Recent Patents on Nanotechnology

Author(s): Pankaj Wadhwa*, Mohit Vij and Neha Dand

DOI: 10.2174/1872210516666220928114103

Wave-Assisted Techniques, a Greener and Quicker Alternative to Synthesis of Cyclodextrin-Based Nanosponges: A Review

Page: [207 - 219] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

The ever-increasing applications of cyclodextrin and cyclodextrin-based nanosponges in formulation development has gained much attention from researchers towards needed research in this arena. Nanosponges are three-dimensional nanoporous versatile carriers in the pharmaceutical research field because of their capability to encapsulate lipophilic and hydrophilic drugs both in their crystalline structure by inclusion and non-inclusion phenomenon. This review sheds light on the advancements made in this field and the associated patents with regard to their synthesis while zooming in on the utilization of two novel energies (Microwave and ultrasonic) in accomplishing this goal and its future thereof. Microwave and ultrasound-assisted manufacturing of cyclodextrin-based nanosponges (CDNS) has been found superior to conventional heat-dependent methods due to rapid/homogenous heating and fast kinetics, which ultimately provide the final product with high yield and crystallinity relatively rapidly. The review article also defines several facets of microwave and ultrasound-assisted nanosponge synthesis including the synergism of microwave and ultrasonic energy and the theories behind them. This hitherto unexplored microwave-ultrasonic coupling technology could be a future technology to synthesize CD-NS with a better outcome. In the recent past, these novel energy processes have been used successfully in material synthesis at an industrial scale due to their swift and streamlined synthesis attributes. Likewise, these wave-assisted methods have the full potential to materialize the concept of CD-NS from lab scale to industrial scale as a competent and versatile drug carrier, having all the prerequisite characteristics, for commercialization.

Keywords: Cyclodextrin, Nanosponges, Complexation, Green Synthesis, Microwave, Ultrasound.

Graphical Abstract

[1]
Crini G. Review: A history of cyclodextrins ACS Publications. 2014. Available from: https://pubs.acs.org/doi/pdf/10.1021/cr500081p
[2]
Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res Int 2015; 2015: 198268.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[3]
Feng Y, Chen S, Li Z, et al. A review of controlled release from cyclodextrins: Release methods, release systems and application. Crit Rev Food Sci Nutr 2021; 63(20): 1-13.
[http://dx.doi.org/10.1080/10408398.2021.2007352] [PMID: 34797201]
[4]
Vyas A, Saraf S, Saraf S. Cyclodextrin based novel drug delivery systems. J Incl Phenom Macrocycl Chem 2008; 62(1-2): 23-42.
[http://dx.doi.org/10.1007/s10847-008-9456-y]
[5]
Argenziano M, Haimhoffer A, Bastiancich C, et al. In vitro enhanced skin permeation and retention of imiquimod loaded in β-cyclodextrin nanosponge hydrogel. Pharmaceutics 2019; 11(3): 138.
[http://dx.doi.org/10.3390/pharmaceutics11030138] [PMID: 30897794]
[6]
Olteanu AA. Aramă CC, Radu C, Mihăescu C, Monciu CM. Effect of β-cyclodextrins based nanosponges on the solubility of lipophilic pharmacological active substances (repaglinide). J Incl Phenom Macrocycl Chem 2014; 80(1-2): 17-24.
[http://dx.doi.org/10.1007/s10847-014-0406-6]
[7]
Yakavets I, Guereschi C, Lamy L, et al. Cyclodextrin nanosponge as a temoporfin nanocarrier: Balancing between accumulation and penetration in 3D tumor spheroids. Eur J Pharm Biopharm 2020; 154: 33-42.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.022] [PMID: 32634570]
[8]
Sadjadi S, Heravi MM, Raja M. Composite of ionic liquid decorated cyclodextrin nanosponge, graphene oxide and chitosan: A novel catalyst support. Int J Biol Macromol 2019; 122: 228-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.160] [PMID: 30393138]
[9]
Utzeri G, Murtinho D, Maria TMR, Pais AACC, Sannino F, Valente AJM. Amine-β-cyclodextrin-based nanosponges. The role of cyclodextrin amphiphilicity in the imidacloprid uptake. Colloids Surf A Physicochem Eng Asp 2022; 635: 128044.
[http://dx.doi.org/10.1016/j.colsurfa.2021.128044]
[10]
Andaç M, Bergal A. Nanosponges: Using as a nanocarrier for anti cancer drug delivery applications. ActaPharm 2021; 59(2): 306-20.
[11]
Tejashri G, Amrita B, Darshana J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm 2013; 63(3): 335-58.
[http://dx.doi.org/10.2478/acph-2013-0021] [PMID: 24152895]
[12]
Utzeri G, Matias PMC, Murtinho D, Valente AJM. Cyclodextrin-based nanosponges: Overview and opportunities. Front Chem 2022; 10: 859406.
[PMID: 35402388]
[13]
Allahyari S, Trotta F, Valizadeh H, Jelvehgari M, Zakeri MP. Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opin Drug Deliv 2019; 16(5): 467-79.
[http://dx.doi.org/10.1080/17425247.2019.1591365] [PMID: 30845847]
[14]
Iriventi P, Gupta NV, Osmani RAM, Balamuralidhara V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru 2020; 28(2): 489-506.
[http://dx.doi.org/10.1007/s40199-020-00352-x] [PMID: 32472531]
[15]
Moin A, Roohi NKF, Rizvi SMD, et al. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Advances 2020; 10(57): 34869-84.
[http://dx.doi.org/10.1039/D0RA06611G] [PMID: 35514416]
[16]
Jain A, Prajapati SK, Kumari A, Mody N, Bajpai M. Engineered nanosponges as versatile biodegradable carriers: An insight. J Drug Deliv Sci Technol 2020; 57: 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[17]
Matencio A, Guerrero RMA, Caldera F, et al. Lifespan extension in Caenorhabditis elegans by oxyresveratrol supplementation in hyper-branched cyclodextrin-based nanosponges. Int J Pharm 2020; 589: 119862.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119862] [PMID: 32916214]
[18]
Pawar S, Shende P. Design and optimization of cyclodextrin-based nanosponges of antimalarials using central composite design for dry suspension. J Incl Phenom Macrocycl Chem 2021; 99(3-4): 169-83.
[http://dx.doi.org/10.1007/s10847-020-01038-2]
[19]
Shende P, Kulkarni YA, Gaud RS, et al. Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J Pharm Sci 2015; 104(5): 1856-63.
[http://dx.doi.org/10.1002/jps.24416] [PMID: 25754724]
[20]
Desai D, Shende P. Drug-free cyclodextrin-based nanosponges for antimicrobial activity. J Pharm Innov 2021; 16(2): 258-68.
[http://dx.doi.org/10.1007/s12247-020-09442-4]
[21]
Gangadharappa HV, Chandra PSM, Singh RP. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J Drug Deliv Sci Technol 2017; 41: 488-501.
[http://dx.doi.org/10.1016/j.jddst.2017.09.004]
[22]
Yokozawa T, Ohta Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem Rev 2016; 116(4): 1950-68.
[http://dx.doi.org/10.1021/acs.chemrev.5b00393] [PMID: 26555044]
[23]
Khalid Q, Ahmad M, Minhas MU, Batool F, Malik NS, Rehman M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J Drug Deliv Sci Technol 2021; 61: 102089.
[http://dx.doi.org/10.1016/j.jddst.2020.102089]
[24]
Van De Manakker F, Vermonden T, Van Nostrum CF, Hennink WE. Cyclodextrin-based polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 2009; 10(12): 3157-75.
[http://dx.doi.org/10.1021/bm901065f] [PMID: 19921854]
[25]
Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, Verma A. Nanosponges: A potential nanocarrier for novel drug delivery-A review. Asian Pac J Trop Dis 2014; 4: S519-26.
[http://dx.doi.org/10.1016/S2222-1808(14)60667-8]
[26]
Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Hierarchy analysis of different cross-linkers used for the preparation of cross-linked cyclodextrin as drug nanocarriers. Chem Eng Commun 2018; 205(6): 759-71.
[http://dx.doi.org/10.1080/00986445.2017.1416354]
[27]
Frömming KH, Szejtli J. Pharmacokinetics and toxicology of cyclodextrins.In: Cyclodextrins in Pharmacy. Germany: Springer 1994; pp. 33-44.
[http://dx.doi.org/10.1007/978-94-015-8277-3_3]
[28]
Sharma R, Walker R, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Research and Educ 2011; 45(1): 25-31.
[29]
rahi N, Kumar K. Nanosponge: A new era of versatile drug delivery system. Universal J Pharm Res 2017; 2(3): 31-5.
[http://dx.doi.org/10.22270/ujpr.v2i3.RW4]
[30]
Trotta F. Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: Current and future industrial applications.In: Cyclodextrin nanosponges and their applications. Hoboken, NJ: John Wiley & Sons, Inc. 2011; pp. 323-42.
[http://dx.doi.org/10.1002/9780470926819.ch17]
[31]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8: 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[32]
Garrido B, González S, Hermosilla J, et al. Carbonate-β-cyclodextrin-based nanosponge as a nanoencapsulation system for piperine: Physicochemical characterization. J Soil Sci Plant Nutr 2019; 19(3): 620-30.
[http://dx.doi.org/10.1007/s42729-019-00062-7]
[33]
Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R. The application of nanosponges to cancer drug delivery. Expert Opin Drug Deliv 2014; 11(6): 931-41.
[http://dx.doi.org/10.1517/17425247.2014.911729] [PMID: 24811423]
[34]
Shivani S, Poladi KK. Nanosponges-novel emerging drug delivery system: A review. Int J Pharm Sci Res 2015; 6(2): 529.
[35]
Zidan MF, Ibrahim HM, Afouna MI, Ibrahim EA. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Drug Dev Ind Pharm 2018; 44(8): 1243-53.
[http://dx.doi.org/10.1080/03639045.2018.1442844] [PMID: 29452493]
[36]
Shringirishi M, Mahor A, Gupta R, Prajapati SK, Bansal K, Kesharwani P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J Drug Deliv Sci Technol 2017; 41: 344-50.
[http://dx.doi.org/10.1016/j.jddst.2017.08.005]
[37]
Berrino E, Supuran CT. Advances in microwave-assisted synthesis and the impact of novel drug discovery. Expert Opin Drug Discov 2018; 13(9): 861-73.
[http://dx.doi.org/10.1080/17460441.2018.1494721] [PMID: 30010444]
[38]
Cravotto G, Cintas P. The combined use of microwaves and ultrasound: Improved tools in process chemistry and organic synthesis. Chemistry 2007; 13(7): 1902-9.
[http://dx.doi.org/10.1002/chem.200601845] [PMID: 17245792]
[39]
Singh D, Soni GC, Prajapati SK. Recent advances in nanosponges as drug delivery system: A review. Eur J Pharm Med Res 2016; 3: 364-71.
[40]
Swaminathan S, Trotta F. Cyclodextrin nanosponges. In:Trotta F, Mele A, Eds Nanosponges Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. 2019; pp. 27-57.
[http://dx.doi.org/10.1002/9783527341009.ch2]
[41]
Singireddy A, Rani PS, Nimmagadda S, Subramanian S. Beneficial effects of microwave assisted heating versus conventional heating in synthesis of cyclodextrin based nanosponges. Mater Today Proc 2016; 3(10): 3951-9.
[http://dx.doi.org/10.1016/j.matpr.2016.11.055]
[42]
Dahal N, García S, Zhou J, Humphrey SM. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 2012; 6(11): 9433-46.
[http://dx.doi.org/10.1021/nn3038918] [PMID: 23033897]
[43]
Nadagouda MN, Speth TF, Varma RS. Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 2011; 44(7): 469-78.
[http://dx.doi.org/10.1021/ar1001457] [PMID: 21526846]
[44]
Bubalo MC, Sabotin I, Radoš I, et al. A comparative study of ultrasound-, microwave-, and microreactor-assisted imidazolium-based ionic liquid synthesis. Green Processing and Synthesis 2013; 2(6): 579-90.
[http://dx.doi.org/10.1515/gps-2013-0086]
[45]
Hujjatul IM, Paul MTY, Burheim OS, Pollet BG. Recent developments in the sonoelectrochemical synthesis of nanomaterials. Ultrason Sonochem 2019; 59: 104711.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104711] [PMID: 31421622]
[46]
Guineo AJ, Quilaqueo M, Hermosilla J, et al. Degree of crosslinking in β-cyclodextrin-based nanosponges and their effect on piperine encapsulation. Food Chem 2021; 340: 128132.
[http://dx.doi.org/10.1016/j.foodchem.2020.128132] [PMID: 33011468]
[47]
Zainuddin R, Zaheer Z, Sangshetti JN, Momin M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev Ind Pharm 2017; 43(12): 2076-84.
[http://dx.doi.org/10.1080/03639045.2017.1371732] [PMID: 28845699]
[48]
Omar SM, Ibrahim F, Ismail A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm J 2020; 28(3): 349-61.
[http://dx.doi.org/10.1016/j.jsps.2020.01.016] [PMID: 32194337]
[49]
Swaminathan S, Vavia PR, Trotta F, et al. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J Incl Phenom Macrocycl Chem 2013; 76(1-2): 201-11.
[http://dx.doi.org/10.1007/s10847-012-0192-y]
[50]
Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[51]
Jasim IK, Abd Alhammid NS, Abdulrasool AA. Synthesis and evaluation of B-cyclodextrin based nanosponges of 5- fluorouracil by using ultrasound assisted method. IJPS 2020; 29(2): 88-98.
[http://dx.doi.org/10.31351/vol29iss2pp88-98]
[52]
Bukhari SS, Behin J, Kazemian H, Rohani S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review. Fuel 2015; 140: 250-66.
[http://dx.doi.org/10.1016/j.fuel.2014.09.077]
[53]
Anandam S, Selvamuthukumar S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J Porous Mater 2014; 21(6): 1015-23.
[http://dx.doi.org/10.1007/s10934-014-9851-2]
[54]
Isopencu G, Stroescu M, Brosteanu A, et al. Optimization of ultrasound and microwave assisted oil extraction from sea buckthorn seeds by response surface methodology. J Food Process Eng 2019; 42(1): e12947.
[http://dx.doi.org/10.1111/jfpe.12947]
[55]
Singireddy A, Pedireddi SR, Subramanian S. Optimization of reaction parameters for synthesis of cyclodextrin nanosponges in controlled nanoscopic size dimensions. J Polym Res 2019; 26(4): 93.
[http://dx.doi.org/10.1007/s10965-019-1754-0]
[56]
Askari S, Bashardoust SA, Halladj R, Miar AS. Different techniques and their effective parameters in nano SAPO-34 synthesis: A review. Powder Technol 2016; 301: 268-87.
[http://dx.doi.org/10.1016/j.powtec.2016.06.018]
[57]
Zhao P, Liu C, Qu W, et al. Effect of temperature and microwave power levels on microwave drying kinetics of zhaotong lignite. Processes 2019; 7(2): 74.
[http://dx.doi.org/10.3390/pr7020074]
[58]
Raga’s scientific microwave synthesis system: Owner’s manual. Ragatech 2020. Available from: https://ragatechindia.com/microwave.html
[59]
Shalmani FM, Halladj R, Askari S. Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves. Powder Technol 2012; 221: 395-402.
[http://dx.doi.org/10.1016/j.powtec.2012.01.036]
[60]
Subramanian S, Singireddy A, Krishnamoorthy K, Rajappan M. Nanosponges: A novel class of drug delivery system - Review. J Pharm Pharm Sci 2012; 15(1): 103-11.
[61]
Muthoosamy K, Manickam S. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason Sonochem 2017; 39: 478-93.
[http://dx.doi.org/10.1016/j.ultsonch.2017.05.019] [PMID: 28732972]
[62]
Pongsumpun P, Iwamoto S, Siripatrawan U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason Sonochem 2020; 60: 104604.
[http://dx.doi.org/10.1016/j.ultsonch.2019.05.021] [PMID: 31539730]
[63]
Yin X, Long Z, Wang C, Li Z, Zhao M, Yang S. A time- and cost-effective synthesis of CHA zeolite with small size using ultrasonic-assisted method. Ultrason Sonochem 2019; 58: 104679.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104679] [PMID: 31450340]
[64]
Asfaram A, Ghaedi M, Dashtian K. Ultrasound assisted combined molecularly imprinted polymer for selective extraction of nicotinamide in human urine and milk samples: Spectrophotometric determination and optimization study. Ultrason Sonochem 2017; 34: 640-50.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.018] [PMID: 27773291]
[65]
Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Roggero C, Vallero R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. Google Patents, WO2006002814A1, 2008.
[66]
Zemel H, Koch MB. Preparation of crosslinked cyclodextrin resinswith enhanced porosity. 1990; 4958015. Available from: https://www.freepatentsonline.com/4958015.html
[67]
Yoshinaga M. Cyclodextrin polymer and cyclodextrin film formed therefrom. EP0502194A1, 1992.
[68]
Trotta F, Tumiatti W. Cross-linked polymers based on cyclodextrins for removing polluting agents. US20050154198A1, 2005.
[69]
Trotta F, Tumiatti V, Cavalli R, Rogero C, Mognetti B, Berta G. Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO20093656A1, 2009.
[70]
Ferruti P, Ranucci E, Trotta F, Cavalli R, Fernandez C. Hyperbranched polymers based on cyclodextrins and poly (amidoamines) for the controlled release of insoluble drugs. German, EP2167031B1, 2013.
[71]
Gilardi G, Trotta F, Cavalli R, et al. Cyclodextrin nanosponges as a carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies. French, WO2009149883A1, 2009.
[72]
Vaula D, Trotta F. Adsorbent material. EP2471595A1, 2012.
[73]
Trotta F, Shende P, Biasizzo M. Method for preparing dextrin nanosponges. PCT ,WO2012147069A1, 2012.
[74]
Roggero CM, Carlo SD, Tumiatti V, Tumiatti M. Use of functionalised nanosponges for the growth, conservation, protection and disinfection of vegetable organisms WO2013046165A1. 2013. Available from: https://patents.google.com/patent/WO2013046165A1/en
[75]
Sacco M, Charnay C, De Angelis F, et al. Microwave-ultrasound simultaneous irradiation: A hybrid technology applied to ring closing metathesis. RSC Advances 2015; 5(22): 16878-85.
[http://dx.doi.org/10.1039/C4RA14938F]
[76]
Gude VG. Synergism of microwaves and ultrasound for advanced biorefineries. Resource-Efficient Technologies 2015; 1(2): 116-25.
[http://dx.doi.org/10.1016/j.reffit.2015.10.001]
[77]
Pawełczyk A, Sowa-Kasprzak K, Olender D, Zaprutko L. Microwave (MW), Ultrasound (US) and combined synergic mw-us strategies for rapid functionalization of pharmaceutical use phenols. Molecules 2018; 23(9): 2360.
[http://dx.doi.org/10.3390/molecules23092360] [PMID: 30223575]
[78]
Li Q, Li H, Wang R, Li G, Yang H, Chen R. Controllable microwave and ultrasonic wave combined synthesis of ZnO micro-/nanostructures in HEPES solution and their shape-dependent photocatalytic activities. J Alloys Compd 2013; 567: 1-9.
[http://dx.doi.org/10.1016/j.jallcom.2013.03.077]
[79]
Vinatoru M. Microwave and ultrasounds together – A challenge. In: Proceedings 17th International Conference on Microwave and High Frequency Heating Universitat Politècnica de València 2019. Available from: http://ocs.editorial.upv.es/index.php/AMPERE2019/AMPERE2019/paper/view/9822
[80]
Peng Y, Song G. Combined microwave and ultrasound accelerated Knoevenagel–Doebner reaction in aqueous media: A green route to 3-aryl acrylic acids. Green Chem 2003; 5(6): 704-6.
[http://dx.doi.org/10.1039/B310388A]