The Involvement of Kynurenine Pathway in Neurodegenerative Diseases

Page: [260 - 272] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: A growing body of evidence has shown the involvement of the kynurenine pathway (KP), the primary route of tryptophan (TRP) catabolism, in the pathophysiology of neuropsychiatric disorders.

Objective: The study aims to provide a comprehensive and critical overview of the clinical evidence on the KP involvement in the pathophysiology of Alzheimer’s disease (AD) and Parkinson's disease (PD), discussing therapeutic opportunities.

Methods: We searched for studies investigating KP metabolites in human subjects with AD and/or PD.

Results: Postmortem studies showed altered levels of KP metabolites in the brain of AD and PD patients compared with controls. Cross-sectional studies have reported associations between peripheral levels (serum or plasma) of KP metabolites and cognitive function in these patients, but the results are not always concordant.

Conclusion: Given the emerging evidence of the involvement of KP in the pathophysiology of neuropsychiatric/ neurodegenerative diseases and promising results from preclinical pharmacological studies, a better understanding of the KP involvement in AD and PD is warranted. Future longitudinal studies are needed to define the direction of the observed associations and specific therapeutic targets within the KP.

Keywords: kynurenine pathway, tryptophan, neuropsychiatric disorders, Alzheimer’s disease, Parkinson’s disease

Graphical Abstract

[1]
Feigin, V.L.; Abajobir, A.A.; Abate, K.H.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Abyu, G.Y.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Alabed, S.; Al-Raddadi, R.; Alvis-Guzman, N.; Amare, A.T.; Ansari, H.; Anwari, P.; Ärnlöv, J.; Asayesh, H.; Asgedom, S.W.; Atey, T.M.; Avila-Burgos, L.; Frinel, E.; Avokpaho, G.A.; Azarpazhooh, M.R.; Barac, A.; Barboza, M.; Barker-Collo, S.L.; Bärnighausen, T.; Bedi, N.; Beghi, E.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Betsu, B.D.; Bhaumik, S.; Birlik, S.M.; Biryukov, S.; Boneya, D.J.; Bulto, L.N.B.; Carabin, H.; Casey, D.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Chen, H.; Chitheer, A.A.; Chowdhury, R.; Christensen, H.; Dandona, L.; Dandona, R.; de Veber, G.A.; Dharmaratne, S.D.; Do, H.P.; Dokova, K.; Dorsey, E.R.; Ellenbogen, R.G.; Eskandarieh, S.; Farvid, M.S.; Fereshtehnejad, S-M.; Fischer, F.; Foreman, K.J.; Geleijnse, J.M.; Gillum, R.F.; Giussani, G.; Goldberg, E.M.; Gona, P.N.; Goulart, A.C.; Gugnani, H.C.; Gupta, R.; Hachinski, V.; Gupta, R.; Hamadeh, R.R.; Hambisa, M.; Hankey, G.J.; Hareri, H.A.; Havmoeller, R.; Hay, S.I.; Heydarpour, P.; Hotez, P.J.; Jakovljevic, M.M.B.; Javanbakht, M.; Jeemon, P.; Jonas, J.B.; Kalkonde, Y.; Kandel, A.; Karch, A.; Kasaeian, A.; Kastor, A.; Keiyoro, P.N.; Khader, Y.S.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Tawfih, A.; Khoja, A.; Khubchandani, J.; Kulkarni, C.; Kim, D.; Kim, Y.J.; Kivimaki, M.; Kokubo, Y.; Kosen, S.; Kravchenko, M.; Krishnamurthi, R.V.; Defo, B.K.; Kumar, G.A.; Kumar, R.; Kyu, H.H.; Larsson, A.; Lavados, P.M.; Li, Y.; Liang, X.; Liben, M.L.; Lo, W.D.; Logroscino, G.; Lotufo, P.A.; Loy, C.T.; Mackay, M.T.; El Razek, H.M.A.; El Razek, M.M.A.; Majeed, A.; Malekzadeh, R.; Manhertz, T.; Mantovani, L.G.; Massano, J.; Mazidi, M.; McAlinden, C.; Mehata, S.; Mehndiratta, M.M.; Memish, Z.A.; Mendoza, W.; Mengistie, M.A.; Mensah, G.A.; Meretoja, A.; Mezgebe, H.B.; Miller, T.R.; Mishra, S.R.; Ibrahim, N.M.; Mohammadi, A.; Mohammed, K.E.; Mohammed, S.; Mokdad, A.H.; Moradi-Lakeh, M.; Velasquez, I.M.; Musa, K.I.; Naghavi, M.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, G.; Le Nguyen, Q.; Nguyen, T.H.; Nichols, E.; Ningrum, D.N.A.; Nong, V.M.; Norrving, B.; Noubiap, J.J.N.; Ogbo, F.A.; Owolabi, M.O.; Pandian, J.D.; Parmar, P.G.; Pereira, D.M.; Petzold, M.; Phillips, M.R.; Piradov, M.A.; Poulton, R.G.; Pourmalek, F.; Qorbani, M.; Rafay, A.; Rahman, M.; Rahman, M.H.U.; Rai, R.K.; Rajsic, S.; Ranta, A.; Rawaf, S.; Renzaho, A.M.N.; Rezai, M.S.; Roth, G.A.; Roshandel, G.; Rubagotti, E.; Sachdev, P.; Safiri, S.; Sahathevan, R.; Sahraian, M.A.; Samy, A.M.; Santalucia, P.; Santos, I.S.; Sartorius, B.; Satpathy, M.; Sawhney, M.; Saylan, M.I.; Sepanlou, S.G.; Shaikh, M.A.; Shakir, R.; Shamsizadeh, M.; Sheth, K.N.; Shigematsu, M.; Shoman, H.; Silva, D.A.S.; Smith, M.; Sobngwi, E.; Sposato, L.A.; Stanaway, J.D.; Stein, D.J.; Steiner, T.J.; Stovner, L.J.; Abdulkader, R.S.; E.I., Szoeke C.; Tabarés-Seisdedos, R.; Tanne, D.; Theadom, A.M.; Thrift, A.G.; Tirschwell, D.L.; Topor-Madry, R.; Tran, B.X.; Truelsen, T.; Tuem, K.B.; Ukwaja, K.N.; Uthman, O.A.; Varakin, Y.Y.; Vasankari, T.; Venketasubramanian, N.; Vlassov, V.V.; Wadilo, F.; Wakayo, T.; Wallin, M.T.; Weiderpass, E.; Westerman, R.; Wijeratne, T.; Wiysonge, C.S.; Woldu, M.A.; Wolfe, C.D.A.; Xavier, D.; Xu, G.; Yano, Y.; Yimam, H.H.; Yonemoto, N.; Yu, C.; Zaidi, Z.; El Sayed Zaki, M.; Zunt, J.R.; Murray, C.J.L.; Vos, T. Group GBDNDC. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol., 2017, 16(11), 877-897.
[http://dx.doi.org/10.1016/S1474-4422(17)30299-5] [PMID: 28931491]
[2]
Tanaka, M.; Toldi, J.; Vécsei, L. Exploring the etiological links behind neurodegenerative diseases: Inflammatory cytokines and bioactive kynurenines. Int. J. Mol. Sci., 2020, 21(7), 2431.
[http://dx.doi.org/10.3390/ijms21072431] [PMID: 32244523]
[3]
Marras, C.; Beck, J.C.; Bower, J.H.; Roberts, E.; Ritz, B.; Ross, G.W.; Abbott, R.D.; Savica, R.; Van Den Eeden, S.K.; Willis, A.W.; Tanner, C.M. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis., 2018, 4(1), 21.
[http://dx.doi.org/10.1038/s41531-018-0058-0] [PMID: 30003140]
[4]
Alzheimer's A, 2017 Alzheimer’s disease facts and figures. Alzheimers Dement., 2017, 13(4), 325-373.
[http://dx.doi.org/10.1016/j.jalz.2017.02.001]
[5]
Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[6]
Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; Al Hamad, H.; Alahdab, F.; Alanezi, F.M.; Alipour, V.; Almustanyir, S.; Amu, H.; Ansari, I.; Arabloo, J.; Ashraf, T.; Astell-Burt, T.; Ayano, G.; Ayuso-Mateos, J.L.; Baig, A.A.; Barnett, A.; Barrow, A.; Baune, B.T.; Béjot, Y.; Bezabhe, W.M.M.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Biswas, A.; Bolla, S.R.; Boloor, A.; Brayne, C.; Brenner, H.; Burkart, K.; Burns, R.A.; Cámera, L.A.; Cao, C.; Carvalho, F.; Castro-de-Araujo, L.F.S.; Catalá-López, F.; Cerin, E.; Chavan, P.P.; Cherbuin, N.; Chu, D-T.; Costa, V.M.; Couto, R.A.S.; Dadras, O.; Dai, X.; Dandona, L.; Dandona, R.; De la Cruz-Góngora, V.; Dhamnetiya, D.; Dias da Silva, D.; Diaz, D.; Douiri, A.; Edvardsson, D.; Ekholuenetale, M.; El Sayed, I.; El-Jaafary, S.I.; Eskandari, K.; Eskandarieh, S.; Esmaeilnejad, S.; Fares, J.; Faro, A.; Farooque, U.; Feigin, V.L.; Feng, X.; Fereshtehnejad, S-M.; Fernandes, E.; Ferrara, P.; Filip, I.; Fillit, H.; Fischer, F.; Gaidhane, S.; Galluzzo, L.; Ghashghaee, A.; Ghith, N.; Gialluisi, A.; Gilani, S.A.; Glavan, I-R.; Gnedovskaya, E.V.; Golechha, M.; Gupta, R.; Gupta, V.B.; Gupta, V.K.; Haider, M.R.; Hall, B.J.; Hamidi, S.; Hanif, A.; Hankey, G.J.; Haque, S.; Hartono, R.K.; Hasaballah, A.I.; Hasan, M.T.; Hassan, A.; Hay, S.I.; Hayat, K.; Hegazy, M.I.; Heidari, G.; Heidari-Soureshjani, R.; Herteliu, C.; Househ, M.; Hussain, R.; Hwang, B-F.; Iacoviello, L.; Iavicoli, I.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Irvani, S.S.N.; Iso, H.; Iwagami, M.; Jabbarinejad, R.; Jacob, L.; Jain, V.; Jayapal, S.K.; Jayawardena, R.; Jha, R.P.; Jonas, J.B.; Joseph, N.; Kalani, R.; Kandel, A.; Kandel, H.; Karch, A.; Kasa, A.S.; Kassie, G.M.; Keshavarz, P.; Khan, M.A.B.; Khatib, M.N.; Khoja, T.A.M.; Khubchandani, J.; Kim, M.S.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kivimäki, M.; Koroshetz, W.J.; Koyanagi, A.; Kumar, G.A.; Kumar, M.; Lak, H.M.; Leonardi, M.; Li, B.; Lim, S.S.; Liu, X.; Liu, Y.; Logroscino, G.; Lorkowski, S.; Lucchetti, G.; Lutzky Saute, R.; Magnani, F.G.; Malik, A.A.; Massano, J.; Mehndiratta, M.M.; Menezes, R.G.; Meretoja, A.; Mohajer, B.; Mohamed Ibrahim, N.; Mohammad, Y.; Mohammed, A.; Mokdad, A.H.; Mondello, S.; Moni, M.A.A.; Moniruzzaman, M.; Mossie, T.B.; Nagel, G.; Naveed, M.; Nayak, V.C.; Neupane Kandel, S.; Nguyen, T.H.; Oancea, B.; Otstavnov, N.; Otstavnov, S.S.; Owolabi, M.O.; Panda-Jonas, S.; Pashazadeh Kan, F.; Pasovic, M.; Patel, U.K.; Pathak, M.; Peres, M.F.P.; Perianayagam, A.; Peterson, C.B.; Phillips, M.R.; Pinheiro, M.; Piradov, M.A.; Pond, C.D.; Potashman, M.H.; Pottoo, F.H.; Prada, S.I.; Radfar, A.; Raggi, A.; Rahim, F.; Rahman, M.; Ram, P.; Ranasinghe, P.; Rawaf, D.L.; Rawaf, S.; Rezaei, N.; Rezapour, A.; Robinson, S.R.; Romoli, M.; Roshandel, G.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Sathian, B.; Sattin, D.; Sawhney, M.; Saylan, M.; Schiavolin, S.; Seylani, A.; Sha, F.; Shaikh, M.A.; Shaji, K.S.; Shannawaz, M.; Shetty, J.K.; Shigematsu, M.; Shin, J.I.; Shiri, R.; Silva, D.A.S.; Silva, J.P.; Silva, R.; Singh, J.A.; Skryabin, V.Y.; Skryabina, A.A.; Smith, A.E.; Soshnikov, S.; Spurlock, E.E.; Stein, D.J.; Sun, J.; Tabarés-Seisdedos, R.; Thakur, B.; Timalsina, B.; Tovani-Palone, M.R.; Tran, B.X.; Tsegaye, G.W.; Valadan Tahbaz, S.; Valdez, P.R.; Venketasubramanian, N.; Vlassov, V.; Vu, G.T.; Vu, L.G.; Wang, Y-P.; Wimo, A.; Winkler, A.S.; Yadav, L.; Yahyazadeh Jabbari, S.H.; Yamagishi, K.; Yang, L.; Yano, Y.; Yonemoto, N.; Yu, C.; Yunusa, I.; Zadey, S.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Murray, C.J.L.; Vos, T. Collaborators GBDDF. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health, 2022, 7(2), e105-e125.
[http://dx.doi.org/10.1016/S2468-2667(21)00249-8] [PMID: 34998485]
[7]
Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03] [PMID: 17082464]
[8]
Pangalos, M.N.; Schechter, L.E.; Hurko, O. Drug development for CNS disorders: Strategies for balancing risk and reducing attrition. Nat. Rev. Drug Discov., 2007, 6(7), 521-532.
[http://dx.doi.org/10.1038/nrd2094] [PMID: 17599084]
[9]
Schwarcz, R.; Bruno, J.P.; Muchowski, P.J.; Wu, H.Q. Kynurenines in the mammalian brain: When physiology meets pathology. Nat. Rev. Neurosci., 2012, 13(7), 465-477.
[http://dx.doi.org/10.1038/nrn3257] [PMID: 22678511]
[10]
van der Goot, A.T.; Nollen, E.A.A. Tryptophan metabolism: Entering the field of aging and age-related pathologies. Trends Mol. Med., 2013, 19(6), 336-344.
[http://dx.doi.org/10.1016/j.molmed.2013.02.007] [PMID: 23562344]
[11]
Pertovaara, M.; Raitala, A.; Lehtimäki, T.; Karhunen, P.J.; Oja, S.S.; Jylhä, M.; Hervonen, A.; Hurme, M. Indoleamine 2,3-dioxygenase activity in nonagenarians is markedly increased and predicts mortality. Mech. Ageing Dev., 2006, 127(5), 497-499.
[http://dx.doi.org/10.1016/j.mad.2006.01.020] [PMID: 16513157]
[12]
Kim, B.J.; Hamrick, M.W.; Yoo, H.J.; Lee, S.H.; Kim, S.J.; Koh, J.M.; Isales, C.M. The detrimental effects of kynurenine, a tryptophan metabolite, on human bone metabolism. J. Clin. Endocrinol. Metab., 2019, 104(6), 2334-2342.
[http://dx.doi.org/10.1210/jc.2018-02481] [PMID: 30715395]
[13]
Zuo, H.; Ueland, P.M.; Ulvik, A.; Eussen, S.J.P.M.; Vollset, S.E.; Nygård, O.; Midttun, Ø.; Theofylaktopoulou, D.; Meyer, K.; Tell, G.S. Plasma biomarkers of inflammation, the kynurenine pathway, and risks of all-cause, cancer, and cardiovascular disease mortality. Am. J. Epidemiol., 2016, 183(4), 249-258.
[http://dx.doi.org/10.1093/aje/kwv242] [PMID: 26823439]
[14]
Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune–metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol., 2018, 14(10), 576-590.
[http://dx.doi.org/10.1038/s41574-018-0059-4] [PMID: 30046148]
[15]
Le Floc’h, N.; Otten, W.; Merlot, E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids, 2011, 41(5), 1195-1205.
[http://dx.doi.org/10.1007/s00726-010-0752-7] [PMID: 20872026]
[16]
Rocha, N.P.; de Miranda, A.S.; Teixeira, A.L. Insights into neuroinflammation in Parkinson’s Disease: From biomarkers to anti-inflammatory based therapies. BioMed Res. Int., 2015, 2015, 1-12.
[http://dx.doi.org/10.1155/2015/628192] [PMID: 26295044]
[17]
Valadão, P.A.C.; Santos, K.B.S.; Ferreira e Vieira, T.H.; Macedo e Cordeiro, T.; Teixeira, A.L.; Guatimosim, C.; de Miranda, A.S. Inflammation in Huntington’s disease: A few new twists on an old tale. J. Neuroimmunol., 2020, 348, 577380.
[http://dx.doi.org/10.1016/j.jneuroim.2020.577380] [PMID: 32896821]
[18]
Bauer, M.E.; Teixeira, A.L. Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci., 2019, 1437(1), 57-67.
[http://dx.doi.org/10.1111/nyas.13712] [PMID: 29752710]
[19]
Mészáros, Á.; Molnár, K.; Nógrádi, B.; Hernádi, Z.; Nyúl-Tóth, Á.; Wilhelm, I.; Krizbai, I.A. Neurovascular inflammaging in health and disease. Cells, 2020, 9(7), 1614.
[http://dx.doi.org/10.3390/cells9071614] [PMID: 32635451]
[20]
Franceschi, C.; Garagnani, P.; Vitale, G.; Capri, M.; Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab., 2017, 28(3), 199-212.
[http://dx.doi.org/10.1016/j.tem.2016.09.005] [PMID: 27789101]
[21]
Colpo, G.D.; Venna, V.R.; McCullough, L.D.; Teixeira, A.L. Systematic review on the involvement of the kynurenine pathway in stroke: Pre-clinical and clinical evidence. Front. Neurol., 2019, 10, 778.
[http://dx.doi.org/10.3389/fneur.2019.00778] [PMID: 31379727]
[22]
Sathyasaikumar, K.V.; Tararina, M.; Wu, H.Q.; Neale, S.A.; Weisz, F.; Salt, T.E.; Schwarcz, R. Xanthurenic acid formation from 3-hydroxykynurenine in the mammalian brain: Neurochemical characterization and physiological effects. Neuroscience, 2017, 367, 85-97.
[http://dx.doi.org/10.1016/j.neuroscience.2017.10.006] [PMID: 29031603]
[23]
Baranyi, A.; Amouzadeh-Ghadikolai, O.; Lewinski, D.; Breitenecker, R.J.; Stojakovic, T.; März, W.; Robier, C.; Rothenhäusler, H.B.; Mangge, H.; Meinitzer, A. Beta-trace protein as a new non-invasive immunological marker for quinolinic acid-induced impaired blood-brain barrier integrity. Sci. Rep., 2017, 7(1), 43642.
[http://dx.doi.org/10.1038/srep43642] [PMID: 28276430]
[24]
Hernandez-Martinez, J.M.; Forrest, C.M.; Darlington, L.G.; Smith, R.A.; Stone, T.W. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation. Eur. J. Neurosci., 2017, 45(5), 700-711.
[http://dx.doi.org/10.1111/ejn.13499] [PMID: 27973747]
[25]
Fazio, F.; Lionetto, L.; Curto, M.; Iacovelli, L.; Cavallari, M.; Zappulla, C.; Ulivieri, M.; Napoletano, F.; Capi, M.; Corigliano, V.; Scaccianoce, S.; Caruso, A.; Miele, J.; De Fusco, A.; Di Menna, L.; Comparelli, A.; De Carolis, A.; Gradini, R.; Nisticò, R.; De Blasi, A.; Girardi, P.; Bruno, V.; Battaglia, G.; Nicoletti, F.; Simmaco, M. Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci. Rep., 2016, 5(1), 17799.
[http://dx.doi.org/10.1038/srep17799] [PMID: 26643205]
[26]
Fazio, F.; Zappulla, C.; Notartomaso, S.; Busceti, C.; Bessede, A.; Scarselli, P.; Vacca, C.; Gargaro, M.; Volpi, C.; Allegrucci, M.; Lionetto, L.; Simmaco, M.; Belladonna, M.L.; Nicoletti, F.; Fallarino, F. Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 81, 237-243.
[http://dx.doi.org/10.1016/j.neuropharm.2014.02.011] [PMID: 24565643]
[27]
Ulivieri, M. Wierońska, J.M.; Lionetto, L.; Martinello, K.; Cieslik, P.; Chocyk, A.; Curto, M.; Di Menna, L.; Iacovelli, L.; Traficante, A.; Liberatore, F.; Mascio, G.; Antenucci, N.; Giannino, G.; Vergassola, M.; Pittaluga, A.; Bruno, V.; Battaglia, G.; Fucile, S.; Simmaco, M.; Nicoletti, F.; Pilc, A.; Fazio, F. The trace kynurenine, cinnabarinic acid, displays potent antipsychotic-like activity in mice and its levels are reduced in the prefrontal cortex of individuals affected by schizophrenia. Schizophr. Bull., 2020, 46(6), 1471-1481.
[http://dx.doi.org/10.1093/schbul/sbaa074] [PMID: 32506121]
[28]
Fazio, F; Lionetto, L; Curto, M Cinnabarinic acid and xanthurenic acid: Two kynurenine metabolites that interact with metabotropic glutamate receptors. Neuropharmacol., 2017, 112(Pt B), 365-72.
[29]
Neale, S.A.; Copeland, C.S.; Uebele, V.N.; Thomson, F.J.; Salt, T.E. Modulation of hippocampal synaptic transmission by the kynurenine pathway member xanthurenic acid and other VGLUT inhibitors. Neuropsychopharmacol., 2013, 38(6), 1060-1067.
[http://dx.doi.org/10.1038/npp.2013.4] [PMID: 23303071]
[30]
Terry, N.; Margolis, K.G. Serotonergic mechanisms regulating the gi tract: experimental evidence and therapeutic relevance. Handb. Exp. Pharmacol., 2016, 239, 319-342.
[http://dx.doi.org/10.1007/164_2016_103] [PMID: 28035530]
[31]
Oishi, A.; Gbahou, F.; Jockers, R. Melatonin receptors, brain functions, and therapies. Handb. Clin. Neurol., 2021, 179, 345-356.
[http://dx.doi.org/10.1016/B978-0-12-819975-6.00022-4] [PMID: 34225974]
[32]
Rodríguez, J.J.; Noristani, H.N.; Verkhratsky, A. The serotonergic system in ageing and Alzheimer’s disease. Prog. Neurobiol., 2012, 99(1), 15-41.
[http://dx.doi.org/10.1016/j.pneurobio.2012.06.010] [PMID: 22766041]
[33]
Liu, R.Y.; Zhou, J.N.; van Heerikhuize, J.; Hofman, M.A.; Swaab, D.F. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J. Clin. Endocrinol. Metab., 1999, 84(1), 323-327.
[PMID: 9920102]
[34]
Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Bhatia, S.; Al-Harrasi, A.; Zengin, G.; Bumbu, A.G.; Andronie-Cioara, F.L.; Nechifor, A.C.; Gitea, D.; Bungau, A.F.; Toma, M.M.; Bungau, S.G. The footprint of kynurenine pathway in neurodegeneration: Janus-faced role in Parkinson’s disorder and therapeutic implications. Int. J. Mol. Sci., 2021, 22(13), 6737.
[http://dx.doi.org/10.3390/ijms22136737] [PMID: 34201647]
[35]
Ferreira, S.T.; Clarke, J.R.; Bomfim, T.R.; De Felice, F.G. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement., 2014, 10(1S)(Suppl.), S76-S83.
[http://dx.doi.org/10.1016/j.jalz.2013.12.010] [PMID: 24529528]
[36]
Parker, A.; Fonseca, S.; Carding, S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 2020, 11(2), 135-157.
[http://dx.doi.org/10.1080/19490976.2019.1638722] [PMID: 31368397]
[37]
Kivipelto, M.; Mangialasche, F.; Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol., 2018, 14(11), 653-666.
[http://dx.doi.org/10.1038/s41582-018-0070-3] [PMID: 30291317]
[38]
Sperling, R.; Mormino, E.; Johnson, K. The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron, 2014, 84(3), 608-622.
[http://dx.doi.org/10.1016/j.neuron.2014.10.038] [PMID: 25442939]
[39]
Guillemin, G.J. Smythe, G.A.; Veas, L.A.; Takikawa, O.; Brew, B.J. Aβ1-42 induces production of quinolinic acid by human macrophages and microglia. Neuroreport, 2003, 14(18), 2311-2315.
[http://dx.doi.org/10.1097/00001756-200312190-00005] [PMID: 14663182]
[40]
Guillemin, G.J.; Brew, B.J.; Noonan, C.E.; Takikawa, O.; Cullen, K.M. Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer’s disease hippocampus. Neuropathol. Appl. Neurobiol., 2005, 31(4), 395-404.
[http://dx.doi.org/10.1111/j.1365-2990.2005.00655.x] [PMID: 16008823]
[41]
Wu, W.; Nicolazzo, J.A.; Wen, L.; Chung, R.; Stankovic, R.; Bao, S.S.; Lim, C.K.; Brew, B.J.; Cullen, K.M.; Guillemin, G.J. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One, 2013, 8(4), e59749.
[http://dx.doi.org/10.1371/journal.pone.0059749] [PMID: 23630570]
[42]
Bonda, D.J.; Mailankot, M.; Stone, J.G.; Garrett, M.R.; Staniszewska, M.; Castellani, R.J.; Siedlak, S.L.; Zhu, X.; Lee, H.; Perry, G.; Nagaraj, R.H.; Smith, M.A. Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep., 2010, 15(4), 161-168.
[http://dx.doi.org/10.1179/174329210X12650506623645] [PMID: 20663292]
[43]
van der Velpen, V.; Teav, T.; Gallart-Ayala, H.; Mehl, F.; Konz, I.; Clark, C.; Oikonomidi, A.; Peyratout, G.; Henry, H.; Delorenzi, M.; Ivanisevic, J.; Popp, J. Systemic and central nervous system metabolic alterations in Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 93.
[http://dx.doi.org/10.1186/s13195-019-0551-7] [PMID: 31779690]
[44]
González-Sánchez, M.; Jiménez, J.; Narváez, A.; Antequera, D.; Llamas-Velasco, S.; Martín, A.H.S.; Molina Arjona, J.A.; López de Munain, A.; Lleó Bisa, A.; Marco, M.P.; Rodríguez-Núñez, M.; Pérez-Martínez, D.A.; Villarejo-Galende, A.; Bartolome, F.; Domínguez, E.; Carro, E. Kynurenic acid levels are increased in the CSF of Alzheimer’s Disease patients. Biomolecules, 2020, 10(4), 571.
[http://dx.doi.org/10.3390/biom10040571] [PMID: 32276479]
[45]
Jacobs, K.R.; Lim, C.K.; Blennow, K.; Zetterberg, H.; Chatterjee, P.; Martins, R.N.; Brew, B.J.; Guillemin, G.J.; Lovejoy, D.B. Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer’s disease and relationship to amyloid-β and tau. Neurobiol. Aging, 2019, 80, 11-20.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.03.015] [PMID: 31055163]
[46]
Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; Schöll, M.; Massarweh, G.; Soucy, J.P.; Höglund, K.; Brinkmalm, G.; Mattsson, N.; Palmqvist, S.; Gauthier, S.; Stomrud, E.; Zetterberg, H.; Hansson, O.; Rosa-Neto, P.; Blennow, K. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol., 2020, 19(5), 422-433.
[http://dx.doi.org/10.1016/S1474-4422(20)30071-5] [PMID: 32333900]
[47]
Török, N.; Tanaka, M.; Vécsei, L. Searching for peripheral biomarkers in neurodegenerative diseases: The tryptophan-kynurenine metabolic pathway. Int. J. Mol. Sci., 2020, 21(24), 9338.
[http://dx.doi.org/10.3390/ijms21249338] [PMID: 33302404]
[48]
Skorobogatov, K.; De Picker, L.; Verkerk, R.; Coppens, V.; Leboyer, M.; Müller, N.; Morrens, M. Brain versus blood: A systematic review on the concordance between peripheral and central kynurenine pathway measures in psychiatric disorders. Front. Immunol., 2021, 12, 716980.
[http://dx.doi.org/10.3389/fimmu.2021.716980] [PMID: 34630391]
[49]
Giil, L.M.; Midttun, Ø.; Refsum, H.; Ulvik, A.; Advani, R.; Smith, A.D.; Ueland, P.M. Kynurenine pathway metabolites in Alzheimer’s Disease. J. Alzheimers Dis., 2017, 60(2), 495-504.
[http://dx.doi.org/10.3233/JAD-170485] [PMID: 28869479]
[50]
Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci., 2010, 55(2), 204-211.
[http://dx.doi.org/10.2478/v10039-010-0023-6] [PMID: 20639188]
[51]
Widner, B.; Leblhuber, F.; Walli, J.; Tilz, G.P.; Demel, U.; Fuchs, D. Tryptophan degradation and immune activation in Alzheimer’s disease. J. Neural Transm. (Vienna), 2000, 107(3), 343-353.
[http://dx.doi.org/10.1007/s007020050029] [PMID: 10821443]
[52]
Chatterjee, P.; Goozee, K.; Lim, C.K.; James, I.; Shen, K.; Jacobs, K.R.; Sohrabi, H.R.; Shah, T.; Asih, P.R.; Dave, P.; ManYan, C.; Taddei, K.; Lovejoy, D.B.; Chung, R.; Guillemin, G.J.; Martins, R.N. Alterations in serum kynurenine pathway metabolites in individuals with high neocortical amyloid-β load: A pilot study. Sci. Rep., 2018, 8(1), 8008.
[http://dx.doi.org/10.1038/s41598-018-25968-7] [PMID: 29789640]
[53]
Sorgdrager, F.J.H.; Vermeiren, Y.; Faassen, M.; Ley, C.; Nollen, E.A.A.; Kema, I.P.; De Deyn, P.P. Age‐ and disease‐specific changes of the kynurenine pathway in Parkinson’s and Alzheimer’s disease. J. Neurochem., 2019, 151(5), 656-668.
[http://dx.doi.org/10.1111/jnc.14843] [PMID: 31376341]
[54]
Morrens, M.; De Picker, L.; Kampen, J.K.; Coppens, V. Blood-based kynurenine pathway alterations in schizophrenia spectrum disorders: A meta-analysis. Schizophr. Res., 2020, 223, 43-52.
[http://dx.doi.org/10.1016/j.schres.2020.09.007] [PMID: 32981827]
[55]
Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson’s Disease: Pathogenesis and Clinical Aspects. Brisbane (AU): Codon Publications; , 2018. Dec 21; Chapter 1. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536722/
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1]
[56]
Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson’s disease. Lancet, 2004, 363(9423), 1783-1793.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[57]
Ogawa, T.; Matson, W.R.; Beal, M.F.; Myers, R.H.; Bird, E.D.; Milbury, P.; Saso, S. Kynurenine pathway abnormalities in Parkinson’s disease. Neurology, 1992, 42(9), 1702-1706.
[http://dx.doi.org/10.1212/WNL.42.9.1702] [PMID: 1513457]
[58]
Heilman, P.L.; Wang, E.W.; Lewis, M.M.; Krzyzanowski, S.; Capan, C.D.; Burmeister, A.R.; Du, G.; Escobar Galvis, M.L.; Brundin, P.; Huang, X.; Brundin, L. Tryptophan metabolites are associated with symptoms and nigral pathology in Parkinson’s Disease. Mov. Disord., 2020, 35(11), 2028-2037.
[http://dx.doi.org/10.1002/mds.28202] [PMID: 32710594]
[59]
Chang, K.H.; Cheng, M.L.; Tang, H.Y.; Huang, C.Y.; Wu, Y.R.; Chen, C.M. Alternations of metabolic profile and kynurenine metabolism in the plasma of Parkinson’s Disease. Mol. Neurobiol., 2018, 55(8), 6319-6328.
[http://dx.doi.org/10.1007/s12035-017-0845-3] [PMID: 29294246]
[60]
Oxenkrug, G.; van der Hart, M.; Roeser, J.; Summergrad, P. Peripheral Tryptophan-Kynurenine metabolism associated with metabolic syndrome is different in Parkinson’s and Alzheimer’s diseases. Endocrinol. Diabetes Metab. J., 2017, 1(4)
[PMID: 29292800]
[61]
Widner, B.; Leblhuber, F.; Fuchs, D. Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. J. Neural Transm. (Vienna), 2002, 109(2), 181-189.
[http://dx.doi.org/10.1007/s007020200014] [PMID: 12075858]
[62]
Bai, J.; Zheng, Y.; Yu, Y. Urinary kynurenine as a biomarker for Parkinson’s disease. Neurol. Sci., 2021, 42(2), 697-703.
[http://dx.doi.org/10.1007/s10072-020-04589-x] [PMID: 32661882]
[63]
Hartai, Z.; Klivenyi, P.; Janaky, T.; Penke, B.; Dux, L.; Vecsei, L. Kynurenine metabolism in plasma and in red blood cells in Parkinson’s disease. J. Neurol. Sci., 2005, 239(1), 31-35.
[http://dx.doi.org/10.1016/j.jns.2005.07.006] [PMID: 16099471]
[64]
Luan, H.; Liu, L.F.; Meng, N.; Tang, Z.; Chua, K.K.; Chen, L.L.; Song, J.X.; Mok, V.C.T.; Xie, L.X.; Li, M.; Cai, Z. LC-MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. J. Proteome Res., 2015, 14(1), 467-478.
[http://dx.doi.org/10.1021/pr500807t] [PMID: 25271123]
[65]
Tohgi, H.; Abe, T.; Takahashi, S.; Kimura, M.; Takahashi, J.; Kikuchi, T. Concentrations of serotonin and its related substances in the cerebrospinal fluid in patients with Alzheimer type dementia. Neurosci. Lett., 1992, 141(1), 9-12.
[http://dx.doi.org/10.1016/0304-3940(92)90322-X] [PMID: 1508406]
[66]
Tohgi, H.; Abe, T.; Takahashi, S.; Takahashi, J.; Hamato, H. Concentrations of serotonin and its related substances in the cerebrospinal fluid of Parkinsonian patients and their relations to the severity of symptoms. Neurosci. Lett., 1993, 150(1), 71-74.
[http://dx.doi.org/10.1016/0304-3940(93)90111-W] [PMID: 7682308]
[67]
Zhang, S.; Collier, M.E.W.; Heyes, D.J.; Giorgini, F.; Scrutton, N.S. Advantages of brain penetrating inhibitors of kynurenine-3-monooxygenase for treatment of neurodegenerative diseases. Arch. Biochem. Biophys., 2021, 697, 108702.
[http://dx.doi.org/10.1016/j.abb.2020.108702] [PMID: 33275878]
[68]
Ghosh, R.; Tabrizi, S.J. Huntington disease. Handb. Clin. Neurol., 2018, 147, 255-278.
[http://dx.doi.org/10.1016/B978-0-444-63233-3.00017-8] [PMID: 29325616]
[69]
Giorgini, F.; Guidetti, P.; Nguyen, Q.; Bennett, S.C.; Muchowski, P.J. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat. Genet., 2005, 37(5), 526-531.
[http://dx.doi.org/10.1038/ng1542] [PMID: 15806102]
[70]
Breda, C.; Sathyasaikumar, K.V.; Sograte Idrissi, S.; Notarangelo, F.M.; Estranero, J.G.; Moore, G.G.L.; Green, E.W.; Kyriacou, C.P.; Schwarcz, R.; Giorgini, F. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites. Proc. Natl. Acad. Sci. USA, 2016, 113(19), 5435-5440.
[http://dx.doi.org/10.1073/pnas.1604453113] [PMID: 27114543]
[71]
Zwilling, D.; Huang, S.Y.; Sathyasaikumar, K.V.; Notarangelo, F.M.; Guidetti, P.; Wu, H.Q.; Lee, J.; Truong, J.; Andrews-Zwilling, Y.; Hsieh, E.W.; Louie, J.Y.; Wu, T.; Scearce-Levie, K.; Patrick, C.; Adame, A.; Giorgini, F.; Moussaoui, S.; Laue, G.; Rassoulpour, A.; Flik, G.; Huang, Y.; Muchowski, J.M.; Masliah, E.; Schwarcz, R.; Muchowski, P.J. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell, 2011, 145(6), 863-874.
[http://dx.doi.org/10.1016/j.cell.2011.05.020] [PMID: 21640374]
[72]
Beconi, M.G.; Yates, D.; Lyons, K.; Matthews, K.; Clifton, S.; Mead, T.; Prime, M.; Winkler, D.; O’Connell, C.; Walter, D.; Toledo-Sherman, L.; Munoz-Sanjuan, I.; Dominguez, C. Metabolism and pharmacokinetics of JM6 in mice: JM6 is not a prodrug for Ro-61-8048. Drug Metab. Dispos., 2012, 40(12), 2297-2306.
[http://dx.doi.org/10.1124/dmd.112.046532] [PMID: 22942319]
[73]
Röver, S.; Cesura, A.M.; Huguenin, P.; Kettler, R.; Szente, A. Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J. Med. Chem., 1997, 40(26), 4378-4385.
[http://dx.doi.org/10.1021/jm970467t] [PMID: 9435907]
[74]
Sodhi, R.K.; Bansal, Y.; Singh, R.; Saroj, P.; Bhandari, R.; Kumar, B.; Kuhad, A. IDO-1 inhibition protects against neuroinflammation, oxidative stress and mitochondrial dysfunction in 6-OHDA induced murine model of Parkinson’s disease. Neurotoxicology, 2021, 84, 184-197.
[http://dx.doi.org/10.1016/j.neuro.2021.03.009] [PMID: 33774066]
[75]
Marim, F.M.; Teixeira, D.C.; Queiroz-Junior, C.M.; Valiate, B.V.S.; Alves-Filho, J.C.; Cunha, T.M.; Dantzer, R.; Teixeira, M.M.; Teixeira, A.L.; Costa, V.V. Inhibition of tryptophan catabolism is associated with neuroprotection during zika virus infection. Front. Immunol., 2021, 12, 702048.
[http://dx.doi.org/10.3389/fimmu.2021.702048] [PMID: 34335614]
[76]
Guo, Y.; Liu, Y.; Wu, W.; Ling, D.; Zhang, Q.; Zhao, P.; Hu, X. Indoleamine 2,3-dioxygenase (Ido) inhibitors and their nanomedicines for cancer immunotherapy. Biomaterials, 2021, 276, 121018.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121018] [PMID: 34284200]
[77]
Modoux, M.; Rolhion, N.; Mani, S.; Sokol, H. Tryptophan metabolism as a pharmacological target. Trends Pharmacol. Sci., 2021, 42(1), 60-73.
[http://dx.doi.org/10.1016/j.tips.2020.11.006] [PMID: 33256987]
[78]
Ojo, E.S.; Tischkau, S.A. The role of AhR in the hallmarks of brain aging: Friend and foe. Cells, 2021, 10(10), 2729.
[http://dx.doi.org/10.3390/cells10102729] [PMID: 34685709]
[79]
Sun, M.; Ma, N.; He, T.; Johnston, L.J.; Ma, X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit. Rev. Food Sci. Nutr., 2020, 60(10), 1760-1768.
[http://dx.doi.org/10.1080/10408398.2019.1598334] [PMID: 30924357]
[80]
Doifode, T.; Giridharan, V.V.; Generoso, J.S.; Bhatti, G.; Collodel, A.; Schulz, P.E.; Forlenza, O.V.; Barichello, T. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol. Res., 2021, 164, 105314.
[http://dx.doi.org/10.1016/j.phrs.2020.105314] [PMID: 33246175]
[81]
Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23(6), 716-724.
[http://dx.doi.org/10.1016/j.chom.2018.05.003] [PMID: 29902437]
[82]
Santoro, A.; Ostan, R.; Candela, M.; Biagi, E.; Brigidi, P.; Capri, M.; Franceschi, C. Gut microbiota changes in the extreme decades of human life: A focus on centenarians. Cell. Mol. Life Sci., 2018, 75(1), 129-148.
[http://dx.doi.org/10.1007/s00018-017-2674-y] [PMID: 29032502]
[83]
Rajilić-Stojanović M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev., 2014, 38(5), 996-1047.
[http://dx.doi.org/10.1111/1574-6976.12075] [PMID: 24861948]
[84]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[85]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[86]
Biagi, E.; Franceschi, C.; Rampelli, S.; Severgnini, M.; Ostan, R.; Turroni, S.; Consolandi, C.; Quercia, S.; Scurti, M.; Monti, D.; Capri, M.; Brigidi, P.; Candela, M. Gut microbiota and extreme longevity. Curr. Biol., 2016, 26(11), 1480-1485.
[http://dx.doi.org/10.1016/j.cub.2016.04.016] [PMID: 27185560]
[87]
Martins, L.B.; Malheiros Silveira, A.L.; Teixeira, A.L. The link between nutrition and Alzheimer’s disease: From prevention to treatment. Neurodegener. Dis. Manag., 2021, 11(2), 155-166.
[http://dx.doi.org/10.2217/nmt-2020-0023] [PMID: 33550870]
[88]
Liddle, RA Parkinson's disease from the gut. Brain Res., 2018, 1693(Pt B), 201-6.
[89]
Pluta, R. Ułamek-Kozioł M.; Januszewski, S.; Czuczwar, S.J. Gut microbiota and pro/prebiotics in Alzheimer’s disease. Aging (Albany NY), 2020, 12(6), 5539-5550.
[http://dx.doi.org/10.18632/aging.102930] [PMID: 32191919]
[90]
Leblhuber, F.; Steiner, K.; Schuetz, B.; Fuchs, D.; Gostner, J.M. Probiotic supplementation in patients with Alzheimer’s Dementia-an explorative intervention study. Curr. Alzheimer Res., 2018, 15(12), 1106-1113.
[http://dx.doi.org/10.2174/1389200219666180813144834] [PMID: 30101706]
[91]
Ulvik, A.; Theofylaktopoulou, D.; Midttun, Ø.; Nygård, O.; Eussen, S.J.P.M.; Ueland, P.M. Substrate product ratios of enzymes in the kynurenine pathway measured in plasma as indicators of functional vitamin B-6 status. Am. J. Clin. Nutr., 2013, 98(4), 934-940.
[http://dx.doi.org/10.3945/ajcn.113.064998] [PMID: 24004893]
[92]
Midttun, Ø.; Ulvik, A.; Ringdal Pedersen, E.; Ebbing, M.; Bleie, Ø.; Schartum-Hansen, H.; Nilsen, R.M.; Nygård, O.; Ueland, P.M. Low plasma vitamin B-6 status affects metabolism through the kynurenine pathway in cardiovascular patients with systemic inflammation. J. Nutr., 2011, 141(4), 611-617.
[http://dx.doi.org/10.3945/jn.110.133082] [PMID: 21310866]
[93]
Hughes, C.; Ward, M.; Tracey, F.; Hoey, L.; Molloy, A.; Pentieva, K.; McNulty, H. B-Vitamin intake and biomarker status in relation to cognitive decline in healthy older adults in a 4-year follow-up study. Nutrients, 2017, 9(1), 53.
[http://dx.doi.org/10.3390/nu9010053] [PMID: 28075382]
[94]
Corrada, M.M.; Kawas, C.H.; Hallfrisch, J.; Muller, D.; Brookmeyer, R. Reduced risk of Alzheimer’s disease with high folate intake: The baltimore longitudinal study of aging. Alzheimers Dement., 2005, 1(1), 11-18.
[http://dx.doi.org/10.1016/j.jalz.2005.06.001] [PMID: 19595811]
[95]
Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and dementia: An international consensus statement1. J. Alzheimers Dis., 2018, 62(2), 561-570.
[http://dx.doi.org/10.3233/JAD-171042] [PMID: 29480200]
[96]
Tanaka, M.; Bohár, Z.; Vécsei, L. Are kynurenines accomplices or principal villains in dementia? Maintenance of kynurenine metabolism. Molecules, 2020, 25(3), 564.
[http://dx.doi.org/10.3390/molecules25030564] [PMID: 32012948]
[97]
Flint Beal, M.; Matson, W.R.; Storey, E.; Milbury, P.; Ryan, E.A.; Ogawa, T.; Bird, E.D. Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J. Neurol. Sci., 1992, 108(1), 80-87.
[http://dx.doi.org/10.1016/0022-510X(92)90191-M] [PMID: 1385624]
[98]
Heyes, M.P.; Saito, K.; Crowley, J.S.; Davis, L.E.; Demitrack, M.A.; Der, M.; Dilling, L.A.; Elia, J.; Kruesi, M.J.P.; Lackner, A.; Larsen, S.A.; Lee, K.; Leonard, H.L.; Markey, S.P.; Martin, A.; Milstein, S.; Mouradian, M.M.; Pranzatelli, M.R.; Quearry, B.J.; Salazar, A.; Smith, M.; Strauss, S.E.; Sunderland, T.; Swedo, S.W.; Tourtellotte, W.W. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain, 1992, 115(5), 1249-1273.
[http://dx.doi.org/10.1093/brain/115.5.1249] [PMID: 1422788]
[99]
Pearson, S.J.; Reynolds, G.P. Increased brain concentrations of a neurotoxin, 3-hydroxykynurenine, in Huntington’s disease. Neurosci. Lett., 1992, 144(1-2), 199-201.
[http://dx.doi.org/10.1016/0304-3940(92)90749-W] [PMID: 1436703]
[100]
Baran, H.; Jellinger, K.; Deecke, L. Kynurenine metabolism in Alzheimer’s disease. J. Neural Transm. (Vienna), 1999, 106(2), 165-181.
[http://dx.doi.org/10.1007/s007020050149] [PMID: 10226937]
[101]
Schwarz, M.J.; Guillemin, G.J.; Teipel, S.J.; Buerger, K.; Hampel, H. Increased 3-Hydroxykynurenine serum concentrations differentiate Alzheimer’s disease patients from controls. Eur. Arch. Psychiatry Clin. Neurosci., 2013, 263(4), 345-352.
[http://dx.doi.org/10.1007/s00406-012-0384-x] [PMID: 23192697]
[102]
Muguruma, Y.; Tsutsui, H.; Noda, T.; Akatsu, H.; Inoue, K. Widely targeted metabolomics of Alzheimer’s disease postmortem cerebrospinal fluid based on 9-fluorenylmethyl chloroformate derivatized ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1091, 53-66.
[http://dx.doi.org/10.1016/j.jchromb.2018.05.031] [PMID: 29852382]
[103]
Whiley, L.; Chappell, K.E.; D’Hondt, E.; Lewis, M.R.; Jiménez, B.; Snowden, S.G.; Soininen, H. Kłoszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; Swann, J.R.; Hye, A.; Lovestone, S.; Legido-Quigley, C.; Holmes, E. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease. Alzheimers Res. Ther., 2021, 13(1), 20.
[http://dx.doi.org/10.1186/s13195-020-00741-z] [PMID: 33422142]
[104]
Willette, A.A.; Pappas, C.; Hoth, N.; Wang, Q.; Klinedinst, B.; Willette, S.A.; Larsen, B.; Pollpeter, A.; Li, T.; Le, S.; Collazo-Martinez, A.D.; Mochel, J.P.; Allenspach, K.; Dantzer, R. Inflammation, negative affect, and amyloid burden in Alzheimer’s disease: Insights from the kynurenine pathway. Brain Behav. Immun., 2021, 95, 216-225.
[http://dx.doi.org/10.1016/j.bbi.2021.03.019] [PMID: 33775832]
[105]
LeWitt, P.A.; Li, J.; Lu, M.; Beach, T.G.; Adler, C.H.; Guo, L. 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov. Disord., 2013, 28(12), 1653-1660.
[http://dx.doi.org/10.1002/mds.25555] [PMID: 23873789]
[106]
Iwaoka, K.; Otsuka, C.; Maeda, T.; Yamahara, K.; Kato, K.; Takahashi, K.; Takahashi, K.; Terayama, Y. Impaired metabolism of kynurenine and its metabolites in CSF of parkinson’s disease. Neurosci. Lett., 2020, 714, 134576.
[http://dx.doi.org/10.1016/j.neulet.2019.134576] [PMID: 31654722]