Advances on Epigenetic Drugs for Pediatric Brain Tumors

Page: [1519 - 1535] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Pediatric malignant brain tumors represent the most frequent cause of cancer-related deaths in childhood. The therapeutic scheme of surgery, radiotherapy and chemotherapy has improved patient management, but with minimal progress in patients’ prognosis. Emerging molecular targets and mechanisms have revealed novel approaches for pediatric brain tumor therapy, enabling personalized medical treatment. Advances in the field of epigenetic research and their interplay with genetic changes have enriched our knowledge of the molecular heterogeneity of these neoplasms and have revealed important genes that affect crucial signaling pathways involved in tumor progression. The great potential of epigenetic therapy lies mainly in the widespread location and the reversibility of epigenetic alterations, proposing a wide range of targeting options, including the possible combination of chemoand immunotherapy, significantly increasing their efficacy. Epigenetic drugs, including inhibitors of DNA methyltransferases, histone deacetylases and demethylases, are currently being tested in clinical trials on pediatric brain tumors. Additional novel epigenetic drugs include protein and enzyme inhibitors that modulate epigenetic modification pathways, such as Bromodomain and Extraterminal (BET) proteins, Cyclin-Dependent Kinase 9 (CDK9), AXL, Facilitates Chromatin Transcription (FACT), BMI1, and CREB Binding Protein (CBP) inhibitors, which can be used either as standalone or in combination with current treatment approaches. In this review, we discuss recent progress on epigenetic drugs that could possibly be used against the most common malignant tumors of childhood, such as medulloblastomas, high-grade gliomas and ependymomas.

Keywords: Pediatric brain tumors, Pediatric gliomas, Medulloblastoma, Ependymoma, Epigenetics, Epigenetic drugs, Drug repurposing, DNMTi, HDACi

Graphical Abstract

[1]
Liu, K.W.; Pajtler, K.W.; Worst, B.C.; Pfister, S.M.; Wechsler-Reya, R.J. Molecular mechanisms and therapeutic targets in pediatric brain tumors. Sci. Signal., 2017, 10(470), eaaf7593.
[http://dx.doi.org/10.1126/scisignal.aaf7593] [PMID: 28292958]
[2]
Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neurooncol., 2013, 15(Suppl. 2), ii1-ii56.
[http://dx.doi.org/10.1093/neuonc/not151] [PMID: 24137015]
[3]
Macdonald, T.J.; Aguilera, D.; Castellino, R.C. The rationale] for targeted therapies in medulloblastoma. Neuro. Oncol., 2014, 16(11), 9-20.
[http://dx.doi.org/10.1093/neuonc/not147]
[4]
Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; Soffietti, R.; von Deimling, A.; Ellison, D.W. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro-oncol., 2021, 23(8), 1231-1251.
[http://dx.doi.org/10.1093/neuonc/noab106] [PMID: 34185076]
[5]
Abedalthagafi, M.; Mobark, N.; Al-Rashed, M.; AlHarbi, M. Epigenomics and immunotherapeutic advances in pediatric brain tumors. NPJ Precis. Oncol., 2021, 5(1), 34.
[http://dx.doi.org/10.1038/s41698-021-00173-4] [PMID: 33931704]
[6]
Lu, Y.; Chan, Y. T.; Tan, H. Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer, 2020, 19(1), 1-16.
[http://dx.doi.org/10.1186/s12943-020-01197-3]
[7]
Cosgrove, M.S.; Boeke, J.D.; Wolberger, C. Regulated nucleosome mobility and the histone code. Nat. Struct. Mol. Biol., 2004, 11(11), 1037-1043.
[http://dx.doi.org/10.1038/nsmb851] [PMID: 15523479]
[8]
Khorasanizadeh, S. The nucleosome. Cell, 2004, 116(2), 259-272.
[http://dx.doi.org/10.1016/S0092-8674(04)00044-3] [PMID: 14744436]
[9]
Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[10]
Priesterbach-Ackley, L.P.; Boldt, H.B.; Petersen, J.K.; Bervoets, N.; Scheie, D.; Ulhøi, B.P.; Gardberg, M.; Brännström, T.; Torp, S.H.; Aronica, E.; Küsters, B.; den Dunnen, W.F.A.; Vos, F.Y.F.L.; Wesseling, P.; Leng, W.W.J.; Kristensen, B.W. Brain tumour diagnostics using a DNA methylation‐based classifier as a diagnostic support tool. Neuropathol. Appl. Neurobiol., 2020, 46(5), 478-492.
[http://dx.doi.org/10.1111/nan.12610] [PMID: 32072658]
[11]
Nebbioso, A.; Tambaro, F.P.; Dell’Aversana, C.; Altucci, L. Cancer epigenetics: Moving forward. PLoS Genet., 2018, 14(6), e1007362.
[http://dx.doi.org/10.1371/journal.pgen.1007362] [PMID: 29879107]
[12]
Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; Turner, R.S.; Lewis, J.S.; Cheung, N.K.V.; Larson, S.M.; Dunkel, I.J. Convection-enhanced delivery for diffuse intrinsic pontine glioma: A single-centre, dose-escalation, phase 1 trial. Lancet Oncol., 2018, 19(8), 1040-1050.
[http://dx.doi.org/10.1016/S1470-2045(18)30322-X] [PMID: 29914796]
[13]
Schwalbe, E.C.; Lindsey, J.C.; Nakjang, S.; Crosier, S.; Smith, A.J.; Hicks, D.; Rafiee, G.; Hill, R.M.; Iliasova, A.; Stone, T.; Pizer, B.; Michalski, A.; Joshi, A.; Wharton, S.B.; Jacques, T.S.; Bailey, S.; Williamson, D.; Clifford, S.C. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: A cohort study. Lancet Oncol., 2017, 18(7), 958-971.
[http://dx.doi.org/10.1016/S1470-2045(17)30243-7] [PMID: 28545823]
[14]
Hovestadt, V.; Ayrault, O.; Swartling, F.J.; Robinson, G.W.; Pfister, S.M.; Northcott, P.A. Medulloblastomics revisited: Biological and clinical insights from thousands of patients. Nat. Rev. Cancer, 2020, 20(1), 42-56.
[http://dx.doi.org/10.1038/s41568-019-0223-8] [PMID: 31819232]
[15]
Kumar, R.; Liu, A.P.Y.; Northcott, P.A. Medulloblastoma genomics in the modern molecular era. Brain Pathol., 2020, 30(3), 679-690.
[http://dx.doi.org/10.1111/bpa.12804] [PMID: 31799776]
[16]
Cavalli, F.M.G.; Remke, M.; Rampasek, L.; Peacock, J.; Shih, D.J.H.; Luu, B.; Garzia, L.; Torchia, J.; Nor, C.; Morrissy, A.S.; Agnihotri, S.; Thompson, Y.Y.; Kuzan-Fischer, C.M.; Farooq, H.; Isaev, K.; Daniels, C.; Cho, B.K.; Kim, S.K.; Wang, K.C.; Lee, J.Y.; Grajkowska, W.A.; Perek-Polnik, M.; Vasiljevic, A.; Faure-Conter, C.; Jouvet, A.; Giannini, C.; Nageswara Rao, A.A.; Li, K.K.W.; Ng, H.K.; Eberhart, C.G.; Pollack, I.F.; Hamilton, R.L.; Gillespie, G.Y.; Olson, J.M.; Leary, S.; Weiss, W.A.; Lach, B.; Chambless, L.B.; Thompson, R.C.; Cooper, M.K.; Vibhakar, R.; Hauser, P.; van Veelen, M.L.C.; Kros, J.M.; French, P.J.; Ra, Y.S.; Kumabe, T.; López-Aguilar, E.; Zitterbart, K.; Sterba, J.; Finocchiaro, G.; Massimino, M.; Van Meir, E.G.; Osuka, S.; Shofuda, T.; Klekner, A.; Zollo, M.; Leonard, J.R.; Rubin, J.B.; Jabado, N.; Albrecht, S.; Mora, J.; Van Meter, T.E.; Jung, S.; Moore, A.S.; Hallahan, A.R.; Chan, J.A.; Tirapelli, D.P.C.; Carlotti, C.G.; Fouladi, M.; Pimentel, J.; Faria, C.C.; Saad, A.G.; Massimi, L.; Liau, L.M.; Wheeler, H.; Nakamura, H.; Elbabaa, S.K.; Perezpeña-Diazconti, M.; Chico Ponce de León, F.; Robinson, S.; Zapotocky, M.; Lassaletta, A.; Huang, A.; Hawkins, C.E.; Tabori, U.; Bouffet, E.; Bartels, U.; Dirks, P.B.; Rutka, J.T.; Bader, G.D.; Reimand, J.; Goldenberg, A.; Ramaswamy, V.; Taylor, M.D. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell, 2017, 31(6), 737-754.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.05.005] [PMID: 28609654]
[17]
Packer, R.J.; Gajjar, A.; Vezina, G.; Rorke-Adams, L.; Burger, P.C.; Robertson, P.L.; Bayer, L.; LaFond, D.; Donahue, B.R.; Marymont, M.H.; Muraszko, K.; Langston, J.; Sposto, R. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol., 2006, 24(25), 4202-4208.
[http://dx.doi.org/10.1200/JCO.2006.06.4980] [PMID: 16943538]
[18]
Needle, M.N.; Goldwein, J.W.; Grass, J.; Cnaan, A.; Bergman, I.; Molloy, P.; Sutton, L.; Zhao, H.; Garvin, J.H., Jr; Phillips, P.C. Adjuvant chemotherapy for the treatment of intracranial ependymoma of childhood. Cancer, 1997, 80(2), 341-347.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970715)80:2<341::AID-CNCR23>3.0.CO;2-T] [PMID: 9217048]
[19]
Gajjar, A.; Finlay, J.L. The management of children and adolescents with medulloblastoma in low and middle income countries. Pediatr. Blood Cancer, 2015, 62(4), 549-550.
[http://dx.doi.org/10.1002/pbc.25371] [PMID: 25545387]
[20]
Roussel, M.F.; Stripay, J.L. Epigenetic drivers in pediatric medulloblastoma. Cerebellum, 2018, 17(1), 28-36.
[http://dx.doi.org/10.1007/s12311-017-0899-9] [PMID: 29178021]
[21]
Azzolin, L.; Panciera, T.; Soligo, S.; Enzo, E.; Bicciato, S.; Dupont, S.; Bresolin, S.; Frasson, C.; Basso, G.; Guzzardo, V.; Fassina, A.; Cordenonsi, M.; Piccolo, S. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell, 2014, 158(1), 157-170.
[http://dx.doi.org/10.1016/j.cell.2014.06.013] [PMID: 24976009]
[22]
Shi, X.; Zhang, Z.; Zhan, X.; Cao, M.; Satoh, T.; Akira, S.; Shpargel, K.; Magnuson, T.; Li, Q.; Wang, R.; Wang, C.; Ge, K.; Wu, J. An epigenetic switch induced by Shh signalling regulates gene activation during development and medulloblastoma growth. Nat. Commun., 2014, 5(1), 5425.
[http://dx.doi.org/10.1038/ncomms6425] [PMID: 25370275]
[23]
Ivanov, D.P.; Coyle, B.; Walker, D.A.; Grabowska, A.M. In vitro models of medulloblastoma: Choosing the right tool for the job. J. Biotechnol., 2016, 236, 10-25.
[http://dx.doi.org/10.1016/j.jbiotec.2016.07.028] [PMID: 27498314]
[24]
Guerreiro Stucklin, A.S.; Ramaswamy, V.; Daniels, C.; Taylor, M.D. Review of molecular classification and treatment implications of pediatric brain tumors. Curr. Opin. Pediatr., 2018, 30(1), 3-9.
[http://dx.doi.org/10.1097/MOP.0000000000000562] [PMID: 29315108]
[25]
Gajjar, A.; Chintagumpala, M.; Ashley, D.; Kellie, S.; Kun, L.E.; Merchant, T.E.; Woo, S.; Wheeler, G.; Ahern, V.; Krasin, M.J.; Fouladi, M.; Broniscer, A.; Krance, R.; Hale, G.A.; Stewart, C.F.; Dauser, R.; Sanford, R.A.; Fuller, C.; Lau, C.; Boyett, J.M.; Wallace, D.; Gilbertson, R.J. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): Long-term results from a prospective, multicentre trial. Lancet Oncol., 2006, 7(10), 813-820.
[http://dx.doi.org/10.1016/S1470-2045(06)70867-1] [PMID: 17012043]
[26]
Clifford, S.C.; Lusher, M.E.; Lindsey, J.C.; Langdon, J.A.; Gilbertson, R.J.; Straughton, D.; Ellison, D.W. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle, 2006, 5(22), 2666-2670.
[http://dx.doi.org/10.4161/cc.5.22.3446] [PMID: 17172831]
[27]
Gururangan, S.; Schroeder, K.; Pediatric, G.; Services, C.; Tisch, P.R.; Tumor, B. Molecular variants and mutations in medulloblastoma. Pharm. Genomics Pers. Med., 2014, 7, 43-51.
[http://dx.doi.org/10.2147/PGPM.S38698] [PMID: 24523595]
[28]
Robinson, G.; Parker, M.; Kranenburg, T.A.; Lu, C.; Chen, X.; Ding, L.; Phoenix, T.N.; Hedlund, E.; Wei, L.; Zhu, X.; Chalhoub, N.; Baker, S.J.; Huether, R.; Kriwacki, R.; Curley, N.; Thiruvenkatam, R.; Wang, J.; Wu, G.; Rusch, M.; Hong, X.; Becksfort, J.; Gupta, P.; Ma, J.; Easton, J.; Vadodaria, B.; Onar-Thomas, A.; Lin, T.; Li, S.; Pounds, S.; Paugh, S.; Zhao, D.; Kawauchi, D.; Roussel, M.F.; Finkelstein, D.; Ellison, D.W.; Lau, C.C.; Bouffet, E.; Hassall, T.; Gururangan, S.; Cohn, R.; Fulton, R.S.; Fulton, L.L.; Dooling, D.J.; Ochoa, K.; Gajjar, A.; Mardis, E.R.; Wilson, R.K.; Downing, J.R.; Zhang, J.; Gilbertson, R.J. Novel mutations target distinct subgroups of medulloblastoma. Nature, 2012, 488(7409), 43-48.
[http://dx.doi.org/10.1038/nature11213] [PMID: 22722829]
[29]
Ellison, D.W.; Onilude, O.E.; Lindsey, J.C.; Lusher, M.E.; Weston, C.L.; Taylor, R.E.; Pearson, A.D.; Clifford, S.C. β-Catenin status predicts a favorable outcome in childhood medulloblastoma: The United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J. Clin. Oncol., 2005, 23(31), 7951-7957.
[http://dx.doi.org/10.1200/JCO.2005.01.5479] [PMID: 16258095]
[30]
Dubuc, A.M.; Remke, M.; Korshunov, A.; Northcott, P.A.; Zhan, S.H.; Mendez-Lago, M.; Kool, M.; Jones, D.T.W.; Unterberger, A.; Morrissy, A.S.; Shih, D.; Peacock, J.; Ramaswamy, V.; Rolider, A.; Wang, X.; Witt, H.; Hielscher, T.; Hawkins, C.; Vibhakar, R.; Croul, S.; Rutka, J.T.; Weiss, W.A.; Jones, S.J.M.; Eberhart, C.G.; Marra, M.A.; Pfister, S.M.; Taylor, M.D. Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol., 2013, 125(3), 373-384.
[http://dx.doi.org/10.1007/s00401-012-1070-9] [PMID: 23184418]
[31]
Cohen, K.J.; Pollack, I.F.; Zhou, T.; Buxton, A.; Holmes, E.J.; Burger, P.C.; Brat, D.J.; Rosenblum, M.K.; Hamilton, R.L.; Lavey, R.S.; Heideman, R.L. Temozolomide in the treatment of high-grade gliomas in children: A report from the Children’s Oncology Group. Neuro-oncol., 2011, 13(3), 317-323.
[http://dx.doi.org/10.1093/neuonc/noq191] [PMID: 21339192]
[32]
Harutyunyan, A. S.; Krug, B.; Chen, H.; Papillon-Cavanagh, S.; Zeinieh, M.; De Jay, N.; Deshmukh, S.; Chen, C. C. L.; Belle, J.; Mikael, L. G.; Marchione, D. M.; Li, R.; Nikbakht, H.; Hu, B.; Cagnone, G.; Cheung, W. A.; Mohammadnia, A.; Bechet, D.; Faury, D.; McConechy, M. K.; Pathania, M.; Jain, S. U.; Ellezam, B.; Weil, A. G.; Montpetit, A.; Salomoni, P.; Pastinen, T.; Lu, C.; Lewis, P. W.; Garcia, B. A.; Kleinman, C. L.; Jabado, N.; Majewski, J. H3K27M induces defective chromatin spread of PRC2-mediated repressive H3K27me2/Me3 and is essential for glioma tumorigenesis. Nat. Commun., 2019, 10(1), 1-13.
[http://dx.doi.org/10.1038/s41467-019-09140-x]
[33]
Khuong-Quang, D. A.; Buczkowicz, P.; Rakopoulos, P.; Liu, X. Y.; Fontebasso, A. M.; Bouffet, E.; Bartels, U.; Albrecht, S.; Schwartzentruber, J.; Letourneau, L.; Bourgey, M.; Bourque, G.; Montpetit, A.; Bourret, G.; Lepage, P.; Fleming, A.; Lichter, P.; Kool, M.; Von Deimling, A.; Sturm, D.; Korshunov, A.; Faury, D.; Jones, D. T.; Majewski, J.; Pfister, S. M.; Jabado, N.; Hawkins, C. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. 2012, 124(3), 439-447.
[34]
Silveira, A. B.; Kasper, L. H.; Fan, Y.; Jin, H.; Wu, G.; Shaw, T. I.; Zhu, X.; Larson, J. D.; Easton, J.; Shao, Y.; Yergeau, D. A.; Rosencrance, C.; Boggs, K.; Rusch, M. C.; Ding, L.; Zhang, J.; Finkelstein, D.; Noyes, R. M.; Russell, B. L.; Xu, B.; Broniscer, A.; Wetmore, C.; Pounds, S. B.; Ellison, D. W.; Zhang, J.; Baker, S. J. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo. Acta Neuropathol., 2019, 137(4), 637-655.
[http://dx.doi.org/10.1007/s00401-019-01975-4]
[35]
Chammas, P.; Mocavini, I.; Di Croce, L. Engaging chromatin: PRC2 structure meets function. Br. J. Cancer, 2019, 122(3), 315-328.
[http://dx.doi.org/10.1038/s41416-019-0615-2]
[36]
Lewis, P.W.; Müller, M.M.; Koletsky, M.S.; Cordero, F.; Lin, S.; Banaszynski, L.A.; Garcia, B.A.; Muir, T.W.; Becher, O.J.; Allis, C.D. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science, 2013, 340(6134), 857-861.
[http://dx.doi.org/10.1126/science.1232245] [PMID: 23539183]
[37]
Krug, B.; De Jay, N.; Harutyunyan, A. S.; Deshmukh, S.; Marchione, D. M.; Guilhamon, P.; Bertrand, K. C.; Mikael, L. G.; McConechy, M. K.; Chen, C. C. L.; Khazaei, S.; Koncar, R. F.; Agnihotri, S.; Faury, D.; Ellezam, B.; Weil, A. G.; Ursini-Siegel, J.; De Carvalho, D. D.; Dirks, P. B.; Lewis, P. W.; Salomoni, P.; Lupien, M.; Arrowsmith, C.; Lasko, P. F.; Garcia, B. A.; Kleinman, C. L.; Jabado, N.; Mack, S. C. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell, 2019, 35(5), 782-797.e8.
[http://dx.doi.org/10.1016/j.ccell.2019.04.004] [PMID: 31085178]
[38]
Nagaraja, S.; Quezada, M.A.; Gillespie, S.M.; Arzt, M.; Lennon, J.J.; Woo, P.J.; Hovestadt, V.; Kambhampati, M.; Filbin, M.G.; Suva, M.L.; Nazarian, J.; Monje, M. Histone variant and cell context determine H3K27M reprogramming of the enhancer landscape and oncogenic state. Mol. Cell, 2019, 76(6), 965-980.e12.
[http://dx.doi.org/10.1016/j.molcel.2019.08.030] [PMID: 31588023]
[39]
Jonkers, I.; Lis, J.T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol., 2015, 16(3), 167-177.
[http://dx.doi.org/10.1038/nrm3953] [PMID: 25693130]
[40]
Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K. R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M.; Temelso, S.; Popov, S.; Molinari, V.; Raman, P.; Waanders, A. J.; Han, H. J.; Gupta, S.; Marshall, L.; Zacharoulis, S.; Vaidya, S.; Mandeville, H. C.; Bridges, L. R.; Martin, A. J.; Al-Sarraj, S.; Chandler, C.; Ng, H. K.; Li, X.; Mu, K.; Trabelsi, S.; Brahim, D. H. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. 2017, 32(4), 520-537.
[41]
Fontebasso, A. M.; Papillon-Cavanagh, S.; Schwartzentruber, J.; Nikbakht, H.; Gerges, N.; Fiset, P. O.; Bechet, D.; Faury, D.; De Jay, N.; Ramkissoon, L. A.; Corcoran, A.; Jones, D. T. W.; Sturm, D.; Johann, P.; Tomita, T.; Goldman, S.; Nagib, M.; Bendel, A.; Goumnerova, L.; Bowers, D. C.; Leonard, J. R.; Rubin, J. B.; Alden, T.; Browd, S.; Geyer, J. R.; Leary, S.; Jallo, G.; Cohen, K.; Gupta, N.; Prados, M. D.; Carret, A. S.; Ellezam, B.; Crevier, L.; Klekner, A.; Bognar, L.; Hauser, P.; Garami, M.; Myseros, J.; Dong, Z.; Siegel, P. M.; Malkin, H.; Ligon, A. H.; Albrecht, S.; Pfister, S. M.; Ligon, K. L.; Majewski, J.; Jabado, N.; Kieran, M. W. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat. Genet., 2014, 46(5), 462-466.
[http://dx.doi.org/10.1038/ng.2950]
[42]
Piunti, A.; Hashizume, R.; Morgan, M.A.; Bartom, E.T.; Horbinski, C.M.; Marshall, S.A.; Rendleman, E.J.; Ma, Q.; Takahashi, Y-H.; Woodfin, A.R.; Misharin, A.V.; Abshiru, N.A.; Lulla, R.R.; Saratsis, A.M.; Kelleher, N.L.; James, C.D.; Shilatifard, A.; Katagi, H.; Louis, N.; Unruh, D.; Sasaki, T.; He, X.; Zhang, A.; Ma, Q.; Piunti, A.; Shimazu, Y.; Lamano, J.B.; Carcaboso, A.M.; Tian, X.; Seluanov, A.; Gorbunova, V.; Laurie, K.L.; Kondo, A.; Wadhwani, N.R.; Lulla, R.R.; Goldman, S.; Venneti, S.; Becher, O.J.; Zou, L.; Shilatifard, A.; Hashizume, R.; Krug, B.; De Jay, N.; Harutyunyan, A.S.; Deshmukh, S.; Marchione, D.M.; Guilhamon, P.; Bertrand, K.C.; Mikael, L.G.; McConechy, M.K.; Chen, C.C.L.; Khazaei, S.; Koncar, R.F.; Agnihotri, S.; Faury, D.; Ellezam, B.; Weil, A.G.; Ursini-Siegel, J.; De Carvalho, D.D.; Dirks, P.B.; Lewis, P.W.; Salomoni, P.; Lupien, M.; Arrowsmith, C.; Lasko, P.F.; Garcia, B.A.; Kleinman, C.L.; Jabado, N.; Mack, S.C.; Nagaraja, S.; Vitanza, N.A.; Woo, P.J.; Taylor, K.R.; Liu, F.; Zhang, L.; Li, M.; Meng, W.; Ponnuswami, A.; Sun, W.; Ma, J.; Hulleman, E.; Swigut, T.; Wysocka, J.; Tang, Y.; Monje, M.; Hennika, T.; Hu, G.; Olaciregui, N.G.; Barton, K.L.; Ehteda, A.; Chitranjan, A.; Chang, C.; Gifford, A.J.; Tsoli, M.; Ziegler, D.S.; Carcaboso, A.M.; Becher, O.J.; Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zhou, Z.; Haque, S.; Zanzonico, P.; Carrasquillo, J.A.; Lyashchenko, S.K.; Thakur, S.B.; Donzelli, M.; Turner, R.S.; Lewis, J.S.; Cheung, NK.V.; Larson, S.M.; Dunkel, I.J.; Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; Soffietti, R.; von Deimling, A.; Ellison, D.W.; Grasso, C.S.; Tang, Y.; Truffaux, N.N.; Berlow, N.E.; Liu, L.; Debily, M-A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; Ponnuswami, A.; Chen, S.; Johung, T.B.; Sun, W.; Kogiso, M.; Du, Y.; Qi, L.; Huang, Y.; Hütt-Cabezas, M.; Warren, K.E.; Le Dret, L.; Meltzer, P.S.; Mao, H.; Quezado, M.; van Vuurden, D.G.; Abraham, J.; Fouladi, M.; Svalina, M.N.; Wang, N.; Hawkins, C.; Nazarian, J.; Alonso, M.M.; Raabe, E.H.; Hulleman, E.; Spellman, P.T.; Li, X-N.; Keller, C.; Pal, R.; Grill, J.; Monje, M.; Agger, K.; Cloos, P.A.C.; Christensen, J.; Pasini, D.; Rose, S.; Rappsilber, J.; Issaeva, I.; Canaani, E.; Salcini, A.E.; Helin, K.; Hashizume, R.; Andor, N.; Ihara, Y.; Lerner, R.; Gan, H.; Chen, X.; Fang, D.; Huang, X.; Tom, M.W.; Ngo, V.; Solomon, D.; Mueller, S.; Paris, P.L.; Zhang, Z.; Petritsch, C.; Gupta, N.; Waldman, T.A.; James, C.D.; Taylor, K.R.; Mackay, A.; Truffaux, N.N.; Butterfield, Y.; Morozova, O.; Philippe, C.; Castel, D.; Grasso, C.S.; Vinci, M.; Carvalho, D.; Carcaboso, A.M.; de Torres, C.; Cruz, O.; Mora, J.; Entz-Werle, N.; Ingram, W.J.; Monje, M.; Hargrave, D.; Bullock, A.N.; Puget, S.; Yip, S.; Jones, C.; Grill, J.; Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat. Med., 2017, 23(5), 457-461.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3890]
[43]
Leszczynska, K.B.; Jayaprakash, C.; Kaminska, B.; Mieczkowski, J. Emerging advances in combinatorial treatments of epigenetically altered pediatric high-grade H3K27M gliomas. Front. Genet., 2021, 12, 742561.
[http://dx.doi.org/10.3389/fgene.2021.742561] [PMID: 34646308]
[44]
Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S.; Duncan, D.L. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro-oncol., 2018, 20(S4)(Suppl. 4), iv1-iv86.
[http://dx.doi.org/10.1093/neuonc/noy131] [PMID: 30445539]
[45]
Mathew, R.K.; Rutka, J.T. Diffuse intrinsic pontine glioma: Clinical features, molecular genetics, and novel targeted therapeutics. J. Korean Neurosurg. Soc., 2018, 61(3), 343-351.
[http://dx.doi.org/10.3340/jkns.2018.0008] [PMID: 29742880]
[46]
Pollack, I.F.; Agnihotri, S.; Broniscer, A. Childhood brain tumors: Current management, biological insights, and future directions. J. Neurosurg. Pediatr., 2019, 23(3), 261-273.
[http://dx.doi.org/10.3171/2018.10.PEDS18377] [PMID: 30835699]
[47]
The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet., 2014, 46(5), 444-450.
[http://dx.doi.org/10.1038/ng.2938] [PMID: 24705251]
[48]
Mack, S.C.; Witt, H.; Piro, R.M.; Gu, L.; Zuyderduyn, S.; Stütz, A.M.; Wang, X.; Gallo, M.; Garzia, L.; Zayne, K.; Zhang, X.; Ramaswamy, V.; Jäger, N.; Jones, D.T.W.; Sill, M.; Pugh, T.J.; Ryzhova, M.; Wani, K.M.; Shih, D.J.H.; Head, R.; Remke, M.; Bailey, S.D.; Zichner, T.; Faria, C.C.; Barszczyk, M.; Stark, S.; Seker-Cin, H.; Hutter, S.; Johann, P.; Bender, S.; Hovestadt, V.; Tzaridis, T.; Dubuc, A.M.; Northcott, P.A.; Peacock, J.; Bertrand, K.C.; Agnihotri, S.; Cavalli, F.M.G.; Clarke, I.; Nethery-Brokx, K.; Creasy, C.L.; Verma, S.K.; Koster, J.; Wu, X.; Yao, Y.; Milde, T.; Sin-Chan, P.; Zuccaro, J.; Lau, L.; Pereira, S.; Castelo-Branco, P.; Hirst, M.; Marra, M.A.; Roberts, S.S.; Fults, D.; Massimi, L.; Cho, Y.J.; Van Meter, T.; Grajkowska, W.; Lach, B.; Kulozik, A.E.; von Deimling, A.; Witt, O.; Scherer, S.W.; Fan, X.; Muraszko, K.M.; Kool, M.; Pomeroy, S.L.; Gupta, N.; Phillips, J.; Huang, A.; Tabori, U.; Hawkins, C.; Malkin, D.; Kongkham, P.N.; Weiss, W.A.; Jabado, N.; Rutka, J.T.; Bouffet, E.; Korbel, J.O.; Lupien, M.; Aldape, K.D.; Bader, G.D.; Eils, R.; Lichter, P.; Dirks, P.B.; Pfister, S.M.; Korshunov, A.; Taylor, M.D. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506(7489), 445-450.
[http://dx.doi.org/10.1038/nature13108] [PMID: 24553142]
[49]
Pajtler, K.W.; Witt, H.; Sill, M.; Jones, D.T.W.; Hovestadt, V.; Kratochwil, F.; Wani, K.; Tatevossian, R.; Punchihewa, C.; Johann, P.; Reimand, J.; Warnatz, H.J.; Ryzhova, M.; Mack, S.; Ramaswamy, V.; Capper, D.; Schweizer, L.; Sieber, L.; Wittmann, A.; Huang, Z.; van Sluis, P.; Volckmann, R.; Koster, J.; Versteeg, R.; Fults, D.; Toledano, H.; Avigad, S.; Hoffman, L.M.; Donson, A.M.; Foreman, N.; Hewer, E.; Zitterbart, K.; Gilbert, M.; Armstrong, T.S.; Gupta, N.; Allen, J.C.; Karajannis, M.A.; Zagzag, D.; Hasselblatt, M.; Kulozik, A.E.; Witt, O.; Collins, V.P.; von Hoff, K.; Rutkowski, S.; Pietsch, T.; Bader, G.; Yaspo, M.L.; von Deimling, A.; Lichter, P.; Taylor, M.D.; Gilbertson, R.; Ellison, D.W.; Aldape, K.; Korshunov, A.; Kool, M.; Pfister, S.M. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell, 2015, 27(5), 728-743.
[http://dx.doi.org/10.1016/j.ccell.2015.04.002] [PMID: 25965575]
[50]
Kilday, J.-P.; Rahman, R.; Dyer, S.; Ridley, L.; Lowe, J.; Coyle, B.; Grundy, R. Pediatric ependymoma: Biological perspectives. 2009.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0584]
[51]
Ostrom, Q. T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007-2011.
[http://dx.doi.org/10.1093/neuonc/nou223]
[52]
Grill, J.; Le Deley, M.C.; Gambarelli, D.; Raquin, M.A.; Couanet, D.; Pierre-Kahn, A.; Habrand, J.L.; Doz, F.; Frappaz, D.; Gentet, J.C.; Edan, C.; Chastagner, P.; Kalifa, C. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: A multicenter trial of the French Society of Pediatric Oncology. J. Clin. Oncol., 2001, 19(5), 1288-1296.
[http://dx.doi.org/10.1200/JCO.2001.19.5.1288] [PMID: 11230470]
[53]
Gatta, G.; Botta, L.; Rossi, S.; Aareleid, T.; Bielska-Lasota, M.; Clavel, J.; Dimitrova, N.; Jakab, Z.; Kaatsch, P.; Lacour, B.; Mallone, S.; Marcos-Gragera, R.; Minicozzi, P.; Sánchez-Pérez, M.J.; Sant, M.; Santaquilani, M.; Stiller, C.; Tavilla, A.; Trama, A.; Visser, O.; Peris-Bonet, R. Childhood cancer survival in Europe 1999–2007: Results of EUROCARE-5—a population-based study. Lancet Oncol., 2014, 15(1), 35-47.
[http://dx.doi.org/10.1016/S1470-2045(13)70548-5] [PMID: 24314616]
[54]
Merchant, T.E.; Li, C.; Xiong, X.; Kun, L.E.; Boop, F.A.; Sanford, R.A. Conformal radiotherapy after surgery for paediatric ependymoma: A prospective study. Lancet Oncol., 2009, 10(3), 258-266.
[http://dx.doi.org/10.1016/S1470-2045(08)70342-5] [PMID: 19274783]
[55]
Massimino, M.; Miceli, R.; Giangaspero, F.; Boschetti, L.; Modena, P.; Antonelli, M.; Ferroli, P.; Bertin, D.; Pecori, E.; Valentini, L.; Biassoni, V.; Garrè, M.L.; Schiavello, E.; Sardi, I.; Cama, A.; Viscardi, E.; Scarzello, G.; Scoccianti, S.; Mascarin, M.; Quaglietta, L.; Cinalli, G.; Diletto, B.; Genitori, L.; Peretta, P.; Mussano, A.; Buccoliero, A.; Calareso, G.; Barra, S.; Mastronuzzi, A.; Giussani, C.; Marras, C.E.; Balter, R.; Bertolini, P.; Giombelli, E.; La Spina, M.; Buttarelli, F.R.; Pollo, B.; Gandola, L. Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma. Neuro-oncol., 2016, 18(10), 1451-1460.
[http://dx.doi.org/10.1093/neuonc/now108] [PMID: 27194148]
[56]
Johnson, R.A.; Wright, K.D.; Poppleton, H.; Mohankumar, K.M.; Finkelstein, D.; Pounds, S.B.; Rand, V.; Leary, S.E.S.; White, E.; Eden, C.; Hogg, T.; Northcott, P.; Mack, S.; Neale, G.; Wang, Y.D.; Coyle, B.; Atkinson, J.; DeWire, M.; Kranenburg, T.A.; Gillespie, Y.; Allen, J.C.; Merchant, T.; Boop, F.A.; Sanford, R.A.; Gajjar, A.; Ellison, D.W.; Taylor, M.D.; Grundy, R.G.; Gilbertson, R.J. Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 2010, 466(7306), 632-636.
[http://dx.doi.org/10.1038/nature09173] [PMID: 20639864]
[57]
Mohankumar, K.M.; Currle, D.S.; White, E.; Boulos, N.; Dapper, J.; Eden, C.; Nimmervoll, B.; Thiruvenkatam, R.; Connelly, M.; Kranenburg, T.A.; Neale, G.; Olsen, S.; Wang, Y.D.; Finkelstein, D.; Wright, K.; Gupta, K.; Ellison, D.W.; Thomas, A.O.; Gilbertson, R.J. An in vivo screen identifies ependymoma oncogenes and tumor-suppressor genes. Nat. Genet., 2015, 47(8), 878-887.
[http://dx.doi.org/10.1038/ng.3323] [PMID: 26075792]
[58]
Carter, M.; Nicholson, J.; Ross, F.; Crolla, J.; Allibone, R.; Balaji, V.; Perry, R.; Walker, D.; Gilbertson, R.; Ellison, D. Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. Br. J. Cancer, 2002, 86(6), 929-939.
[http://dx.doi.org/10.1038/sj.bjc.6600180] [PMID: 11953826]
[59]
Witt, H.; Mack, S.C.; Ryzhova, M.; Bender, S.; Sill, M.; Isserlin, R.; Benner, A.; Hielscher, T.; Milde, T.; Remke, M.; Jones, D.T.W.; Northcott, P.A.; Garzia, L.; Bertrand, K.C.; Wittmann, A.; Yao, Y.; Roberts, S.S.; Massimi, L.; Van Meter, T.; Weiss, W.A.; Gupta, N.; Grajkowska, W.; Lach, B.; Cho, Y.J.; von Deimling, A.; Kulozik, A.E.; Witt, O.; Bader, G.D.; Hawkins, C.E.; Tabori, U.; Guha, A.; Rutka, J.T.; Lichter, P.; Korshunov, A.; Taylor, M.D.; Pfister, S.M. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell, 2011, 20(2), 143-157.
[http://dx.doi.org/10.1016/j.ccr.2011.07.007] [PMID: 21840481]
[60]
Parker, M.; Mohankumar, K.M.; Punchihewa, C.; Weinlich, R.; Dalton, J.D.; Li, Y.; Lee, R.; Tatevossian, R.G.; Phoenix, T.N.; Thiruvenkatam, R.; White, E.; Tang, B.; Orisme, W.; Gupta, K.; Rusch, M.; Chen, X.; Li, Y.; Nagahawhatte, P.; Hedlund, E.; Finkelstein, D.; Wu, G.; Shurtleff, S.; Easton, J.; Boggs, K.; Yergeau, D.; Vadodaria, B.; Mulder, H.L.; Becksfort, J.; Gupta, P.; Huether, R.; Ma, J.; Song, G.; Gajjar, A.; Merchant, T.; Boop, F.; Smith, A.A.; Ding, L.; Lu, C.; Ochoa, K.; Zhao, D.; Fulton, R.S.; Fulton, L.L.; Mardis, E.R.; Wilson, R.K.; Downing, J.R.; Green, D.R.; Zhang, J.; Ellison, D.W.; Gilbertson, R.J. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature, 2014, 506(7489), 451-455.
[http://dx.doi.org/10.1038/nature13109] [PMID: 24553141]
[61]
Lewis, R.; Li, Y.D.; Hoffman, L.; Hashizume, R.; Gravohac, G.; Rice, G.; Wadhwani, N.R.; Jie, C.; Pundy, T.; Mania-Farnell, B.; Mayanil, C.S.; Soares, M.B.; Lei, T.; James, C.D.; Foreman, N.K.; Tomita, T.; Xi, G. Global reduction of H3K4me3 improves chemotherapeutic efficacy for pediatric ependymomas. Neoplasia, 2019, 21(6), 505-515.
[http://dx.doi.org/10.1016/j.neo.2019.03.012] [PMID: 31005631]
[62]
Gilbertson, R.J.; Bentley, L.; Hernan, R.; Junttila, T.T.; Frank, A.J.; Haapasalo, H.; Connelly, M.; Wetmore, C.; Curran, T.; Elenius, K.; Ellison, D.W. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin. Cancer Res., 2002, 8(10), 3054-3064.
[PMID: 12374672]
[63]
Panwalkar, P.; Clark, J.; Ramaswamy, V.; Hawes, D.; Yang, F.; Dunham, C.; Yip, S.; Hukin, J.; Sun, Y.; Schipper, M.J.; Chavez, L.; Margol, A.; Pekmezci, M.; Chung, C.; Banda, A.; Bayliss, J.M.; Curry, S.J.; Santi, M.; Rodriguez, F.J.; Snuderl, M.; Karajannis, M.A.; Saratsis, A.M.; Horbinski, C.M.; Carret, A.S.; Wilson, B.; Johnston, D.; Lafay-Cousin, L.; Zelcer, S.; Eisenstat, D.; Silva, M.; Scheinemann, K.; Jabado, N.; McNeely, P.D.; Kool, M.; Pfister, S.M.; Taylor, M.D.; Hawkins, C.; Korshunov, A.; Judkins, A.R.; Venneti, S. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathol., 2017, 134(5), 705-714.
[http://dx.doi.org/10.1007/s00401-017-1752-4] [PMID: 28733933]
[64]
Ahuja, N.; Sharma, A.R.; Baylin, S.B. Epigenetic therapeutics: A new weapon in the war against cancer. Annu. Rev. Med., 2016, 67(1), 73-89.
[http://dx.doi.org/10.1146/annurev-med-111314-035900] [PMID: 26768237]
[65]
Cheng, Y.; He, C.; Wang, M.; Ma, X.; Mo, F.; Yang, S.; Han, J.; Wei, X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther., 2019, 4(1), 62.
[http://dx.doi.org/10.1038/s41392-019-0095-0] [PMID: 31871779]
[66]
Roberti, A.; Valdes, A.F.; Torrecillas, R.; Fraga, M.F.; Fernandez, A.F. Epigenetics in cancer therapy and nanomedicine. Clin. Epigenetics, 2019, 11(1), 81.
[http://dx.doi.org/10.1186/s13148-019-0675-4] [PMID: 31097014]
[67]
Agger, K.; Cloos, P.A.C.; Christensen, J.; Pasini, D.; Rose, S.; Rappsilber, J.; Issaeva, I.; Canaani, E.; Salcini, A.E.; Helin, K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature, 2007, 449(7163), 731-734.
[http://dx.doi.org/10.1038/nature06145] [PMID: 17713478]
[68]
Hashizume, R.; Andor, N.; Ihara, Y.; Lerner, R.; Gan, H.; Chen, X.; Fang, D.; Huang, X.; Tom, M.W.; Ngo, V.; Solomon, D.; Mueller, S.; Paris, P.L.; Zhang, Z.; Petritsch, C.; Gupta, N.; Waldman, T.A.; James, C.D. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat. Med., 2014, 20(12), 1394-1396.
[http://dx.doi.org/10.1038/nm.3716] [PMID: 25401693]
[69]
Nikolaev, A.; Fiveash, J. B.; Yang, E. S. Combined targeting of mutant P53 and Jumonji family histone demethylase augments therapeutic efficacy of radiation in H3K27M DIPG. Int. J. Mol. Sci., 2020, 21(2), 490.
[http://dx.doi.org/10.3390/ijms21020490]
[70]
Bykov, V.J.N.; Eriksson, S.E.; Bianchi, J.; Wiman, K.G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer, 2018, 18(2), 89-102.
[http://dx.doi.org/10.1038/nrc.2017.109] [PMID: 29242642]
[71]
Rasmussen, T.A.; Tolstrup, M.; Møller, H.J.; Brinkmann, C.R.; Olesen, R.; Erikstrup, C.; Laursen, A.L.; Østergaard, L.; Søgaard, O.S. Activation of latent human immunodeficiency virus by the histone deacetylase inhibitor panobinostat: A pilot study to assess effects on the central nervous system. Open Forum Infect. Dis., 2015, 2(1), ofv037.
[http://dx.doi.org/10.1093/ofid/ofv037] [PMID: 26034779]
[72]
Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.A.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; Ponnuswami, A.; Chen, S.; Johung, T.B.; Sun, W.; Kogiso, M.; Du, Y.; Qi, L.; Huang, Y.; Hütt-Cabezas, M.; Warren, K.E.; Le Dret, L.; Meltzer, P.S.; Mao, H.; Quezado, M.; van Vuurden, D.G.; Abraham, J.; Fouladi, M.; Svalina, M.N.; Wang, N.; Hawkins, C.; Nazarian, J.; Alonso, M.M.; Raabe, E.H.; Hulleman, E.; Spellman, P.T.; Li, X.N.; Keller, C.; Pal, R.; Grill, J.; Monje, M. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nat. Med., 2015, 21(6), 555-559.
[http://dx.doi.org/10.1038/nm.3855] [PMID: 25939062]
[73]
Hennika, T.; Hu, G.; Olaciregui, N.G.; Barton, K.L.; Ehteda, A.; Chitranjan, A.; Chang, C.; Gifford, A.J.; Tsoli, M.; Ziegler, D.S.; Carcaboso, A.M.; Becher, O.J. Pre-clinical study of panobinostat in xenograft and genetically engineered murine diffuse intrinsic pontine glioma models. PLoS One, 2017, 12(1), e0169485-e0169485.
[http://dx.doi.org/10.1371/journal.pone.0169485] [PMID: 28052119]
[74]
Phi, J.H.; Choi, S.A.; Kwak, P.A.; Lee, J.Y.; Wang, K.C.; Hwang, D.W.; Kim, S.K. Panobinostat, a histone deacetylase inhibitor, suppresses leptomeningeal seeding in a medulloblastoma animal model. Oncotarget, 2017, 8(34), 56747-56757.
[http://dx.doi.org/10.18632/oncotarget.18132] [PMID: 28915627]
[75]
Groselj, B.; Sharma, N.L.; Hamdy, F.C.; Kerr, M.; Kiltie, A.E. Histone deacetylase inhibitors as radiosensitisers: Effects on DNA damage signalling and repair. Br. J. Cancer, 2013, 108(4), 748-754.
[http://dx.doi.org/10.1038/bjc.2013.21] [PMID: 23361058]
[76]
Milde, T.; Lodrini, M.; Savelyeva, L.; Korshunov, A.; Kool, M.; Brueckner, L.M.; Antunes, A.S.L.M.; Oehme, I.; Pekrun, A.; Pfister, S.M.; Kulozik, A.E.; Witt, O.; Deubzer, H.E. HD-MB03 is a novel group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment. J. Neurooncol., 2012, 110(3), 335-348.
[http://dx.doi.org/10.1007/s11060-012-0978-1] [PMID: 23054560]
[77]
Halsall, J.A.; Turan, N.; Wiersma, M.; Turner, B.M. Cells adapt to the epigenomic disruption caused by histone deacetylase inhibitors through a coordinated, chromatin-mediated transcriptional response. Epigenetics Chromatin, 2015, 8(1), 29.
[http://dx.doi.org/10.1186/s13072-015-0021-9] [PMID: 26380582]
[78]
Brown, Z.Z.; Müller, M.M.; Jain, S.U.; Allis, C.D.; Lewis, P.W.; Muir, T.W. Strategy for “detoxification” of a cancer-derived histone mutant based on mapping its interaction with the methyltransferase PRC2. J. Am. Chem. Soc., 2014, 136(39), 13498-13501.
[http://dx.doi.org/10.1021/ja5060934] [PMID: 25180930]
[79]
Anastas, J.N.; Zee, B.M.; Kalin, J.H.; Kim, M.; Guo, R.; Alexandrescu, S.; Blanco, M.A.; Giera, S.; Gillespie, S.M.; Das, J.; Wu, M.; Nocco, S.; Bonal, D.M.; Nguyen, Q.D.; Suva, M.L.; Bernstein, B.E.; Alani, R.; Golub, T.R.; Cole, P.A.; Filbin, M.G.; Shi, Y. Reprograming chromatin with a bifunctional LSD1/HDAC inhibitor induces therapeutic differentiation in DIPG. Cancer Cell, 2019, 36(5), 528-544.e10.
[http://dx.doi.org/10.1016/j.ccell.2019.09.005] [PMID: 31631026]
[80]
Vitanza, N.A.; Biery, M.C.; Myers, C.; Ferguson, E.; Zheng, Y.; Girard, E.J.; Przystal, J.M.; Park, G.; Noll, A.; Pakiam, F.; Winter, C.A.; Morris, S.M.; Sarthy, J.; Cole, B.L.; Leary, S.E.S.; Crane, C.; Lieberman, N.A.P.; Mueller, S.; Nazarian, J.; Gottardo, R.; Brusniak, M.Y.; Mhyre, A.J.; Olson, J.M. Optimal therapeutic targeting by HDAC inhibition in biopsy-derived treatment-naïve diffuse midline glioma models. Neuro-oncol., 2021, 23(3), 376-386.
[http://dx.doi.org/10.1093/neuonc/noaa249] [PMID: 33130903]
[81]
Lin, G.L.; Wilson, K.M.; Ceribelli, M.; Stanton, B.Z.; Woo, P.J.; Kreimer, S.; Qin, E.Y.; Zhang, X.; Lennon, J.; Nagaraja, S.; Morris, P.J.; Quezada, M.; Gillespie, S.M.; Duveau, D.Y.; Michalowski, A.M.; Shinn, P.; Guha, R.; Ferrer, M.; Klumpp-Thomas, C.; Michael, S.; McKnight, C.; Minhas, P.; Itkin, Z.; Raabe, E.H.; Chen, L.; Ghanem, R.; Geraghty, A.C.; Ni, L.; Andreasson, K.I.; Vitanza, N.A.; Warren, K.E.; Thomas, C.J.; Monje, M. Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci. Transl. Med., 2019, 11(519), eaaw0064.
[http://dx.doi.org/10.1126/scitranslmed.aaw0064] [PMID: 31748226]
[82]
Ehteda, A.; Simon, S.; Franshaw, L.; Giorgi, F.M.; Liu, J.; Joshi, S.; Rouaen, J.R.C.; Pang, C.N.I.; Pandher, R.; Mayoh, C.; Tang, Y.; Khan, A.; Ung, C.; Tolhurst, O.; Kankean, A.; Hayden, E.; Lehmann, R.; Shen, S.; Gopalakrishnan, A.; Trebilcock, P.; Gurova, K.; Gudkov, A.V.; Norris, M.D.; Haber, M.; Vittorio, O.; Tsoli, M.; Ziegler, D.S. Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Rep., 2021, 35(2), 108994.
[http://dx.doi.org/10.1016/j.celrep.2021.108994] [PMID: 33852836]
[83]
Sandberg, D.I.; Yu, B.; Patel, R.; Hagan, J.; Miesner, E.; Sabin, J.; Smith, S.; Fletcher, S.; Shah, M.N.; Sirianni, R.W.; Taylor, M.D. Infusion of 5-Azacytidine (5-AZA) into the fourth ventricle or resection cavity in children with recurrent posterior Fossa Ependymoma: A pilot clinical trial. J. Neurooncol., 2019, 141(2), 449-457.
[http://dx.doi.org/10.1007/s11060-018-03055-1] [PMID: 30460634]
[84]
Banik, D.; Moufarrij, S.; Villagra, A. Immunoepigenetics combination therapies: An overview of the role of HDACs in cancer immunotherapy. Int. J. Mol. Sci., 2019, 20(9), 2241.
[http://dx.doi.org/10.3390/ijms20092241] [PMID: 31067680]
[85]
Tan, J.; Yang, X.; Zhuang, L.; Jiang, X.; Chen, W.; Lee, P.L.; Karuturi, R.K.M.; Tan, P.B.O.; Liu, E.T.; Yu, Q. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev., 2007, 21(9), 1050-1063.
[http://dx.doi.org/10.1101/gad.1524107] [PMID: 17437993]
[86]
Majello, B.; Gorini, F.; Saccà, C.; Amente, S. Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. Cancers (Basel), 2019, 11(3), 324.
[http://dx.doi.org/10.3390/cancers11030324] [PMID: 30866496]
[87]
Fu, X.; Zhang, P.; Yu, B. Advances toward LSD1 inhibitors for cancer therapy. Future Med. Chem., 2017, 9(11), 1227-1242.
[http://dx.doi.org/10.4155/fmc-2017-0068] [PMID: 28722477]
[88]
Bailey, C.P.; Figueroa, M.; Gangadharan, A.; Yang, Y.; Romero, M.M.; Kennis, B.A.; Yadavilli, S.; Henry, V.; Collier, T.; Monje, M.; Lee, D.A.; Wang, L.; Nazarian, J.; Gopalakrishnan, V.; Zaky, W.; Becher, O.J.; Chandra, J. Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro-oncol., 2020, 22(9), 1302-1314.
[http://dx.doi.org/10.1093/neuonc/noaa058] [PMID: 32166329]
[89]
Piunti, A.; Hashizume, R.; Morgan, M.A.; Bartom, E.T.; Horbinski, C.M.; Marshall, S.A.; Rendleman, E.J.; Ma, Q.; Takahashi, Y.; Woodfin, A.R.; Misharin, A.V.; Abshiru, N.A.; Lulla, R.R.; Saratsis, A.M.; Kelleher, N.L.; James, C.D.; Shilatifard, A. Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat. Med., 2017, 23(4), 493-500.
[http://dx.doi.org/10.1038/nm.4296] [PMID: 28263307]
[90]
Hatch, S.B.; Yapp, C.; Montenegro, R.C.; Savitsky, P.; Gamble, V.; Tumber, A.; Ruda, G.F.; Bavetsias, V.; Fedorov, O.; Atrash, B.; Raynaud, F.; Lanigan, R.; Carmichael, L.; Tomlin, K.; Burke, R.; Westaway, S.M.; Brown, J.A.; Prinjha, R.K.; Martinez, E.D.; Oppermann, U.; Schofield, C.J.; Bountra, C.; Kawamura, A.; Blagg, J.; Brennan, P.E.; Rossanese, O.; Müller, S. Assessing histone demethylase inhibitors in cells: Lessons learned. Epigenetics Chromatin, 2017, 10(1), 9.
[http://dx.doi.org/10.1186/s13072-017-0116-6] [PMID: 28265301]
[91]
Fiskus, W.; Sharma, S.; Shah, B.; Portier, B.P.; Devaraj, S.G.T.; Liu, K.; Iyer, S.P.; Bearss, D.; Bhalla, K.N. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia, 2014, 28(11), 2155-2164.
[http://dx.doi.org/10.1038/leu.2014.119] [PMID: 24699304]
[92]
Seo, B.R.; Min, K.; Cho, I.J.; Kim, S.C.; Kwon, T.K. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVPBEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability. PLoS One, 2014, 9(4), e95588.
[http://dx.doi.org/10.1371/journal.pone.0095588] [PMID: 24743574]
[93]
Fujisawa, T.; Filippakopoulos, P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol., 2017, 18(4), 246-262.
[http://dx.doi.org/10.1038/nrm.2016.143] [PMID: 28053347]
[94]
Nagaraja, S.; Vitanza, N.A.; Woo, P.J.; Taylor, K.R.; Liu, F.; Zhang, L.; Li, M.; Meng, W.; Ponnuswami, A.; Sun, W.; Ma, J.; Hulleman, E.; Swigut, T.; Wysocka, J.; Tang, Y.; Monje, M. Transcriptional dependencies in diffuse intrinsic pontine glioma. Cancer Cell, 2017, 31(5), 635-652.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.03.011] [PMID: 28434841]
[95]
Taylor, I.C.; Hütt-Cabezas, M.; Brandt, W.D.; Kambhampati, M.; Nazarian, J.; Chang, H.T.; Warren, K.E.; Eberhart, C.G.; Raabe, E.H. Disrupting NOTCH slows diffuse intrinsic pontine glioma growth, enhances radiation sensitivity, and shows combinatorial efficacy with bromodomain inhibition. J. Neuropathol. Exp. Neurol., 2015, 74(8), 778-790.
[http://dx.doi.org/10.1097/NEN.0000000000000216] [PMID: 26115193]
[96]
Bandopadhayay, P.; Bergthold, G.; Nguyen, B.; Schubert, S.; Gholamin, S.; Tang, Y.; Bolin, S.; Schumacher, S.E.; Zeid, R.; Masoud, S.; Yu, F.; Vue, N.; Gibson, W.J.; Paolella, B.R.; Mitra, S.S.; Cheshier, S.H.; Qi, J.; Liu, K.W.; Wechsler-Reya, R.; Weiss, W.A.; Swartling, F.J.; Kieran, M.W.; Bradner, J.E.; Beroukhim, R.; Cho, Y.J. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin. Cancer Res., 2014, 20(4), 912-925.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-2281] [PMID: 24297863]
[97]
Henssen, A.; Thor, T.; Odersky, A.; Heukamp, L.; El-Hindy, N.; Beckers, A.; Speleman, F.; Althoff, K.; Schäfers, S.; Schramm, A.; Sure, U.; Fleischhack, G.; Eggert, A.; Schulte, J.H. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget, 2013, 4(11), 2080-2095.
[http://dx.doi.org/10.18632/oncotarget.1534] [PMID: 24231268]
[98]
Groves, A.; Clymer, J.; Filbin, M.G. Bromodomain and extra-terminal protein inhibitors: Biologic insights and therapeutic potential in pediatric brain tumors. Pharmaceuticals (Basel), 2022, 15(6), 665.
[http://dx.doi.org/10.3390/ph15060665] [PMID: 35745584]
[99]
Venkataraman, S.; Alimova, I.; Balakrishnan, I.; Harris, P.; Birks, D.K.; Griesinger, A.; Amani, V.; Cristiano, B.; Remke, M.; Taylor, M.D.; Handler, M.; Foreman, N.K.; Vibhakar, R. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget, 2014, 5(9), 2355-2371.
[http://dx.doi.org/10.18632/oncotarget.1659] [PMID: 24796395]
[100]
Long, J.; Li, B.; Rodriguez-Blanco, J.; Pastori, C.; Volmar, C.H.; Wahlestedt, C.; Capobianco, A.; Bai, F.; Pei, X.H.; Ayad, N.G.; Robbins, D.J. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J. Biol. Chem., 2014, 289(51), 35494-35502.
[http://dx.doi.org/10.1074/jbc.M114.595348] [PMID: 25355313]
[101]
Zhang, H.; Pandey, S.; Travers, M.; Sun, H.; Morton, G.; Madzo, J.; Chung, W.; Khowsathit, J.; Perez-Leal, O.; Barrero, C.A.; Merali, C.; Okamoto, Y.; Sato, T.; Pan, J.; Garriga, J.; Bhanu, N.V.; Simithy, J.; Patel, B.; Huang, J.; Raynal, N.J.M.; Garcia, B.A.; Jacobson, M.A.; Kadoch, C.; Merali, S.; Zhang, Y.; Childers, W.; Abou-Gharbia, M.; Karanicolas, J.; Baylin, S.B.; Zahnow, C.A.; Jelinek, J.; Graña, X.; Issa, J.P.J. Targeting CDK9 reactivates epigenetically silenced genes in cancer. Cell, 2018, 175(5), 1244-1258.e26.
[http://dx.doi.org/10.1016/j.cell.2018.09.051] [PMID: 30454645]
[102]
Dahl, N.A.; Danis, E.; Balakrishnan, I.; Wang, D.; Pierce, A.; Walker, F.M.; Gilani, A.; Serkova, N.J.; Madhavan, K.; Fosmire, S.; Green, A.L.; Foreman, N.K.; Venkataraman, S.; Vibhakar, R. Super elongation complex as a targetable dependency in diffuse midline glioma. Cell Rep., 2020, 31(1), 107485.
[http://dx.doi.org/10.1016/j.celrep.2020.03.049] [PMID: 32268092]
[103]
Zhou, Q.; Li, T.; Price, D. H. RNA polymerase II elongation control. 2012, 81, 119-143.
[http://dx.doi.org/10.1146/annurev-biochem-052610-095910]
[104]
Peterlin, B.M.; Price, D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell, 2006, 23(3), 297-305.
[http://dx.doi.org/10.1016/j.molcel.2006.06.014] [PMID: 16885020]
[105]
Ott, M.; Litzenburger, U.M.; Sahm, F.; Rauschenbach, K.J.; Tudoran, R.; Hartmann, C.; Marquez, V.E.; von Deimling, A.; Wick, W.; Platten, M. Promotion of glioblastoma cell motility by enhancer of zeste homolog 2 (EZH2) is mediated by AXL receptor kinase. PLoS One, 2012, 7(10), e47663.
[http://dx.doi.org/10.1371/journal.pone.0047663] [PMID: 23077658]
[106]
Xu, M.Z.; Chan, S.W.; Liu, A.M.; Wong, K.F.; Fan, S.T.; Chen, J.; Poon, R.T.; Zender, L.; Lowe, S.W.; Hong, W.; Luk, J.M. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene, 2011, 30(10), 1229-1240.
[http://dx.doi.org/10.1038/onc.2010.504] [PMID: 21076472]
[107]
Li, M.; Lu, J.; Zhang, F.; Li, H.; Zhang, B.; Wu, X.; Tan, Z.; Zhang, L.; Gao, G.; Mu, J.; Shu, Y.; Bao, R.; Ding, Q.; Wu, W.; Dong, P.; Gu, J.; Liu, Y. Yes-associated protein 1 (YAP1) promotes human gallbladder tumor growth via activation of the AXL/MAPK pathway. Cancer Lett., 2014, 355(2), 201-209.
[http://dx.doi.org/10.1016/j.canlet.2014.08.036] [PMID: 25218593]
[108]
Ma, S.; Meng, Z.; Chen, R.; Guan, K.L. The hippo pathway: Biology and pathophysiology. Annu. Rev. Biochem., 2019, 88(1), 577-604.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111829] [PMID: 30566373]
[109]
Meel, M.H.; de Gooijer, M.C.; Metselaar, D.S.; Sewing, A.C.P.; Zwaan, K.; Waranecki, P.; Breur, M.; Buil, L.C.M.; Lagerweij, T.; Wedekind, L.E.; Twisk, J.W.R.; Koster, J.; Hashizume, R.; Raabe, E.H.; Montero Carcaboso, Á.; Bugiani, M.; Phoenix, T.N.; van Tellingen, O.; van Vuurden, D.G.; Kaspers, G.J.L.; Hulleman, E. Combined therapy of AXL and HDAC inhibition reverses mesenchymal transition in diffuse intrinsic pontine glioma. Clin. Cancer Res., 2020, 26(13), 3319-3332.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-3538] [PMID: 32165429]
[110]
Prendergast, L.; Hong, E.; Safina, A.; Poe, D.; Gurova, K. Histone chaperone FACT is essential to overcome replication stress in mammalian cells. Oncogene, 2020, 39(28), 5124-5137.
[http://dx.doi.org/10.1038/s41388-020-1346-9] [PMID: 32533099]
[111]
Barbour, H.; Daou, S.; Hendzel, M.; Affar, E.B. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat. Commun., 2020, 11(1), 5947.
[http://dx.doi.org/10.1038/s41467-020-19722-9] [PMID: 33230107]
[112]
Balakrishnan, I.; Danis, E.; Pierce, A.; Madhavan, K.; Wang, D.; Dahl, N.; Sanford, B.; Birks, D.K.; Davidson, N.; Metselaar, D.S.; Meel, M.H.; Lemma, R.; Donson, A.; Vijmasi, T.; Katagi, H.; Sola, I.; Fosmire, S.; Alimova, I.; Steiner, J.; Gilani, A.; Hulleman, E.; Serkova, N.J.; Hashizume, R.; Hawkins, C.; Carcaboso, A.M.; Gupta, N.; Monje, M.; Jabado, N.; Jones, K.; Foreman, N.; Green, A.; Vibhakar, R.; Venkataraman, S. Senescence induced by BMI1 inhibition is a therapeutic vulnerability in H3K27M-mutant DIPG. Cell Rep., 2020, 33(3), 108286.
[http://dx.doi.org/10.1016/j.celrep.2020.108286] [PMID: 33086074]
[113]
Wiese, M.; Hamdan, F.H.; Kubiak, K.; Diederichs, C.; Gielen, G.H.; Nussbaumer, G.; Carcaboso, A.M.; Hulleman, E.; Johnsen, S.A.; Kramm, C.M. Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells. Cell Death Dis., 2020, 11(8), 673.
[http://dx.doi.org/10.1038/s41419-020-02800-7] [PMID: 32826850]
[114]
Hoeman, C.; Shen, C.; Becher, O.J. CDK4/6 and PDGFRA signaling as therapeutic targets in diffuse intrinsic pontine glioma. Front. Oncol., 2018, 8, 191.
[http://dx.doi.org/10.3389/fonc.2018.00191] [PMID: 29904623]
[115]
Wang, Z.; Xu, C.; Diplas, B.H.; Moure, C.J.; Chen, C.P.J.; Chen, L.H.; Du, C.; Zhu, H.; Greer, P.K.; Zhang, L.; He, Y.; Waitkus, M.S.; Yan, H. Targeting mutant PPM1D sensitizes diffuse intrinsic pontine glioma cells to the PARP inhibitor olaparib. Mol. Cancer Res., 2020, 18(7), 968-980.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0507] [PMID: 32229503]
[116]
Li, J.; Hao, D.; Wang, L.; Wang, H.; Wang, Y.; Zhao, Z.; Li, P.; Deng, C.; Di, L. Epigenetic targeting drugs potentiate chemotherapeutic effects in solid tumor therapy. Sci. Rep., 2017, 7(1), 4035.
[http://dx.doi.org/10.1038/s41598-017-04406-0] [PMID: 28642588]
[117]
Sun, W.; Lv, S.; Li, H.; Cui, W.; Wang, L. Enhancing the anticancer efficacy of immunotherapy through combination with histone modification inhibitors. Genes (Basel), 2018, 9(12), 633.
[http://dx.doi.org/10.3390/genes9120633] [PMID: 30558227]
[118]
Cossío, F.P.; Esteller, M.; Berdasco, M. Towards a more precise therapy in cancer: Exploring epigenetic complexity. Curr. Opin. Chem. Biol., 2020, 57, 41-49.
[http://dx.doi.org/10.1016/j.cbpa.2020.04.008] [PMID: 32480315]
[119]
Jones, P.A.; Issa, J.P.J.; Baylin, S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet., 2016, 17(10), 630-641.
[http://dx.doi.org/10.1038/nrg.2016.93] [PMID: 27629931]
[120]
Jones, P.A.; Ohtani, H.; Chakravarthy, A.; De Carvalho, D.D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer, 2019, 19(3), 151-161.
[http://dx.doi.org/10.1038/s41568-019-0109-9] [PMID: 30723290]
[121]
Kantarjian, H.; Issa, J.P.J.; Rosenfeld, C.S.; Bennett, J.M.; Albitar, M.; DiPersio, J.; Klimek, V.; Slack, J.; de Castro, C.; Ravandi, F.; Helmer, R., III; Shen, L.; Nimer, S.D.; Leavitt, R.; Raza, A.; Saba, H. Decitabine improves patient outcomes in myelodysplastic syndromes. Cancer, 2006, 106(8), 1794-1803.
[http://dx.doi.org/10.1002/cncr.21792] [PMID: 16532500]
[122]
Yi, J.; Wu, J. Epigenetic regulation in medulloblastoma. Mol. Cell. Neurosci., 2018, 87, 65-76.
[http://dx.doi.org/10.1016/j.mcn.2017.09.003] [PMID: 29269116]
[123]
Singh, M.M.; Manton, C.A.; Bhat, K.P.; Tsai, W.W.; Aldape, K.; Barton, M.C.; Chandra, J. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors. Neuro-oncol., 2011, 13(8), 894-903.
[http://dx.doi.org/10.1093/neuonc/nor049] [PMID: 21653597]
[124]
Butler, C.; Sprowls, S.; Szalai, G.; Arsiwala, T.; Saralkar, P.; Straight, B.; Hatcher, S.; Tyree, E.; Yost, M.; Kohler, W.J.; Wolff, B.; Putnam, E.; Lockman, P.; Liu, T. Hypomethylating agent azacitidine is effective in treating brain metastasis triple-negative breast cancer through regulation of DNA methylation of keratin 18 gene. Transl. Oncol., 2020, 13(6), 100775.
[http://dx.doi.org/10.1016/j.tranon.2020.100775] [PMID: 32408199]
[125]
Zhang, Y.; Zhou, L.; Safran, H.; Borsuk, R.; Lulla, R.; Tapinos, N.; Seyhan, A.A.; El-Deiry, W.S. EZH2i EPZ-6438 and HDACi vorinostat synergize with ONC201/TIC10 to activate integrated stress response, DR5, reduce H3K27 methylation, ClpX and promote apoptosis of multiple tumor types including DIPG. Neoplasia, 2021, 23(8), 792-810.
[http://dx.doi.org/10.1016/j.neo.2021.06.007] [PMID: 34246076]