Vilsmeier-Haack Cyclisation as a Facile Synthetic Route to Thieno [2,3- b] Quinolines (Part I)

Page: [197 - 220] Pages: 24

  • * (Excluding Mailing and Handling)

Abstract

Quinoline ring system is extensively dispensed in natural products, especially in alkaloids. Moreover, thieno[2,3-b]quinolines have vast biological activities, including urea transporter inhibition, anti-microbial, antitumor, antioxidant, anti-inflammatory, and antiproliferative EGFR tyrosine kinase inhibition. Vilsmeier-Haack is considered the most facile and promising set of synthetic routes, leading to 2-chloro-3-formylquinolines through Vilsmeier-Haack cyclisation of N- arylacetamides, which are subsequently used as key intermediates for the synthesis of thieno[2,3-b]quinolones (Tqs). Many varieties of thieno[2,3-b]quinolines (Tqs) ring systems, specifically concerning medicinal chemistry, have been developed over the past decade. In light of these facts, this review presents a systematic and comprehensive survey of the method of preparation and the chemical reactivity of thieno[2,3-b]quinolines through the Vilsmeier-Haack reaction. In this study, the methods of preparation and the chemical reactivity of (Tqs) by using the Vilsmeier-Haack reaction are discussed. Since the beginning of the 21st century, they have been advancing towards synthesizing substituted Tqs. It can be concluded that substituted Tqs can be used as building blocks for the synthesis of polyfunctionalized heterocyclic compounds with pharmacological interest.

Keywords: Vilsmeier-Haack reagent, thieno[2, 3-b]quinolines, synthesis, biological activity, reactivity

Graphical Abstract

[1]
Kumari, L.; Salahuddin; Mazumder, A.; Pandey, D.; Yar, M.S.; Kumar, R.; Mazumder, R.; Sarafroz, M.; Ahsan, M.J.; Kumar, V.; Gupta, S. Mini Rev. Org. Chem., 2019, 16(7), 653-688.
[http://dx.doi.org/10.2174/1570193X16666190213105146]
[2]
Utreja, D.; Sharma, S.; Goyal, A.; Kaur, K.; Kaushal, S. Curr. Org. Chem., 2020, 23(21), 2271-2294.
[http://dx.doi.org/10.2174/1385272823666191023122704]
[3]
Shaikh, A.; Meshram, J.S. Curr. Bioact. Compd., 2018, 14(2), 134-141.
[http://dx.doi.org/10.2174/1573407213666170201113846]
[4]
Marepu, N.; Gosi, M.; Vedula, S.S.; Yeturu, S.; Pal, M. Mini Rev. Med. Chem., 2019, 19(7), 599-608.
[http://dx.doi.org/10.2174/1389557518666180727170055] [PMID: 30058486]
[5]
Mohamed, M.F.; Abdelmoniem, A.M.; Elwahy, A.H.M.; Abdelhamid, I.A. Curr. Cancer Drug Targets, 2018, 18(4), 372-381.
[http://dx.doi.org/10.2174/1568009617666170630143311] [PMID: 28669339]
[6]
Liu, D.; Xue, A.; Liu, Z.; Zhang, Y.; Peng, P.; Wang, H. Lett. Drug Des. Discov., 2019, 16(6), 663-669.
[http://dx.doi.org/10.2174/1570180815666180820131036]
[7]
Han, C.; Ren, J.; Su, F.; Hu, X.; Li, M.; Wang, Z.; Wu, L. Anti-cancer agent., 2020, 20, 1-10.
[8]
Upadhyay, K.D. Anti-cancer agent. Me., 2019, 19(10), 1285-1292.
[9]
Agili, F.A. Curr. Org. Synth., 2018, 15(6), 846-852.
[http://dx.doi.org/10.2174/1570179415666180521120531]
[10]
Singh, A.; Shukla, K.; Chaudhary, M. J. Nat. Prod., 2019, 9, 1-7.
[11]
Sumana, K.; Prashanth, J.; Rao, K.P.; Subramanyam, M.; Anuradha, V. Lett. Drug Des. Discov., 2019, 6, 1-10.
[12]
Dubey, S.; Bhardwaj, S.; Singh, E.; Prabhakaran, P.; Cherian, A. Lett. Drug Des. Discov., 2018, 15(6), 643-653.
[http://dx.doi.org/10.2174/1570180814666170810114508]
[13]
Subhedar, D.D.; Shaikh, M.H.; Tupe, S.G.; Deshpande, M.V.; Khedkar, V.M.; Jha, P.C.; Shingate, B.B. Mini Rev. Med. Chem., 2018, 18(7), 622-630.
[http://dx.doi.org/10.2174/1389557516666161226161152] [PMID: 28029079]
[14]
Pallavi, B.; Singh, R.P.; Jha, P.N.; Chander, S.; Murugesan, S.; Sharma, P.; Shukla, P. Lett. Org. Chem., 2019, 16(11), 874-883.
[http://dx.doi.org/10.2174/1570178616666190123121506]
[15]
Prasad, A.S.G.; Rao, T.B.; Rambabu, D.; Rao, M.V.B.; Pal, M. Mini Rev. Med. Chem., 2018, 18(10), 895-903.
[http://dx.doi.org/10.2174/1389557517666170412112619] [PMID: 28403794]
[16]
Joshi, M.C.; Egan, T.J. Curr. Top. Med. Chem., 2020, 20(8), 617-697.
[http://dx.doi.org/10.2174/1568026620666200127141550] [PMID: 31985377]
[17]
Garg, P.; Rawat, R.S.; Bhatt, H.; Kumar, S.; Reddy, S.R. ChemistrySelect, 2022, 7(28), e202201706.
[18]
Kotoulas, S.S.; Kojić, V.V.; Bogdanović, G.M.; Koumbis, A.E. Bioorg. Med. Chem. lett., 2013, 23(11), 3364-3367.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.091]
[19]
Küçükbay, H.; Gönül, Z.; Küçükbay, F.Z.; Tekin, Z.; Angeli, A.; Bartolucci, G.; Supuran, C.T.; Tatlıcı, E.; Apohan, E.; Yeşilada, Ö. Arch. Pharm. (Weinheim), 2021, 354(11), 2100122.
[http://dx.doi.org/10.1002/ardp.202100122] [PMID: 34313324]
[20]
Küçükbay, H.; Gönül, Z.; Küçükbay, F.Z.; Angeli, A.; Bartolucci, G.; Supuran, C.T. Enzyme Inhib. Med. Chem., 2020, 35(1), 1021-1026.
[http://dx.doi.org/10.1080/14756366.2020.1751620]
[21]
Mugnaini, C.; Pasquini, S.; Corelli, F. Curr. Med. Chem., 2009, 16(14), 1746-1767.
[http://dx.doi.org/10.2174/092986709788186156] [PMID: 19442143]
[22]
Cairns, H.; Cox, D.; Gould, K.J.; Ingall, A.H.; Suschitzky, J.L. J. Med. Chem., 1985, 28(12), 1832-1842.
[http://dx.doi.org/10.1021/jm00150a014] [PMID: 2999403]
[23]
Lee, C.H.; Lee, H.S. J. Korean Soc. Appl. Biol. Chem., 2011, 54(1), 118-123.
[http://dx.doi.org/10.3839/jksabc.2011.017]
[24]
Gujarati, N.A.; Undem, B.J.; Korlipara, V.L. Med. Chem., 2020, 16(2), 202-211.
[http://dx.doi.org/10.2174/1573406415666190626130453] [PMID: 31241438]
[25]
Kumar, K.S.; Kiran Kumar, S.; Yogi Sreenivas, B.; Gorja, D.R.; Kapavarapu, R.; Rambabu, D.; Rama Krishna, G.; Reddy, C.M.; Basaveswara Rao, M.V.; Parsa, K.V.L.; Pal, M. Bioorg. Med. Chem., 2012, 20(7), 2199-2207.
[http://dx.doi.org/10.1016/j.bmc.2012.02.027] [PMID: 22386978]
[26]
Manohar, C.S.; Manikandan, A.; Sridhar, P.; Sivakumar, A.; Siva Kumar, B.; Reddy, S.R. J. Mol. Struct., 2018, 1154, 437-444.
[http://dx.doi.org/10.1016/j.molstruc.2017.10.075]
[27]
Zhao, Y.; Li, M.; Li, B.; Zhang, S.; Su, A.; Xing, Y.; Ge, Z.; Li, R.; Yang, B. Eur. J. Med. Chem., 2019, 172, 131-142.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.060] [PMID: 30959323]
[28]
Gowda, J.; Khader, M.A.; Kalluraya, B.; Hidayathulla, S. Indian J. Chem., 2011, 50, 1491-1495.
[29]
Raghavendra, M.; Bhojya Naik, H.S.; Sherigara, B.S. J. Sulfur Chem., 2006, 27(4), 347-351.
[http://dx.doi.org/10.1080/17415990600825611]
[30]
Kumar, C.N.S.S.P.; Srihari, E.; Ravinder, M.; Kumar, K.P.; Murthy, U.S.N.; Rao, V.J. J. Heterocycl. Chem., 2013, 50(S1), E131-E135.
[http://dx.doi.org/10.1002/jhet.1091]
[31]
Abdel-rahman, A.E.; Bakhite, E.A.; Abdel-moneam, M.I.; Mohamed, T.A. Phosphorus Sulfur Silicon Relat. Elem., 1993, 75(1-4), 219-227.
[http://dx.doi.org/10.1080/10426509308037396]
[32]
Mahajan, P.; Nikam, M.; Asrondkar, A.; Bobade, A.; Gill, C. J. Heterocycl. Chem., 2017, 54(2), 1415-1422.
[http://dx.doi.org/10.1002/jhet.2722]
[33]
Abdelbaset, M.S.; Abdel-Aziz, M.; Ramadan, M.; Abdelrahman, M.H.; Abbas Bukhari, S.N.; Ali, T.F.S.; Abuo-Rahma, G.E.D.A. Bioorg. Med. Chem., 2019, 27(6), 1076-1086.
[http://dx.doi.org/10.1016/j.bmc.2019.02.012] [PMID: 30744932]
[34]
Meth-Cohn, O.; Narine, B.; Tarnowski, B. J. Chem. Soc., Perkin Trans. 1, 1981, 1, 1520-1530.
[http://dx.doi.org/10.1039/p19810001520]
[35]
Srivastava, A.; Chandra, A.; Singh, R.M. Indian J. Chem., 2005, 44, 2077-2081.
[36]
Poursattar Marjani, A.; Khalafy, J.; Rostampoor, A. J. Heterocycl. Chem., 2017, 54(1), 648-652.
[http://dx.doi.org/10.1002/jhet.2637]
[37]
Khalil, A.M.; Berghot, M.A.; Gouda, M.A. Eur. J. Med. Chem., 2009, 44(11), 4434-4440.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.002] [PMID: 19581025]
[38]
Gouda, M.A.; Eldien, H.F.; Girges, M.M.; Berghot, M.A. J. Saudi Chem. Soc., 2016, 20(2), 151-157.
[http://dx.doi.org/10.1016/j.jscs.2012.06.004]
[39]
Khalil, A.M.; Berghot, M.A.; Abd El-Ghani, G.E.; Gouda, M.A. Synth. Commun., 2010, 40(11), 1658-1669.
[http://dx.doi.org/10.1080/00397910903161652]
[40]
Helal, M.H.; Salem, M.A.; Gouda, M.A.; Ahmed, N.S.; El-Sherif, A.A. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 147, 73-83.
[http://dx.doi.org/10.1016/j.saa.2015.03.070] [PMID: 25827768]
[41]
Gouda, M.A.; Berghot, M.A.; Shoeib, A.I.; Khalil, A.M. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185(7), 1455-1462.
[http://dx.doi.org/10.1080/10426500903074858]
[42]
Gouda, M.A. J. Heterocycl. Chem., 2017, 54(1), 268-277.
[http://dx.doi.org/10.1002/jhet.2576]
[43]
Abu-Hashem, A.A. Acta Pol. Pharm., 2018, 75(1), 59-70.
[44]
Abu-Hashem, A.A.; Abu-Zied, K.M.; El-Shehry, M.F. Monatsh. Chem., 2011, 142(5), 539-545.
[http://dx.doi.org/10.1007/s00706-011-0456-z]
[45]
Raj, T.T.; Ambekar, S.Y. J. Chem. Res. (S), 1988, 50, 537-551.
[46]
Raj, T.T.; Ambekar, S.Y. J. Chem. Eng. Data, 1988, 33(4), 530-531.
[http://dx.doi.org/10.1021/je00054a040]
[47]
Kumar, R.; Asha, H.G.; Raghavan, K.R.; Rao, S.C.; Advi, G.M. Cancer Chemother. Pharmacol., 2015, 75(6), 1121-1133.
[48]
Baker, W. J. Chem. Soc., 1933, 1381-1389.
[http://dx.doi.org/10.1039/jr9330001381]
[49]
Gradwol, E. Clinical Laboratory methods and diagnosis, 7th ed.; Mosby, C.V. Company: Berlin, 1970, II, p. 1407.
[50]
Alizadeh, A.; Roosta, A. Chem. Pap., 2018, 72(10), 2467-2478.
[http://dx.doi.org/10.1007/s11696-018-0497-4]
[51]
Prabahkara, M.C.; Bhojya Naik, H.S. Biometals, 2008, 21(6), 675-684.
[http://dx.doi.org/10.1007/s10534-008-9152-9] [PMID: 18581241]
[52]
Luo, L.; Meng, L.; Peng, Y.; Xing, Y.; Sun, Q.; Ge, Z.; Li, R. Eur. J. Org. Chem., 2015, 2015(3), 631-637.
[http://dx.doi.org/10.1002/ejoc.201403156]
[53]
Faghihi, Z.; Shiri, M.; Pourabed, R.; Heravi, M. M.; Zadsirjan, V. Polycycl. Aromat. Comp., 2019, 1-11.
[54]
Nandeshwarappa, B.P.; Aruna Kumar, D.B.; Bhojya Naik, H.S.; Mahadevan, K.M. J. Sulfur Chem., 2005, 26(4-5), 373-379.
[http://dx.doi.org/10.1080/17415990500456368]
[55]
Kiran, B.M.; Nandeshwarappa, B.P.; Vaidya, V.P.; Mahadevan, K.M. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(5), 969-980.
[http://dx.doi.org/10.1080/10426500601088846]
[56]
Bakhite, E.A.G. J. Chin. Chem. Soc. (Taipei), 2001, 48(6B), 1175-1183.
[http://dx.doi.org/10.1002/jccs.200100173]
[57]
Abdel-Aziz, M.; Park, S.E.; Abuo-Rahma, Gel-D.; Sayed, M.A.; Kwon, Y. Eur. J. Med. Chem., 2013, 69, 427-438.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.040] [PMID: 24090914]
[58]
Shiri, M.; Faghihi, Z.; Oskouei, H.A.; Heravi, M.M.; Fazelzadeh, S.; Notash, B. RSC Advances, 2016, 6(95), 92235-92240.
[http://dx.doi.org/10.1039/C6RA11469E]
[59]
Srivastava, A.; Singh, R.M. J. Chem., 2005, 44B(9), 1868-1875.
[60]
Sonawane, A.D.; Garud, D.R.; Udagawa, T.; Koketsu, M. Org. Biomol. Chem., 2018, 16(2), 245-255.
[http://dx.doi.org/10.1039/C7OB02523H] [PMID: 29238785]
[61]
Sonawane, A.D.; Kubota, Y.; Koketsu, M. J. Org. Chem., 2019, 84(13), 8602-8614.
[http://dx.doi.org/10.1021/acs.joc.9b01061] [PMID: 31199146]
[62]
Nandini, D.; Asthana, M.; Mishra, K.; Singh, R.P.; Singh, R.M. Tetrahedron Lett., 2014, 55(45), 6257-6262.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.082]
[63]
Singh, R.M.; Nandini, D.; Bharadwaj, K.C.; Gupta, T.; Singh, R.P. Org. Biomol. Chem., 2017, 15(47), 9979-9982.
[http://dx.doi.org/10.1039/C7OB02431B] [PMID: 29167855]
[64]
Hartmann, H. ARKIVOC, 2012, 2012(3), 356-370.
[http://dx.doi.org/10.3998/ark.5550190.0013.325]
[65]
Abu-Hashem, A.A.; Fathy, U.; Gouda, M.A. J. Heterocycl. Chem., 2020, 57, jhet.4065.
[http://dx.doi.org/10.1002/jhet.4065]
[66]
Gouda, M.A.; Abu-Hashem, A.A.; Hussein, H.A.R.; Aly, A.S. Lett. Org. Chem., 2020, 17(12), 897-925.
[http://dx.doi.org/10.2174/1570178617666200417121205]
[67]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Med. Chem. Res., 2018, 27, 2297-2311.
[http://dx.doi.org/10.1007/s00044-018-2236-3]
[68]
Abu-Hashem, A.A.; Gouda, M.A. J. Heterocycl. Chem., 2017, 54(2), 850-858.
[http://dx.doi.org/10.1002/jhet.2645]
[69]
Gouda, M.A.; Abu-Hashem, A.A.; Saad, H.H.; Elattar, K.M. Res. Chem. Intermed., 2016, 42(3), 2119-2162.
[http://dx.doi.org/10.1007/s11164-015-2139-6]
[70]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Eur. J. Med. Chem., 2010, 45(5), 1976-1981.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.042] [PMID: 20149490]
[71]
Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Hussein, H.A.R.; Gouda, M.A. Mini Rev. Org. Chem., 2022, 19(1), 74-91.
[http://dx.doi.org/10.2174/1570193X18666210218212719]
[72]
Abu-Hashem, A.A.; El-Gazzar, A.B.A.; Abdelgawad, A.A.; Gouda, M.A. Phosphorus Sulfur Silicon Relat., 2021, 1-24.
[73]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. Mini Rev. Org. Chem., 2022, 19(5), 629-653.
[http://dx.doi.org/10.2174/1570193X18666211004102537]
[74]
Salem, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M.; Gouda, M.A. J. Heterocycl. Chem., 2021, 58(9), 1705-1740.
[http://dx.doi.org/10.1002/jhet.4269]
[75]
Gouda, M.A.; Abu-Hashem, A.A.; Abdelgawad, A.A.M. J. Heterocycl. Chem., 2021, 58(4), 908-927.
[http://dx.doi.org/10.1002/jhet.4205]