A Critical Review on Phytosomes: Advancement and Research on Emerging Nanotechnological Tools

Article ID: e200922208966 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The limiting restrictions for any chemical to pass through cellular membranes and be absorbed systematically after oral or topical administration are the molecular size and lipid solubility. Herbal materials are used to make Phytosomes, a new drug delivery method that is easy to make and has a high absorption profile. The pharmacological profile of the drug is also excellent. Due to low lipid solubility and insufficient molecular size, many plant extracts are unable to attain the needed therapeutic value. To penetrate lipid membranes and shield them from germs and digestive enzymes, phytosomes are made utilising phospholipids, predominantly phosphatidylcholine, which has improved bioavailability. A comprehensive literature search of PUBMED, ScienceDirect, SCOPUS and MEDLINE databases yielded the following results: the production procedure, commercial formulations, and medicinal uses are all documented. Phytosomal preparation and drug release behaviour, as well as their applications, are discussed in this review. We have included new information on phytosomal research advancements. The phyto-phospholipid complexes also came up for discussion. To administer powerful and/or unstable medications, the phytosomal drug delivery method may be extremely successful due to the enhanced bioavailability and ease of absorption. According to the findings of this study, the researchers are encouraged to transmit their expertise from labs to the marketplace to further improve these items.

Keywords: Phytoconstituents, Phospholipids, Bioavailability, Lipid solubility, . Phytomedicine

Graphical Abstract

[1]
Mbah, C.C.; Builders, P.F.; Attama, A.A. Nanovesicular carriers as alternative drug delivery systems: Ethosomes in focus. Expert Opin. Drug Deliv., 2014, 11(1), 45-59.
[http://dx.doi.org/10.1517/17425247.2013.860130] [PMID: 24294974]
[2]
Mohanty, D.; Jhansi, M.; Bakshi, V.; Haque, A.; Swapna, S.; Sahoo, C.K.; Upadhyay, A.K. Niosomes: A novel trend in drug delivery. Res. J. Pharm. Technol., 2018, 11(11), 5205-5211.
[http://dx.doi.org/10.5958/0974-360X.2018.00950.2]
[3]
Taghipour, D.Y.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[4]
Rashid, S.; Majeed, L.R.; Nisar, B.; Nisar, H.; Bhat, A.A.; Ganai, B.A. Phytomedicines: Diversity, Extraction, and Conservation Strategies. In: Phytomedicine; Academic Press: Cambridge, 2021; pp. 1-33.
[5]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[6]
Di Santo, M.C.; D’ Antoni, C.L.; Domínguez Rubio, A.P.; Alaimo, A.; Pérez, O.E. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications − A review. Biomed. Pharmacother., 2021, 142, 111970.
[http://dx.doi.org/10.1016/j.biopha.2021.111970] [PMID: 34333289]
[7]
Stefanucci, A.; Luisi, G.; Zengin, G.; Macedonio, G.; Dimmito, M.P.; Novellino, E.; Mollica, A. Discovery of arginine-containing tripeptides as a new class of pancreatic lipase inhibitors. Future Med. Chem., 2019, 11(1), 5-19.
[http://dx.doi.org/10.4155/fmc-2018-0216] [PMID: 30526045]
[8]
Vinarov, Z.; Abdallah, M.; Agundez, J.A.G.; Allegaert, K.; Basit, A.W.; Braeckmans, M.; Ceulemans, J.; Corsetti, M.; Griffin, B.T.; Grimm, M.; Keszthelyi, D.; Koziolek, M.; Madla, C.M.; Matthys, C.; McCoubrey, L.E.; Mitra, A.; Reppas, C.; Stappaerts, J.; Steenackers, N.; Trevaskis, N.L.; Vanuytsel, T.; Vertzoni, M.; Weitschies, W.; Wilson, C.; Augustijns, P. Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur. J. Pharm. Sci., 2021, 162, 105812.
[http://dx.doi.org/10.1016/j.ejps.2021.105812] [PMID: 33753215]
[9]
Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[10]
Effinger, A.; O’Driscoll, C.M.; McAllister, M.; Fotaki, N. Impact of gastrointestinal disease states on oral drug absorption – implications for formulation design – a PEARRL review. J. Pharm. Pharmacol., 2019, 71(4), 674-698.
[http://dx.doi.org/10.1111/jphp.12928] [PMID: 29766501]
[11]
Alharbi, W.S.; Almughem, F.A.; Almehmady, A.M.; Jarallah, S.J.; Alsharif, W.K.; Alzahrani, N.M.; Alshehri, A.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics, 2021, 13(9), 1475.
[http://dx.doi.org/10.3390/pharmaceutics13091475] [PMID: 34575551]
[12]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[13]
Saha, S.; Sarma, A.; Saikia, P.; Chakraborty, T. Phytosome: A brief overview. Sch. Acad. J. Pharm., 2013, 2, 12-20.
[14]
Amit, P.; Tanwar, Y.S.; Rakesh, S. Phytosome: Phytolipid drug dilivery system for improving bioavailability of herbal drug. J. Pharm. Sci. Biosci. Res., 2013, 3(2), 51-57.
[15]
Jain, N.; Valli, K.S.; Devi, V.K. Importance of novel drug delivery systems in herbal medicines. Pharmacogn. Rev., 2010, 4(7), 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[16]
Karpuz, M.; Gunay, M.S.; Ozer, A.Y. Liposomes and Phytosomes for Phytoconstituents.In: Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents; Elsevier: Amsterdam, 2020, pp. 525-553.
[17]
Sriya, K.C.; Sai, D.; Sankar, P.R. Phytosomes: A novel approach for herbal phytochemicals for enhancing the bioavailability. Int. J. Pharm. Sci. Rev. Res., 2020, 6, 21-26.
[18]
Kumar, D.; Vats, N.; Saroha, K.; Rana, A.C. Phytosomes as Emerging Nanotechnology for Herbal Drug Delivery.In: Sustainable Agriculture Reviews 43; Springer, 2020, pp. 217-237.
[19]
Barani, M.; Sangiovanni, E.; Angarano, M.; Rajizadeh, M.A.; Mehrabani, M.; Piazza, S.; Gangadharappa, H.V.; Pardakhty, A.; Mehrbani, M.; Dell’Agli, M.; Nematollahi, M.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine, 2021, 16, 6983-7022.
[http://dx.doi.org/10.2147/IJN.S318416] [PMID: 34703224]
[20]
Jain, D. Phytosome: A novel drug delivery system for herbal medicine. Int. J. Pharm. Sci. Drug Res., 2010, 2, 224-228.
[21]
Ravi, G.S.; Chandur, V.; Shabaraya, A.R.; Sanjay, K. Phytosomes: An advanced herbal drug delivery system. Int. J. Pharm. Res. BioScience, 2015, 4, 415-432.
[22]
Akki, R.; Sri, K.N.; Govardhani, K.L.; Ramya, M.G. Phytosomes: A novel drug delivery for herbal extracts. Life Sci., 2019, 5(1069), 1069-1082.
[23]
Lu, M.; Qiu, Q.; Luo, X.; Liu, X.; Sun, J.; Wang, C.; Lin, X.; Deng, Y.; Song, Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci., 2019, 14(3), 265-274.
[http://dx.doi.org/10.1016/j.ajps.2018.05.011] [PMID: 32104457]
[24]
Shakeri, A.; Sahebkar, A. Opinion paper: Phytosome: A fatty solution for efficient formulation of phytopharmaceuticals. Recent Pat. Drug Deliv. Formul., 2016, 10(1), 7-10.
[http://dx.doi.org/10.2174/1872211309666150813152305] [PMID: 26268361]
[25]
Vali, S.C.; Khan, A.; Bharathi, M.P.; Prasad, S.S.; Yusuf, S.M.; Khanam, A. Phytosomes: Novel carriers for delivery of phytoconstituents. Int. J. Mod. Pharm. Res., 2015, 5(2), 33.
[26]
Di Costanzo, A.; Angelico, R. Formulation strategies for enhancing the bioavailability of silymarin: The state of the art. Molecules, 2019, 24(11), 2155.
[http://dx.doi.org/10.3390/molecules24112155] [PMID: 31181687]
[27]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[28]
Turhan, F. Phyto-phospholipid complexes as drug delivery system for herbal extracts/molecules. Turk J Pharm Sci., 2015, 12(1), 93-102.
[29]
Vinod, K.R.; Sandhya, S.; Chandrashekar, J.; Swetha, R.; Rajeshwar, T.; Banji, D. A review on genesis and characterization of phytosomes. Int. J. Pharm. Sci. Rev. Res., 2010, 4(3), 69-75.
[30]
Arifin, S.F.; AlShami, A.; Omar, S.S.S.; Jalil, A.A.; Khalid, K.A.; Hadi, H. Impact of modern technology on the development of natural-based products. J. Ayurvedic Herb. Med., 2020, 5(4), 133-142.
[http://dx.doi.org/10.31254/jahm.2019.5404]
[31]
Ghanbarzadeh, B.; Babazadeh, A.; Hamishehkar, H. Nano-phytosome as a potential food-grade delivery system. Food Biosci., 2016, 15, 126-135.
[http://dx.doi.org/10.1016/j.fbio.2016.07.006]
[32]
Semalty, A.; Semalty, M.; Rawat, M.S.M.; Franceschi, F. Supramolecular phospholipids–polyphenolics interactions: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia, 2010, 81(5), 306-314.
[http://dx.doi.org/10.1016/j.fitote.2009.11.001] [PMID: 19919847]
[33]
Jan, R.; Asaf, S.; Numan, M. Lubna; Kim, K-M. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy , 2021, 11(5), 968.
[http://dx.doi.org/10.3390/agronomy11050968]
[34]
Lautié, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling plant natural chemical diversity for drug discovery purposes. Front. Pharmacol., 2020, 11, 397.
[http://dx.doi.org/10.3389/fphar.2020.00397] [PMID: 32317969]
[35]
Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking plant secondary metabolites and plant microbiomes: A review. Front. Plant Sci., 2021, 12, 621276.
[http://dx.doi.org/10.3389/fpls.2021.621276] [PMID: 33737943]
[36]
Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res., 2019, 52(1), 39.
[http://dx.doi.org/10.1186/s40659-019-0246-3] [PMID: 31358053]
[37]
Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines , 2018, 5(3), 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[38]
Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact., 2019, 5, 57-119.
[http://dx.doi.org/10.31665/JFB.2019.5178]
[39]
Yang, B.; Dong, Y.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules, 2020, 25(20), 4613.
[http://dx.doi.org/10.3390/molecules25204613] [PMID: 33050462]
[40]
Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev., 2015, 504253.
[http://dx.doi.org/10.3390/molecules25204613] [PMID: 33050462]
[41]
Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop., 2017, 20(8), 1689-1699.
[http://dx.doi.org/10.1080/10942912.2016.1220393]
[42]
Gaikwad, A.R.; Ahire, K.D.; Gosavi, A.A.; Salunkhe, K.S.; Khalkar, A.; Gaikwad Abhijeet, R. Phytosome as a novel drug delivery system for bioavailability enhancement of phytoconstituents and its applications: A review. J. Drug Deliv. Ther., 2021, 11(3), 138-152.
[http://dx.doi.org/10.22270/jddt.v11i3.4847]
[43]
Mane, K.; Baokar, S.; Bhujbal, A.; Pharande, S.; Patil, G.; Patil, R. Phyto-phospholipid complexes (phytosomes): A novel approach to improve the bioavailability of active constituents. Int. J. Adv. Sci. Res., 2020, 68-78.
[44]
Rasaie, S.; Ghanbarzadeh, S.; Mohammadi, M.; Hamishehkar, H. Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharm. Sci., 2014, 20, 96-101.
[45]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.; Lightfoot, D. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[46]
Saoji, S.D.; Raut, N.A.; Dhore, P.W.; Borkar, C.D.; Popielarczyk, M.; Dave, V.S. Preparation and evaluation of phospholipid-based complex of Standardized Centella Extract (SCE) for the enhanced delivery of phytoconstituents. AAPS J., 2016, 18(1), 102-114.
[http://dx.doi.org/10.1208/s12248-015-9837-2] [PMID: 26563253]
[47]
Saharan, V.A.; Singh, M.; Anil, B. Phytosome: Drug delivery system for polyphenolic phytoconstituents. Iran J. Pharm. Sci., 2011, 7, 209-2019.
[48]
Chivte, P.S.; Pardhi, V.S.; Joshi, V.A.; Rani, A. A review on therapeutic applications of phytosomes. J. Drug Deliv. Ther., 2017, 7(5), 17-21.
[http://dx.doi.org/10.22270/jddt.v7i5.1513]
[49]
Yu, Z.; Liu, X.; Chen, H.; Zhu, L. Naringenin-loaded dipalmitoylphosphatidylcholine phytosome dry powders for inhaled treatment of acute lung injury. J. Aerosol Med. Pulm. Drug Deliv., 2020, 33(4), 194-204.
[http://dx.doi.org/10.1089/jamp.2019.1569] [PMID: 32176552]
[50]
Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Phytosome complexed with chitosan for gingerol delivery in the treatment of respiratory infection: In vitro and in vivo evaluation. Eur. J. Pharm. Sci., 2018, 122, 214-229.
[http://dx.doi.org/10.1016/j.ejps.2018.06.028] [PMID: 29966737]
[51]
Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential role of ginger (Zingiber officinale roscoe) in the prevention of neurodegenerative diseases. Front. Nutr., 2022, 9, 809621.
[http://dx.doi.org/10.3389/fnut.2022.809621] [PMID: 35369082]
[52]
Grigore, A.; Vulturescu, V.; Neagu, G.; Ungureanu, P.; Panteli, M.; Rasit, I. Antioxidant–anti-inflammatory evaluation of a polyherbal formula. Pharmaceuticals, 2022, 15(2), 114.
[http://dx.doi.org/10.3390/ph15020114] [PMID: 35215227]
[53]
Panda, V.S. N, S.R. Evaluation of cardioprotective activity of Ginkgo biloba and Ocimum sanctum in rodents. Altern. Med. Rev., 2009, 14(2), 161-171.
[PMID: 19594225]
[54]
Kapoor, B.; Gupta, R.; Gulati, M.; Singh, S.K.; Khursheed, R.; Gupta, M. The why, where, who, how, and what of the vesicular delivery systems. Adv. Colloid Interface Sci., 2019, 271, 101985.
[http://dx.doi.org/10.1016/j.cis.2019.07.006] [PMID: 31351415]
[55]
Walia, V.; Chaudhary, S.K.; Kumar Sethiya, N. Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochem. Int., 2021, 143, 104939.
[http://dx.doi.org/10.1016/j.neuint.2020.104939] [PMID: 33346032]
[56]
Malla, B. Ethnobotanical study on medicinal plants in Parbat district of western Nepal. J. Ethnopharmacol., 2018, 165, 103-117.
[http://dx.doi.org/10.1016/j.jep.2014.12.057] [PMID: 25571849]
[57]
Hässig, A.; Linag, W.X.; Schwabl, H.; Stampfli, K. Flavonoids and tannins: Plant-based antioxidants with vitamin character. Med. Hypotheses, 1999, 52(5), 479-481.
[http://dx.doi.org/10.1054/mehy.1997.0686] [PMID: 10416956]
[58]
Alhakamy, N.A.; Badr-Eldin, S.M.A.; Fahmy, U.; Alruwaili, N.K.; Awan, Z.A.; Caruso, G.; Alfaleh, M.A.; Alaofi, A.L.; Arif, F.O.; Ahmed, O.A.A.; Alghaith, A.F. Thymoquinone-Loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells. Pharmaceutics, 2020, 12(8), 761.
[http://dx.doi.org/10.3390/pharmaceutics12080761] [PMID: 32806507]
[59]
Murugesan, M.P.; Venkata Ratnam, M.; Mengitsu, Y.; Kandasamy, K. Evaluation of anti-cancer activity of phytosomes formulated from aloe vera extract. Mater. Today Proc., 2021, 42, 631-636.
[http://dx.doi.org/10.1016/j.matpr.2020.11.047]
[60]
Komeil, I.A.; El-Refaie, W.M.; Gowayed, M.A.; El-Ganainy, S.O.; El Achy, S.N.; Huttunen, K.M.; Abdallah, O.Y. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int. J. Pharm., 2021, 601, 120564.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120564] [PMID: 33812970]
[61]
Sahu, R.K.; Aboulthana, W.M.; Mehta, D.K. Phyto-phospholipid complexation as a novel drug delivery system for management of cancer with better bioavailability: Current perspectives and future prospects. Anticancer. Agents Med. Chem., 2021, 21(11), 1403-1412.
[http://dx.doi.org/10.2174/1871520620999201110191741] [PMID: 33176666]
[62]
Sharma, P. Formulation and evaluation of phytosomes of acacia catechu herbal extract. Pharmacogn. J., 2020, 23-29.
[63]
Flaig, T.W.; Gustafson, D.L.; Su, L.J.; Zirrolli, J.A.; Crighton, F.; Harrison, G.S.; Pierson, A.S.; Agarwal, R.; Glodé, L.M. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest. New Drugs, 2006, 25(2), 139-146.
[http://dx.doi.org/10.1007/s10637-006-9019-2] [PMID: 17077998]
[64]
Vazhappilly, C.G.; Amararathna, M.; Cyril, A.C.; Linger, R.; Matar, R.; Merheb, M.; Ramadan, W.S.; Radhakrishnan, R.; Rupasinghe, H.P.V. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J. Nutr. Biochem., 2021, 94, 108623.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108623] [PMID: 33705948]
[65]
Das, M.K.; Kalita, B. Design and evaluation of phyto-phospholipid complexes (phytosomes) of rutin for transdermal application. J. Appl. Pharm. Sci., 2014, 4(10), 51-57.
[http://dx.doi.org/10.7324/JAPS.2014.401010]
[66]
Mohanty, D.; Rani, M.J.; Haque, M.A.; Bakshi, V.; Jahangir, M.A.; Imam, S.S.; Gilani, S.J. Preparation and evaluation of transdermal naproxen niosomes: Formulation optimization to preclinical anti-inflammatory assessment on murine model. J. Liposome Res., 2020, 30(4), 377-387.
[http://dx.doi.org/10.1080/08982104.2019.1652646] [PMID: 31412744]
[67]
Mohanty, D.; Mounika, A.; Bakshi, V.; Akiful Haque, M.; Keshari Sahoo, C. Ethosomes: A novel approach for transdermal drug delivery. Int. J. Chemtech Res., 2018, 11(8), 219-226.
[http://dx.doi.org/10.20902/IJCTR.2018.110826]
[68]
Mazumder, A.; Dwivedi, A.; du Preez, J.L.; du Plessis, J. In vitro. wound healing and cytotoxic effects of sinigrin–phytosome complex. Int. J. Pharm., 2016, 498(1-2), 283-293.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.027] [PMID: 26706438]
[69]
Mazumder, A.; Dwivedi, A.; du Plessis, J.; Du Plessis, J.J. Sinigrin and its therapeutic benefits. Molecules, 2016, 21(4), 416.
[http://dx.doi.org/10.3390/molecules21040416] [PMID: 27043505]
[70]
Mungamuri, S.K.; Javvadi, Y. Role of Dietary Supplementation of Natural Products in the Prevention and Treatment of Liver Diseases. In: Phytochemicals Targeting Tumor Microenvironment in Gastrointestinal Cancers; Springer: New York, 2020; pp. 261-285.
[71]
Huang, Z.; Brennan, C.S.; Zhao, H.; Liu, J.; Guan, W.; Mohan, M.S.; Stipkovits, L.; Zheng, H.; Kulasiri, D. Fabrication and assessment of milk phospholipid-complexed antioxidant phytosomes with vitamin C and E: A comparison with liposomes. Food Chem., 2020, 324, 126837.
[http://dx.doi.org/10.1016/j.foodchem.2020.126837] [PMID: 32339791]
[72]
Fernandes, F.; Dias-Teixeira, M.; Delerue-Matos, C.; Grosso, C. Critical review of lipid-based nanoparticles as carriers of neuroprotective drugs and extracts. Nanomaterials , 2021, 11(3), 563.
[http://dx.doi.org/10.3390/nano11030563] [PMID: 33668341]
[73]
El-Gazayerly, O.N.; Makhlouf, A.I.A.; Soelm, A.M.A.; Mohmoud, M.A. Antioxidant and hepatoprotective effects of silymarin phytosomes compared to milk thistle extract in CCl4 induced hepatotoxicity in rats. J. Microencapsul., 2014, 31(1), 23-30.
[http://dx.doi.org/10.3109/02652048.2013.805836] [PMID: 23808477]
[74]
Prabhakar, S.; Saraf, M.K.; Banik, A.; Anand, A. Bacopa monniera selectively attenuates suppressed Superoxide dismutase activity in diazepam induced amnesic mice. Ann. Neurosci., 2011, 18(1), 8-13.
[http://dx.doi.org/10.5214/ans.0972.7531.1118104] [PMID: 25205911]
[75]
Abd Aziz, N.A.; Hasham, R.; Sarmidi, M.R.; Suhaimi, S.H.; Idris, M.K.H. A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: Case study on Orthosiphon aristatus, Eurycoma longifolia and Andrographis paniculata. Saudi Pharm. J., 2021, 29(2), 143-165.
[http://dx.doi.org/10.1016/j.jsps.2020.12.016] [PMID: 33679177]
[76]
Marino, M.; Gardana, C.; Scialpi, A.; Giorgini, G.; Simonetti, P.; Del Bo, C.J. An in vitro approach to study the absorption of a new oral formulation of berberine. World J. Gastroenterol., 2021, 18, 100279.
[77]
Sundaraganapathy, L.P. Development and evaluation of anti-cancer activity of phytosome formulated from the root extract of Clerodendron Paniculatum Linn. Int J Pharma Res Health Sci., 2016, 8(11), 1778-1781.
[78]
Shruthi, P.A.; Pushpadass, H.A.; Franklin, M.E.E.; Battula, S.N.; Laxmana Naik, N. Resveratrol-loaded proniosomes: Formulation, characterization and fortification. Lebensm. Wiss. Technol., 2020, 134, 110127.
[http://dx.doi.org/10.1016/j.lwt.2020.110127]
[79]
Jain, A.; Jain, P.; Parihar, D.K. Comparative study of in-vitro antidiabetic and antibacterial activity of non-conventional curcuma species. J. Biol. Active Prod Nat., 2019, 9(6), 457-464.
[http://dx.doi.org/10.1080/22311866.2019.1710253]
[80]
Kumar, V.; Rathore, K.; Jain, P.; Ahmed, Z. Biological activity of bauhinia racemose against diabetes and interlinked disorders like obesity and hyperlipidemia. Clin. Phytoscience, 2017, 3(1), 7.
[http://dx.doi.org/10.1186/s40816-017-0044-9]
[81]
Kumar, V.; Jain, P.; Rathore, K.; Ahmed, Z. Biological evaluation of Pupalia lappacea for antidiabetic, antiadipogenic, and hypolipidemic activity both in vitro and in vivo. Scientifica , 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/1062430] [PMID: 26942038]
[82]
Jain, P. Secondary metabolites for antiulcer activity. Nat. Prod. Res., 2015, 1-17.
[PMID: 25920371]
[83]
Rathore, K.; Singh, V.; Jain, P.; Rao, S.P.; Ahmed, Z.; Thakur, V.S. In-vitro and in-vivo antiadipogenic, antidiabetic and hypolipidemic activity of Diospyros melanoxylon (Roxb.). J. Ethnopharmacol., 2014, 155, 1171-1176.
[http://dx.doi.org/10.1016/j.jep.2014.06.050] [PMID: 25010927]
[84]
Jain, A.; Parihar, D.K. Antibacterial, biofilm dispersal and antibiofilm potential of alkaloids and flavonoids of Curcuma. Biocatal. Agric. Biotechnol., 2018, 16, 677-682.
[http://dx.doi.org/10.1016/j.bcab.2018.09.023]
[85]
Jain, A.; Parihar, D.K. Molecular marker based genetic diversity study of wild, cultivated and endangered species of Curcuma from Chhattisgarh region for in situ conservation. Biocatal. Agric. Biotechnol., 2019, 18, 101033. a.
[http://dx.doi.org/10.1016/j.bcab.2019.101033]
[86]
Rao, S.P.; Jain, P.; Rathore, P.; Singh, V.K. Larvicidal and knockdown activity of Citrus limetta Risso oil against dengue virus vector. Indian J. Nat. Prod. Resour., 2016, 7(3), 256-260.
[87]
Jain, A.; Jain, P.; Soni, P.; Tiwari, A.; Tiwari, S.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J. Gastrointest. Cancer, 2022.
[http://dx.doi.org/10.1007/s12029-021-00788-7] [PMID: 35043370]
[88]
Babazadeh, A.; Zeinali, M.; Hamishehkar, H. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr. Drug Targets, 2018, 19(2), 170-180.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]