2016, 20(2), 140-177.
[http://dx.doi.org/10.1021/op500305s]
[19]
Loni, M.; Balmohammadi, Y.; Dadgar, Y.R.; Imani, K.; Notash, B.; Bazgir, A. New J. Chem., 2021, 45(6), 3290-3297.
[http://dx.doi.org/10.1039/D0NJ06301K]
[20]
Lang, X.D.; He, L.N. ChemSusChem, 2018, 11(13), 2062-2067.
[http://dx.doi.org/10.1002/cssc.201800902] [PMID: 29762897]
[21]
Gockel, S.N.; Hull, K.L. Org. Lett., 2015, 17(13), 3236-3239.
[http://dx.doi.org/10.1021/acs.orglett.5b01385] [PMID: 26090688]
[22]
Seo, Y.S.; Kim, D.S.; Jun, C.H. Chem. Asian J., 2016, 11(24), 3508-3512.
[http://dx.doi.org/10.1002/asia.201601421] [PMID: 27813274]
[23]
Meng, T.; Feng, C.; Liu, L.; Wang, T.; Xu, K.; Zhao, W. Youji Huaxue, 2016, 36(6), 1382-1388.
[http://dx.doi.org/10.6023/cjoc201601003]
[24]
Jiang, H.; Liu, B.; Li, Y.; Wang, A.; Huang, H. Org. Lett., 2011, 13(5), 1028-1031.
[http://dx.doi.org/10.1021/ol103081y] [PMID: 21294563]
[25]
Zheng, Y.W.; Narobe, R.; Donabauer, K.; Yakubov, S.; König, B. ACS Catal., 2020, 10(15), 8582-8589.
[http://dx.doi.org/10.1021/acscatal.0c01924]
[26]
Rossi, S.A.; Shimkin, K.W.; Xu, Q.; Mori, Q.L.M.; Watson, D.A. Org. Lett., 2013, 15(9), 2314-2317.
[http://dx.doi.org/10.1021/ol401004r] [PMID: 23611591]
[27]
Dong, D.Q.; Hao, S.H.; Zhang, H.; Wang, Z.L. Chin. Chem. Lett., 2017, 28(7), 1597-1599.
[http://dx.doi.org/10.1016/j.cclet.2017.03.008]
[28]
Casas, F.; Trincado, M.; Rodriguez, L.R.; Baneerje, D.; Grützmacher, H. ChemCatChem, 2019, 11(21), 5241-5251.
[http://dx.doi.org/10.1002/cctc.201901739]
[29]
Tran, B.L.; Fulton, J.L.; Linehan, J.C.; Lercher, J.A.; Bullock, R.M. ACS Catal., 2018, 8(9), 8441-8449.
[http://dx.doi.org/10.1021/acscatal.8b02589]
[30]
Zweifel, T.; Naubron, J.V.; Grützmacher, H. Angew. Chem. Int. Ed., 2009, 48(3), 559-563.
[http://dx.doi.org/10.1002/anie.200804757]
[31]
Posevins, D.; Suta, K.; Turks, M. Eur. J. Org. Chem., 2016, 2016(7), 1414-1419.
[http://dx.doi.org/10.1002/ejoc.201600013]
[32]
Fu, Z.; Wang, X.; Tao, S.; Bu, Q.; Wei, D.; Liu, N. J. Org. Chem., 2021, 86(3), 2339-2358.
[http://dx.doi.org/10.1021/acs.joc.0c02478] [PMID: 33411529]
[33]
Feng, C.L.; Yin, G.B.; Yan, B.; Chen, J.Q.; Ji, M. Chem. Pap., 2019, 73(2), 345-353.
[http://dx.doi.org/10.1007/s11696-018-0585-5]
[34]
Feng, G.; He, J.Y.; Bai, Q.F.; Jin, C.; Ji, M. Synlett, 2018, 29(17), 2311-2315.
[http://dx.doi.org/10.1055/s-0037-1610279]
[35]
Bantreil, X.; Kanfar, N.; Gehin, N.; Golliard, E.; Ohlmann, P.; Martinez, J.; Lamaty, F. Tetrahedron, 2014, 70(34), 5093-5099.
[http://dx.doi.org/10.1016/j.tet.2014.06.001]
[36]
Wu, X.F.; Sharif, M.; Pews, D.A.; Langer, P.; Ayub, K.; Beller, M. Eur. J. Org. Chem., 2013, 2013(14), 2783-2787.
[http://dx.doi.org/10.1002/ejoc.201300367]
[37]
Feng, C.; Yin, G.; Yan, B.; Chen, J.; Ji, M. J. Chem. Res., 2018, 42(7), 383-386.
[http://dx.doi.org/10.3184/174751918X15323343112324]
[38]
Panahi, F.; Jamedi, F.; Iranpoor, N. Eur. J. Org. Chem., 2016, 2016(4), 780-788.
[http://dx.doi.org/10.1002/ejoc.201501349]
[39]
Whittaker, A.M.; Dong, V.M. Angew. Chem. Int. Ed., 2015, 54(4), 1312-1315.
[http://dx.doi.org/10.1002/anie.201410322]
[40]
Xu, D.; Shi, L.; Ge, D.; Cao, X.; Gu, H. Sci. China Chem., 2016, 59(4), 478-481.
[http://dx.doi.org/10.1007/s11426-015-5552-1]
[41]
Alanthadka, A.; Maheswari, C.U. Adv. Synth. Catal., 2015, 357(6), 1199-1203.
[http://dx.doi.org/10.1002/adsc.201400739]
[42]
Zhang, L.; Yang, S.; Gao, G. Chin. J. Catal., 2011, 32(12), 1875-1879.
[43]
Dalu, F.; Scorciapino, M.A.; Cara, C.; Luridiana, A.; Musinu, A.; Casu, M.; Secci, F.; Cannas, C. Green Chem., 2018, 20(2), 375-381.
[http://dx.doi.org/10.1039/C7GC02967E]
[44]
Kumar, V.; Dhawan, S.; Girase, P.S.; Singh, P.; Karpoormath, R. Eur. J. Org. Chem., 2021, 2021(41), 5627-5639.
[http://dx.doi.org/10.1002/ejoc.202101114]
[45]
Moon, H.K.; Sung, G.H.; Kim, B.R.; Park, J.K.; Yoon, Y.J.; Yoon, H.J. Adv. Synth. Catal., 2016, 358(11), 1725-1730.
[http://dx.doi.org/10.1002/adsc.201501177]
[46]
Kang, S.; Moon, H.K.; Yoon, Y.J.; Yoon, H.J. J. Org. Chem., 2018, 83(1), 1-11.
[http://dx.doi.org/10.1021/acs.joc.7b02481] [PMID: 29207874]
[47]
Ryu, K.E.; Kim, B.R.; Sung, G.H.; Yoon, H.J.; Yoon, Y.J. Synlett, 2015, 26(14), 1985-1990.
[http://dx.doi.org/10.1055/s-0034-1378783]
[48]
Tan, J.; Liang, F.; Wang, Y.; Cheng, X.; Liu, Q.; Yuan, H. Org. Lett., 2008, 10(12), 2485-2488.
[http://dx.doi.org/10.1021/ol800765s] [PMID: 18484724]
[49]
Huo, C.; Wu, M.; Chen, F.; Jia, X.; Yuan, Y.; Xie, H. Chem. Commun., 2015, 51(22), 4708-4711.
[http://dx.doi.org/10.1039/C4CC09922B] [PMID: 25692566]
[50]
Yang, S.; Feng, Y.; Zhao, S.; Chen, L.; Li, X.; Zhang, D.; Liu, H.; Dong, Y.; Sun, F.G. Adv. Synth. Catal., 2020, 362(18), 3919-3923.
[http://dx.doi.org/10.1002/adsc.202000799]
[51]
Iwasawa, T.; Wash, P.; Gibson, C.; Rebek, J. Jr Tetrahedron, 2007, 63(28), 6506-6511.
[http://dx.doi.org/10.1016/j.tet.2007.03.075] [PMID: 18612332]
[52]
Tinnis, F.; Verho, O.; Gustafson, K.P.J.; Tai, C.W.; Bäckvall, J.E.; Adolfsson, H. Chemistry, 2014, 20(20), 5885-5889.
[http://dx.doi.org/10.1002/chem.201402029] [PMID: 24687938]
[53]
Zhang, M.; Imm, S.; Bähn, S.; Neubert, L.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed., 2012, 51(16), 3905-3909.
[http://dx.doi.org/10.1002/anie.201108599]
[54]
Teng, F.; Sun, S.; Jiang, Y.; Yu, J.T. Cheng. J. Chem. Commun., 2015, 51(27), 5902-5905.
[http://dx.doi.org/10.1039/C5CC00839E] [PMID: 25727724]
[55]
Nandi, J.; Vaughan, M.Z.; Sandoval, A.L.; Paolillo, J.M.; Leadbeater, N.E. J. Org. Chem., 2020, 85(14), 9219-9229.
[http://dx.doi.org/10.1021/acs.joc.0c01222] [PMID: 32539393]
[56]
Fang, W.; Deng, Q.; Xu, M.; Tu, T. Org. Lett., 2013, 15(14), 3678-3681.
[http://dx.doi.org/10.1021/ol401550h] [PMID: 23829496]
[57]
Yavari, I.; Ghazanfarpour, D.M.; Bayat, M.J. Tetrahedron Lett., 2014, 55(36), 4981-4982.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.032]
[58]
Pelletier, G.; Bechara, W.S.; Charette, A.B. J. Am. Chem. Soc., 2010, 132(37), 12817-12819.
[http://dx.doi.org/10.1021/ja105194s] [PMID: 20735125]
[59]
Bagheri, S.; Pazoki, F.; Esfandiary, N.; Fadaei, M.M.; Heydari, A. Appl. Organomet. Chem., 2020, 34(8), e5723.
[http://dx.doi.org/10.1002/aoc.5723]
[60]
Tadros, J.; Dankers, C.; Jurisinec, A.; Menti, P.M.; Aldrich, W.J.R.; Gordon, C.P. Chem. Asian J., 2022, 17(5), e2021013.
[http://dx.doi.org/10.1002/asia.202101308]