Analysis of Volumetric Perfusion Quantitative Parameters Using CS-VIBE Breast Dynamic Contrast Enhanced MR Imaging

Article ID: e260922209157 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Purpose: To evaluate the diagnostic performance of three-dimensional volume of interest (3D-VOI) perfusion quantitative parameters using CS-VIBE DCE-MRI and investigate the relationship of the prognostic factors.

Materials and Methods: The volumetric perfusion quantitative parameters of Ktrans, Kep, Ve, Vp, of 124 pathologically proven breast masses in 93 patients were obtained using the two-compartment extended Tofts model. Also, the perfusion parameters of AUC, TTP, Emax, wash-in, and washout were automatically calculated using post-processing software. The relationship between the perfusion quantitative parameters and lesion size, pathology, and prognostic factors of malignancy was evaluated.

Results: Ktrans and Kep were significantly higher in the malignant than the benign lesions (p < 0.001), and the AUROC of Ktrans and Kep was 0.802 and 0.815, respectively. The area under the DCE curve, TTP, Emax, wash-in, and wash-out were significantly different between the benign and malignant lesions (p < 0.05). In multiple linear regression analysis, Ktrans and Kep were significantly different between benign and malignant tumors. Malignant tumors larger than 2cm were significantly different from those smaller than 2cm in Ktrans, Kep, Vp, area under the DCE curve, TTP, Emax, and wash-in values (p < 0.05). TTP was significantly lower in higher Ki-67 index (p < 0.05).

Conclusion: Perfusion quantitative parameters may be applied as a feasible imaging biomarker to discriminate malignant from benign tumors. In malignant lesions, perfusion parameters were not associated with histopathological results but only in tumor size.

Keywords: Breast, Neoplasms, Dynamic contrast-enhanced MRI, perfusion, Diagnosis

Graphical Abstract

[1]
American College of Radiology. BI-RADS-Ultrasound. In:ACR Breast Imaging Reporting and Data System, Breast Imaging Atlas. American College of Radiology, Reston, 2003.
[2]
Sorace AG, Partridge SC, Li X, et al. Distinguishing benign and malignant breast tumors: Preliminary comparison of kinetic modeling approaches using multi-institutional dynamic contrast-enhanced MRI data from the International Breast MR Consortium 6883 trial. J Med Imaging 2018; 5(1): 1.
[http://dx.doi.org/10.1117/1.JMI.5.1.011019] [PMID: 29392160]
[3]
Cho N, Im SA, Park IA, et al. Breast cancer: Early prediction of response to neoadjuvant chemotherapy using parametric response maps for MR imaging. Radiology 2014; 272(2): 385-96.
[http://dx.doi.org/10.1148/radiol.14131332] [PMID: 24738612]
[4]
Sun K, Zhu H, Chai W, et al. Whole-lesion histogram and texture analyses of breast lesions on inline quantitative DCE mapping with CAIPIRINHA-Dixon-TWIST-VIBE. Eur Radiol 2020; 30(1): 57-65.
[http://dx.doi.org/10.1007/s00330-019-06365-8] [PMID: 31372782]
[5]
Kim SH, Lee HS, Kang BJ, et al. Dynamic contrast-enhanced MRI perfusion parameters as imaging biomarkers of angiogenesis. PLoS One 2016; 11(12): e0168632.
[http://dx.doi.org/10.1371/journal.pone.0168632] [PMID: 28036342]
[6]
Kang SR, Kim HW, Kim HS. Evaluating the relationship between Dynamic Contrast Enhanced MRI (DCE-MRI) parameters and pathological characteristics in breast cancer. J Magn Reson Imaging 2020; 52(5): 1360-73.
[http://dx.doi.org/10.1002/jmri.27241] [PMID: 32524658]
[7]
Cheng Z, Wu Z, Shi G, et al. Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging. Eur Radiol 2018; 28(3): 982-91.
[http://dx.doi.org/10.1007/s00330-017-5050-2] [PMID: 28929243]
[8]
Wu C, Pineda F, Hormuth DA II, Karczmar GS, Yankeelov TE. Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn Reson Med 2019; 81(3): 2147-60.
[http://dx.doi.org/10.1002/mrm.27529] [PMID: 30368906]
[9]
Thakran S, Gupta PK, Kabra V, et al. Characterization of breast lesion using T1-perfusion magnetic resonance imaging: Qualitative vs. quantitative analysis. Diagn Interv Imaging 2018; 99(10): 633-42.
[http://dx.doi.org/10.1016/j.diii.2018.05.006] [PMID: 29910171]
[10]
Kim SG, Freed M, Leite APK, Zhang J, Seuss C, Moy L. Separation of benign and malignant breast lesions using dynamic contrast enhanced MRI in a biopsy cohort. J Magn Reson Imaging 2017; 45(5): 1385-93.
[http://dx.doi.org/10.1002/jmri.25501] [PMID: 27766710]
[11]
Koo HR, Cho N, Song IC, et al. Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J Magn Reson Imaging 2012; 36(1): 145-51.
[http://dx.doi.org/10.1002/jmri.23635] [PMID: 22392859]
[12]
El Khouli RH, Macura KJ, Kamel IR, Jacobs MA, Bluemke DA. 3-T dynamic contrast-enhanced MRI of the breast: Pharmacokinetic parameters versus conventional kinetic curve analysis. AJR Am J Roentgenol 2011; 197(6): 1498-505.
[http://dx.doi.org/10.2214/AJR.10.4665] [PMID: 22109308]
[13]
Shen B, Wang K, Sun X, et al. Parameters of dynamic contrast-enhanced MRI as imaging markers for angiogenesis and proliferation in human breast cancer. Med Sci Monit 2015; 21: 376-82.
[http://dx.doi.org/10.12659/MSM.892534] [PMID: 25640082]
[14]
Van Osch MJP, Vonken EPA, Wu O, Viergever MA, Van Der Grond J, Bakker CJG. Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 2003; 50(3): 614-22.
[http://dx.doi.org/10.1002/mrm.10567] [PMID: 12939770]
[15]
Fan WX, Chen XF, Cheng FY, et al. Retrospective analysis of the utility of multiparametric MRI for differentiating between benign and malignant breast lesions in women in China. Medicine 2018; 97(4): e9666.
[http://dx.doi.org/10.1097/MD.0000000000009666] [PMID: 29369183]
[16]
Li Z, Ai T, Hu Y, et al. Application of whole-lesion histogram analysis of pharmacokinetic parameters in dynamic contrast-enhanced MRI of breast lesions with the CAIPIRINHA-Dixon-TWIST-VIBE technique. J Magn Reson Imaging 2018; 47(1): 91-6.
[http://dx.doi.org/10.1002/jmri.25762] [PMID: 28577335]
[17]
Jansen SA, Fan X, Karczmar GS, Abe H, Schmidt RA, Newstead GM. Differentiation between benign and malignant breast lesions detected by bilateral dynamic contrast-enhanced MRI: A sensitivity and specificity study. Magn Reson Med 2008; 59(4): 747-54.
[http://dx.doi.org/10.1002/mrm.21530] [PMID: 18383287]
[18]
Yi B, Kang DK, Yoon D, et al. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients? Eur Radiol 2014; 24(5): 1089-96.
[http://dx.doi.org/10.1007/s00330-014-3100-6] [PMID: 24553785]
[19]
Li SP, Padhani AR, Taylor NJ, et al. Vascular characterisation of triple negative breast carcinomas using dynamic MRI. Eur Radiol 2011; 21(7): 1364-73.
[http://dx.doi.org/10.1007/s00330-011-2061-2] [PMID: 21258931]
[20]
Nagasaka K, Satake H, Ishigaki S, Kawai H, Naganawa S. Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: Correlations with prognostic factors and molecular subtypes in breast cancer. Breast Cancer 2019; 26(1): 113-24.
[http://dx.doi.org/10.1007/s12282-018-0899-8] [PMID: 30069785]
[21]
Vreemann S, Rodriguez RA, Nickel D, et al. Compressed sensing for breast MRI: Resolving the trade-off between spatial and temporal resolution. Invest Radiol 2017; 52(10): 574-82.
[http://dx.doi.org/10.1097/RLI.0000000000000384] [PMID: 28463932]
[22]
Kim JY, Kim SH, Kim YJ, et al. Enhancement parameters on dynamic contrast enhanced breast MRI: Do they correlate with prognostic factors and subtypes of breast cancers? Magn Reson Imag 2015; 33(1): 72-80.
[http://dx.doi.org/10.1016/j.mri.2014.08.034] [PMID: 25179138]