Long Non-coding RNA Therapeutics: Recent Advances and Challenges

Page: [1457 - 1464] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

The discovery of the roles of RNA other than just as a messenger, such as a ribozyme, and regulatory RNAs, such as microRNA and long noncoding RNAs, is fascinating. RNA is now recognized as an important regulator involved in practically every biological process. Research in the field of non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (LncRNAs) have developed immensely over the years. Recent studies identified diverse RNAs, including non-coding RNAs such as LncRNA and their various modes of action in the cells. These RNAs are anticipated to be key targets for the treatment of various diseases since they control a broad array of biological pathways. LncRNA-targeted drug platform delivers the pharmaceutical industry a myriad of opportunities and has the potential to modulate diseases at the genetic level while also overcoming the limitations of inconsistent proteins. This article focuses on the recent advancement as well as the major challenges in the field and describes the various RNA-based therapeutics that alter the quality of healthcare for many diseases and bring personalized medicines to fruition. The article also summarizes RNA-based therapeutics that are undergoing testing in clinical trials or have been granted FDA approval.

Keywords: miRNAs, lncRNAs, circRNAs, AML, CML

[1]
Boland RC. Non-coding RNA: It’s not junk. Dig Dis Sci 2017; 62(5): 1107-9.
[http://dx.doi.org/10.1007/s10620-017-4506-1] [PMID: 28271304]
[2]
Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J Integr Bioinform 2019; 16(3): 20190027.
[http://dx.doi.org/10.1515/jib-2019-0027] [PMID: 31301674]
[3]
Losko M, Kotlinowski J, Jura J. Long noncoding RNAs in metabolic syndrome related disorders. Mediators Inflamm 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/5365209] [PMID: 27881904]
[4]
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 2013; 10(6): 924-33.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[5]
Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: Classification, biogenesis and functions in blood cells. Mol Immunol 2019; 112: 82-92.
[http://dx.doi.org/10.1016/j.molimm.2019.04.011] [PMID: 31079005]
[6]
Sun M, Kraus WL. From discovery to function: The expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 2015; 36(1): 25-64.
[http://dx.doi.org/10.1210/er.2014-1034] [PMID: 25426780]
[7]
Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[8]
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res 2012; 22(9): 1775-89.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[9]
Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Adv Exp Med Biol 2017; 1008: 1-46.
[http://dx.doi.org/10.1007/978-981-10-5203-3_1] [PMID: 28815535]
[10]
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 2016; 17(1): 47-62.
[http://dx.doi.org/10.1038/nrg.2015.10] [PMID: 26666209]
[11]
Amin N, McGrath A, Chen YPP. Evaluation of deep learning in non-coding RNA classification. Nat Mach Intell 2019; 1(5): 246-56.
[http://dx.doi.org/10.1038/s42256-019-0051-2]
[12]
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: Its evolutionary relics and biological implications in mammals: A review. J Anim Sci Technol 2018; 60(1): 25.
[http://dx.doi.org/10.1186/s40781-018-0183-7] [PMID: 30386629]
[13]
Ma L, Cao J, Liu L, et al. LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res 2019; 47(D1): D128-34.
[http://dx.doi.org/10.1093/nar/gky960] [PMID: 30329098]
[14]
Wang Y, Fang Z, Hong M, Yang D, Xie W. Long-noncoding RNAs (lncRNAs) in drug metabolism and disposition, implications in cancer chemo-resistance. Acta Pharm Sin B 2020; 10: 105-2.
[15]
Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 2019; 9(7): 1354-66.
[PMID: 31392074]
[16]
Ma N, Tie C, Yu B, Zhang W, Wan J. Identifying lncRNA–miRNA–mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging 2020; 12(3): 2897-920.
[http://dx.doi.org/10.18632/aging.102785] [PMID: 32035423]
[17]
Wu Y. The therapeutic potential and role of miRNA, lncRNA, and circRNA in osteoarthritis. Curr Gene Ther 2019; 19(4): 255-63.
[18]
Kumar MM, Goyal R. LncRNA as a therapeutic target for angiogenesis. Curr Top Med Chem 2017; 17(15): 1750-7.
[http://dx.doi.org/10.2174/1568026617666161116144744] [PMID: 27848894]
[19]
Crooke ST. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Therapeut 2017; 27(2): 70-7.
[20]
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 2017; 35: 238-48.
[http://dx.doi.org/10.1038/nbt.3765]
[21]
Esposito R, Bosch N. Hacking the cancer genome: Profiling therapeutically actionable long non-coding RNAs using CRISPR-Cas9 screening. Canc Cell 2019; 35(4): 545-57.
[22]
El-Hammadi MM, Arias JL. An update on liposomes in drug delivery: A patent review (2014e2018). Expert Opin Ther Pat 2019; 29(11): 891-907.
[23]
Haney MJ, Klyachko NL, Zhao YL, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.033]
[24]
Rinaldi C, Wood MJA. Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nat Rev Neurol 2018; 14(1): 9-21.
[http://dx.doi.org/10.1038/nrneurol.2017.148]
[25]
Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA. Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 2019; 37: 657-66.
[http://dx.doi.org/10.1038/s41587-019-0095-1]
[26]
Mishra S, Verma SS, Rai V, Awasthee N. Long non-coding RNAs are emerging targets of phytochemicals for cancer and other chronic diseases. Cell Mol Life Sci 2019; 76(10): 1947-66.
[27]
Burel SA, Hart CE, Cauntay P, et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 2016; 445: 2093-109.
[http://dx.doi.org/10.1093/nar/gkv1210]
[28]
Fatemi PR, Salah-Uddin S, Modarresi F, Khoury N. Screening for small-molecule modulators of long noncoding RNAeprotein interactions using AlphaScreen. J Biomol Screen 2015; 20(9): 1132-41.
[29]
Guo Q, Zheng X, Yang P, et al. Small interfering RNA delivery to the neurons near the amyloid plaques for improved treatment of Alzheimer’s disease. Acta Pharm Sin B 2019; 9(3): 590-603.
[30]
Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv 2018; 25(1): 241-55.
[http://dx.doi.org/10.1080/10717544.2018.1425774]
[31]
Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017; 546(7659): 498-503.
[http://dx.doi.org/10.1038/nature22341] [PMID: 28607485]
[32]
Huang CK, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res 2020; 126(5): 663-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315856] [PMID: 32105576]
[33]
Matsui M, Corey DR. Non-coding RNAs as drug targets. Nat Rev Drug Discov 2017; 16(3): 167-79.
[http://dx.doi.org/10.1038/nrd.2016.117] [PMID: 27444227]
[34]
Kim YK. RNA therapy: Current status and future potential. Chonnam Med J 2020; 56(2): 87-93.
[http://dx.doi.org/10.4068/cmj.2020.56.2.87] [PMID: 32509554]
[35]
Smekalova EM, Kotelevtsev YV, Leboeuf D, et al. lncRNA in the liver: Prospects for fundamental research and therapy by RNA interference. Biochimie 2016; 131: 59-72.
[http://dx.doi.org/10.1016/j.biochi.2016.06.007] [PMID: 27318030]
[36]
Pan X, Zheng G, Gao C. LncRNA PVT1: A novel therapeutic target for cancers. Clin Lab 2018; 64(5): 655-62.
[http://dx.doi.org/10.7754/Clin.Lab.2018.171216] [PMID: 29739059]
[37]
Ren Y, Li RQ, Cai YR, Xia T, Yang M, Xu F-J. Effective codelivery of lncRNA and pDNA by pullulan-based nanovectors for promising therapy of hepatocellular carcinoma. Adv Funct Mater 2016; 26(40): 7314-25.
[http://dx.doi.org/10.1002/adfm.201603041]
[38]
Tai Z, Ma J, Ding J, et al. Aptamer-Functionalized dendrimer delivery of plasmid-encoding lncRNA MEG3 enhances gene therapy in castration-resistant prostate cancer. Int J Nanomedicine 2020; 15: 10305-20.
[http://dx.doi.org/10.2147/IJN.S282107] [PMID: 33376323]
[39]
Huang X, Wu W, Jing D, et al. Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy. J Control Release 2022; 343: 107-17.
[http://dx.doi.org/10.1016/j.jconrel.2022.01.026] [PMID: 35077741]
[40]
Herrera-Solorio AM, Peralta-Arrieta I, López LA. LncRNA SOX2-OT regulates AKT/ERK and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in malignant lung diseases. Mol Oncol 2021; 15(4): 1110-29.
[http://dx.doi.org/10.1002/1878-0261.12875]
[41]
Shi P, Li M, Song C. Neutrophil-like cell membrane-coated siRNA of lncRNA AABR07017145.1 therapy for cardiac hypertrophy via inhibiting ferroptosis of CMECs. Mol Ther 2022; 7: 16-36.
[42]
Ge Y, Song X, Liu J, Liu C, Xu C. The Combined therapy of berberine treatment with lncRNA BACE1-AS depletion attenuates Aβ25–35 induced neuronal injury through regulating the expression of miR-132-3p in neuronal cells. Neurochem Res 2020; 45(4): 741-51.
[http://dx.doi.org/10.1007/s11064-019-02947-6] [PMID: 31898085]
[43]
Ye H, Chu X, Cao Z, et al. A novel targeted therapy system for cervical cancer: Co-delivery system of antisense LncRNA of MDC1 and oxaliplatin magnetic thermosensitive cationic liposome drug carrier. Int J Nanomedicine 2021; 16: 1051-66.
[http://dx.doi.org/10.2147/IJN.S258316] [PMID: 33603368]
[44]
Cheng J, Zhou X, Feng W, et al. Risk stratification by long non‐coding RNAs profiling in COVID‐19 patients. J Cell Mol Med 2021; 25(10): 4753-64.
[http://dx.doi.org/10.1111/jcmm.16444] [PMID: 33759345]
[45]
Huang K, Wang C, Vagts C, et al. Long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: An integrated single cell analysis. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.03.26.21254445]