A Review on Therapeutic Potential of Indian Herbal Plants to Counter Viral Infection and Disease Pathogenesis

Article ID: e150922208853 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Herbal plant extracts or purified phytocomponents have been extensively used to treat several diseases since ancient times. The Indian Ayurvedic system and Chinese traditional medicines have documented the medicinal properties of important herbs. In Ayurveda, the polyherbal formulation is known to exhibit better therapeutic efficacy compared to a single herb. This review focuses on six key ayurvedic herbal plants namely, Tinospora cordifolia, Withania somnifera, Glycyrrhiza glabra/Licorice, Zingiber officinale, Emblica officinalis and Ocimum sanctum. These plants possess specific phytocomponents that aid them in fighting infections and keeping body healthy and stress-free. Plants were selected due to their reported antimicrobial and antiinflammatory effects in several diseases and effectiveness in controlling viral pathogenesis. An advanced literature search was carried out using Pubmed and google scholar.

Result: These medicinal plants are known to exhibit several protective features against various diseases or infections. Here we have particularly emphasized on antioxidant, anti-inflammatory, antimicrobial and immunomodulatory properties which are common in these six plants. Recent literature analysis has revealed Ashwagandha to be protective for Covid-19 too. The formulation from such herbs can exhibit synergism and hence better effectiveness against infection and related diseases. The importance of these medicinal herbs becomes highly prominent as it maintains the harmonious balance by way of boosting the immunity in a human body. Further, greater mechanistic analyses are required to prove their efficacy in fighting infectious diseases like Covid-19. It opens the arena for in-depth research of identifying and isolating the active components from these herbs and evaluating their potency to inhibit viral infections as polyherbal formulations.

Keywords: Herbal plants, immunomodulatory, antimicrobial, antiviral, anti-inflammatory

[1]
Gautam S, Gautam A, Chhetri S, Bhattarai U. Immunity against COVID-19: Potential role of Ayush Kwath. J Ayurveda Integr Med 2022; 13(1): 100350.
[http://dx.doi.org/10.1016/j.jaim.2020.08.003] [PMID: 32837101]
[2]
Cannizzo ES, Clement CC, Morozova K, et al. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep 2012; 2(1): 136-49.
[http://dx.doi.org/10.1016/j.celrep.2012.06.005] [PMID: 22840404]
[3]
Lillehoj H, Liu Y, Calsamiglia S, et al. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Vet Res 2018; 49(1): 76.
[http://dx.doi.org/10.1186/s13567-018-0562-6] [PMID: 30060764]
[4]
Karole S, Shrivastava S, Thomas S, et al. Polyherbal formulation concept for synergic action: A review. J Drug Deliv Ther 2019; 9(1-s): 453-66.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2339]
[5]
Parasuraman S, Thing G, Dhanaraj S. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev 2014; 8(16): 73-80.
[http://dx.doi.org/10.4103/0973-7847.134229] [PMID: 25125878]
[6]
Mandlik RV, Desai SK, Naik SR, Sharma G, Kohli RK. Antidiabetic activity of a polyherbal formulation (DRF/AY/5001). Indian J Exp Biol 2008; 46(8): 599-606.
[PMID: 18814489]
[7]
Petchi RR, Vijaya C, Parasuraman S. Antidiabetic activity of polyherbal formulation in streptozotocin - nicotinamide induced diabetic wistar rats. J Tradit Complement Med 2014; 4(2): 108-17.
[http://dx.doi.org/10.4103/2225-4110.126174] [PMID: 24860734]
[8]
Kandasamy C, Nath S, Arulraj P, Gopal V, Muthusamy P, Venkatanarayanan R. Anti-microbial activity of the crude drugs and the polyherbal formulation (rvsphf567) by standardized cup and plate method. Int J Pharm Sci Res 2011; 2(10): 189-95.
[9]
Mohanty A, Das C, Dash S, Sahoo DC. Physico-chemical and antimicrobial study of polyherbal formulation. Int J Compr Pharm 2010; 4: 1-3.
[10]
Alexander CP, John Wesly Kirubakaran C, Michael RD. Water soluble fraction of Tinospora cordifolia leaves enhanced the non-specific immune mechanisms and disease resistance in Oreochromis mossambicus. Fish Shellfish Immunol 2010; 29(5): 765-72.
[http://dx.doi.org/10.1016/j.fsi.2010.07.003] [PMID: 20624469]
[11]
Subramanian M, Chintalwar GJ, Chattopadhyay S. Antioxidant properties of a Tinospora cordifolia polysaccharide against iron-mediated lipid damage and γ-ray induced protein damage. Redox Rep 2002; 7(3): 137-43.
[http://dx.doi.org/10.1179/135100002125000370] [PMID: 12189043]
[12]
Sangeetha MK, Balaji Raghavendran HR, Gayathri V, Vasanthi HR. Tinospora cordifolia attenuates oxidative stress and distorted carbohydrate metabolism in experimentally induced type 2 diabetes in rats. J Nat Med 2011; 65(3-4): 544-50.
[http://dx.doi.org/10.1007/s11418-011-0538-6] [PMID: 21538233]
[13]
Umamaheswari S, Mainzen Prince PS. Antihyperglycaemic effect of ‘Ilogen-Excel’, an ayurvedic herbal formulation in streptozotocin-induced diabetes mellitus. Acta Pol Pharm 2007; 64(1): 53-61.
[PMID: 17665851]
[14]
Kapur P, Pereira BMJ, Wuttke W, Jarry H. Androgenic action of Tinospora cordifolia ethanolic extract in prostate cancer cell line LNCaP. Phytomedicine 2009; 16(6-7): 679-82.
[http://dx.doi.org/10.1016/j.phymed.2008.10.005] [PMID: 19097771]
[15]
Rao SK, Rao PS. Alteration in the radiosensitivity of HeLa cells by dichloromethane extract of guduchi (Tinospora cordifolia). Integr Cancer Ther 2010; 9(4): 378-84.
[http://dx.doi.org/10.1177/1534735410387598] [PMID: 21106617]
[16]
Rao SK, Rao PS, Rao BN. Preliminary investigation of the radiosensitizing activity of guduchi (Tinospora Cordifolia) in tumor-bearing mice. Phytother Res 2008; 22(11): 1482-9.
[http://dx.doi.org/10.1002/ptr.2508] [PMID: 18803246]
[17]
Thawani VR, Varadpande UK, Sontakke SD, Singh RP, Khiyani RK, Kalikar MV. Immunomodulatory effect of Tinospora cordifolia extract in human immuno-deficiency virus positive patients. Indian J Pharmacol 2008; 40(3): 107-10.
[http://dx.doi.org/10.4103/0253-7613.42302] [PMID: 20040936]
[18]
Leyon PV, Kuttan G. Inhibitory effect of a polysaccharide from Tinospora cordifolia on experimental metastasis. J Ethnopharmacol 2004; 90(2-3): 233-7.
[http://dx.doi.org/10.1016/j.jep.2003.09.046] [PMID: 15013186]
[19]
Wang T, Liu Y, Wang X, Yang N, Zhu H, Zuo P. Protective effects of octacosanol on 6-hydroxydopamine-induced Parkinsonism in rats via regulation of ProNGF and NGF signaling. Acta Pharmacol Sin 2010; 31(7): 765-74.
[http://dx.doi.org/10.1038/aps.2010.69] [PMID: 20581854]
[20]
Taylor JC, Rapport L, Lockwood GB. Octacosanol in human health. Nutrition 2003; 19(2): 192-5.
[http://dx.doi.org/10.1016/S0899-9007(02)00869-9] [PMID: 12591561]
[21]
Zhao T, Wang X, Rimando A, Che C. Folkloric medicinal plants: Tinospora sagittata var. cravaniana and Mahonia bealei. Planta Med 1991; 57(5): 505.
[http://dx.doi.org/10.1055/s-2006-960188] [PMID: 1798808]
[22]
Pendse V, Dadhich A, Mathur P, Bal M, Madan B. Antiinflammatory, immunosuppressive and some related pharmacological actions of the water extract of Neem Giloe (Tinospora cordifolia): A preliminary report. Indian J Pharmacol 1977; 9(3): 221.
[23]
Wesley J, Christina A, Chidambaranathan N, Livingston R, Ravikumar K. Effect of alcoholic extract of Tinospora cordifolia on acute and subacute Inflammation. Pharmacologyonline 2008; 3: 683-7.
[24]
More P, Pai K. In vitro NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of macrophages after Tinospora cordifolia (guduchi) treatment. Immunopharmacol Immunotoxicol 2012; 34(3): 368-72.
[http://dx.doi.org/10.3109/08923973.2011.606324] [PMID: 22295977]
[25]
Upadhyaya R, Pandey R, Sharma V, Verma Anita K. Assessment of the multifaceted immunomodulatory potential of the aqueous extract of Tinospora cordifolia. Res J Chem Sci 2011; 2231: 606X.
[26]
Sudhakaran DS, Srirekha P, Devasree LD, Premsingh S, Michael RD. Immunostimulatory effect of Tinospora cordifolia Miers leaf extract in Oreochromis mossambicus. Indian J Exp Biol 2006; 44(9): 726-32.
[PMID: 16999027]
[27]
Sharma U, Bala M, Saini R, et al. Polysaccharide enriched immunomodulatory fractions from Tinospora cordifolia (Willd) miers ax hook. f. & Thoms. Indian J Exp Biol 2012; 50(9): 612-7.
[PMID: 23140018]
[28]
Aher V, Kumar Wahi A. Biotechnological approach to evaluate the immunomodulatory activity of ethanolic extract of Tinospora cordifolia stem (Mango plant climber). Iran J Pharm Res 2012; 11(3): 863-72.
[PMID: 24250513]
[29]
Spelman K. Traditional and clinical use of Tinospora cordifolia, Guduchi. Aust J Med Herb 2001; 13(2): 49-57.
[30]
Badar VA, Thawani VR, Wakode PT, et al. Efficacy of Tinospora cordifolia in allergic rhinitis. J Ethnopharmacol 2005; 96(3): 445-9.
[http://dx.doi.org/10.1016/j.jep.2004.09.034] [PMID: 15619563]
[31]
Baitharu I, Jain V, Deep SN, et al. Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 2014; 9(10): e105311.
[http://dx.doi.org/10.1371/journal.pone.0105311] [PMID: 25310001]
[32]
Kurapati KRV, Atluri VSR, Samikkannu T, Nair MPN. Ashwagandha (Withania somnifera) reverses β-amyloid1-42 induced toxicity in human neuronal cells: Implications in HIV-associated neurocognitive disorders (HAND). PLoS One 2013; 8(10): e77624.
[http://dx.doi.org/10.1371/journal.pone.0077624] [PMID: 24147038]
[33]
Manchanda S, Kaur G. Withania somnifera leaf alleviates cognitive dysfunction by enhancing hippocampal plasticity in high fat diet induced obesity model. BMC Complement Altern Med 2017; 17(1): 136.
[http://dx.doi.org/10.1186/s12906-017-1652-0] [PMID: 28253924]
[34]
Choudhary D, Bhattacharyya S, Bose S. Efficacy and safety of Ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl 2017; 14(6): 599-612.
[http://dx.doi.org/10.1080/19390211.2017.1284970] [PMID: 28471731]
[35]
Gopukumar K, Thanawala S, Somepalli V, Rao TSS, Thamatam VB, Chauhan S. Efficacy and safety of ashwagandha root extract on cognitive functions in healthy, stressed adults: A randomized, double-blind, placebo-controlled study. Evid Based Complement Alternat Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/8254344] [PMID: 34858513]
[36]
Tiwari R, Chakrabort S, Saminathan M, Dhama K, Singh SV. Ashwagandha (Withania somnifera): Role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: A review. J Biol Sci (Faisalabad, Pak) 2014; 14(2): 77-94.
[http://dx.doi.org/10.3923/jbs.2014.77.94]
[37]
Malik F, Singh J, Khajuria A, et al. A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 2007; 80(16): 1525-38.
[http://dx.doi.org/10.1016/j.lfs.2007.01.029] [PMID: 17336338]
[38]
Baitharu I, Jain V, Deep SN, et al. Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J Ethnopharmacol 2013; 145(2): 431-41.
[http://dx.doi.org/10.1016/j.jep.2012.10.063] [PMID: 23211660]
[39]
Schliebs R, Liebmann A, Bhattacharya S, Kumar A, Ghosal S, Bigl V. Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int 1997; 30(2): 181-90.
[http://dx.doi.org/10.1016/S0197-0186(96)00025-3] [PMID: 9017665]
[40]
Candelario M, Cuellar E, Reyes-Ruiz JM, et al. Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABAA and GABAρ receptors. J Ethnopharmacol 2015; 171: 264-72.
[http://dx.doi.org/10.1016/j.jep.2015.05.058] [PMID: 26068424]
[41]
Khalil HMA, Eliwa HA, El-Shiekh RA, et al. Ashwagandha (Withania somnifera) root extract attenuates hepatic and cognitive deficits in thioacetamide-induced rat model of hepatic encephalopathy via induction of Nrf2/HO-1 and mitigation of NF-κB/MAPK signaling pathways. J Ethnopharmacol 2021; 277: 114141.
[http://dx.doi.org/10.1016/j.jep.2021.114141] [PMID: 33905819]
[42]
Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: A mechanistic study. J Neuroinflammation 2016; 13(1): 193.
[http://dx.doi.org/10.1186/s12974-016-0650-3] [PMID: 27550017]
[43]
Sikandan A, Shinomiya T, Nagahara Y. Ashwagandha root extract exerts anti inflammatory effects in HaCaT cells by inhibiting the MAPK/NF κB pathways and by regulating cytokines. Int J Mol Med 2018; 42(1): 425-34.
[http://dx.doi.org/10.3892/ijmm.2018.3608] [PMID: 29620265]
[44]
Tiwari P, Patel RK. Diuretic activity of Ashwagadharishta prepared by traditional and modern methods in experimental rats. Pharmacologyonline 2011; 1: 740-7.
[45]
Lipi P, Vivek S, Makode KK, Jain UK. Anthelmintic activity of aqueous extracts of some saponin containing medicinal plants. Pharm Lett 2010; 2(4): 476-81.
[46]
Mishra LC, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern Med Rev 2000; 5(4): 334-46.
[PMID: 10956379]
[47]
Singh G, Sharma PK, Dudhe R, Singh S. Biological activities of Withania somnifera. Ann Biol Res 2009; •••: 1.
[48]
Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH, Khalil MI. Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med 2012; 12(1): 175.
[http://dx.doi.org/10.1186/1472-6882-12-175] [PMID: 23039061]
[49]
Jain P, Varshney R. Antimicrobial activity of aqueous and methanolic extracts of Withania somnifera (Ashwagandha). J Chem Pharm Res 2011; 3: 260-3.
[50]
Girish KS, Machiah KD, Ushanandini S, et al. Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashwagandha). J Basic Microbiol 2006; 46(5): 365-74.
[http://dx.doi.org/10.1002/jobm.200510108] [PMID: 17009292]
[51]
Balkrishna A, Pokhrel S, Singh J, Varshney A. Withanone from Withania somnifera may inhibit novel coronavirus (COVID-19) entry by disrupting interactions between viral S-protein receptor binding domain and host ACE2 receptor. Preprint 2020.
[52]
Kumar V, Dhanjal JK, Bhargava P, et al. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn 2022; 40(1): 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1775704] [PMID: 32469279]
[53]
Chandrasekaran CV, Deepak HB, Thiyagarajan P, et al. Dual inhibitory effect of Glycyrrhiza glabra (GutGard™) on COX and LOX products. Phytomedicine 2011; 18(4): 278-84.
[http://dx.doi.org/10.1016/j.phymed.2010.08.001] [PMID: 20864324]
[54]
Long DR, Mead J, Hendricks JM, Hardy ME, Voyich JM. 18β-Glycyrrhetinic acid inhibits methicillin-resistant Staphylococcus aureus survival and attenuates virulence gene expression. Antimicrob Agents Chemother 2013; 57(1): 241-7.
[http://dx.doi.org/10.1128/AAC.01023-12] [PMID: 23114775]
[55]
Chirumbolo S. Commentary: The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Front Microbiol 2016; 7: 531.
[http://dx.doi.org/10.3389/fmicb.2016.00531] [PMID: 27148220]
[56]
Li X, He X, Liu B, et al. Maturation of murine bone marrow-derived dendritic cells induced by Radix Glycyrrhizae polysaccharide. Molecules 2012; 17(6): 6557-68.
[http://dx.doi.org/10.3390/molecules17066557] [PMID: 22728353]
[57]
Yang H, Ko HJ, Yang JY, et al. Interleukin-1 promotes coagulation, which is necessary for protective immunity in the lung against Streptococcus pneumoniae infection. J Infect Dis 2013; 207(1): 50-60.
[http://dx.doi.org/10.1093/infdis/jis651] [PMID: 23100560]
[58]
Hussain H, Green IR, Shamraiz U, Saleem M, Badshah A, Abbas G, et al. Therapeutic potential of glycyrrhetinic acids: A patent review (2010-2017). Expert Opin Ther Pat 2018; 28(5): 383-98.
[59]
Mazumder P, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P. Evaluation of immunomodulatory activity of Glycyrhiza glabra L. roots in combination with zing. Asian Pac J Trop Biomed 2012; 2(1): S15-20.
[http://dx.doi.org/10.1016/S2221-1691(12)60122-1]
[60]
Ayeka PA, Bian Y, Githaiga PM, Zhao Y. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC Complement Altern Med 2017; 17(1): 536.
[http://dx.doi.org/10.1186/s12906-017-2030-7] [PMID: 29246138]
[61]
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol 2017; 55(1): 5-18.
[http://dx.doi.org/10.1080/13880209.2016.1225775] [PMID: 27650551]
[62]
Guo A, He D, Xu HB, Geng CA, Zhao J. Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Sci Rep 2015; 5(1): 14046.
[http://dx.doi.org/10.1038/srep14046] [PMID: 26370586]
[63]
Park HY, Park SH, Yoon HK, Han MJ, Kim DH. Anti-allergic activity of 18β-glycyrrhetinic acid-3-O-β-D-glucuronide. Arch Pharm Res 2004; 27(1): 57-60.
[http://dx.doi.org/10.1007/BF02980047] [PMID: 14969340]
[64]
Ram A, Mabalirajan U, Das M, et al. Glycyrrhizin alleviates experimental allergic asthma in mice. Int Immunopharmacol 2006; 6(9): 1468-77.
[http://dx.doi.org/10.1016/j.intimp.2006.04.020] [PMID: 16846841]
[65]
Menegazzi M, Dipaola R, Mazzon E, et al. Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice. Pharmacol Res 2008; 58(1): 22-31.
[http://dx.doi.org/10.1016/j.phrs.2008.05.012] [PMID: 18590825]
[66]
Nishimoto Y, Hisatsune A, Katsuki H, Miyata T, Yokomizo K, Isohama Y. Glycyrrhizin attenuates mucus production by inhibition of MUC5AC mRNA expression in vivo and in vitro. J Pharmacol Sci 2010; 113(1): 76-83.
[http://dx.doi.org/10.1254/jphs.09344FP] [PMID: 20453436]
[67]
Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol 2007; 14(4): 431-41.
[http://dx.doi.org/10.1016/j.chembiol.2007.03.007] [PMID: 17462578]
[68]
Sabouri Ghannad M, Mohammadi A, Safiallahy S, Faradmal J, Azizi M, Ahmadvand Z. The effect of aqueous extract of Glycyrrhiza glabra on herpes simplex virus 1. Jundishapur J Microbiol 2014; 7(7): e11616.
[http://dx.doi.org/10.5812/jjm.11616] [PMID: 25368801]
[69]
Sato H, Goto W, Yamamura J, et al. Therapeutic basis of glycyrrhizin on chronic hepatitis B. Antiviral Res 1996; 30(2-3): 171-7.
[http://dx.doi.org/10.1016/0166-3542(96)00942-4] [PMID: 8783808]
[70]
Takahara T, Watanabe A, Shiraki K. Effects of glycyrrhizin on hepatitis B surface antigen: A biochemical and morphological study. J Hepatol 1994; 21(4): 601-9.
[http://dx.doi.org/10.1016/S0168-8278(94)80108-8] [PMID: 7814808]
[71]
Xie Y, Ruan B, Chen Y, Wu N, Hu M, Zhu B. Kaposi’s sarcoma-associated herpesvirus infection in Chinese patients with chronic hepatitis B. J Med Virol 2011; 83(5): 879-83.
[http://dx.doi.org/10.1002/jmv.22001] [PMID: 21360542]
[72]
van de Sand L, Bormann M, Alt M, et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses 2021; 13(4): 609.
[http://dx.doi.org/10.3390/v13040609] [PMID: 33918301]
[73]
Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol 2008; 46(2): 409-20.
[http://dx.doi.org/10.1016/j.fct.2007.09.085] [PMID: 17950516]
[74]
Shukla Y, Singh M. Cancer preventive properties of ginger: A brief review. Food Chem Toxicol 2007; 45(5): 683-90.
[http://dx.doi.org/10.1016/j.fct.2006.11.002] [PMID: 17175086]
[75]
Grzanna R, Lindmark L, Frondoza CG. Ginger-an herbal medicinal product with broad anti-inflammatory actions. J Med Food 2005; 8(2): 125-32.
[http://dx.doi.org/10.1089/jmf.2005.8.125] [PMID: 16117603]
[76]
Pan MH, Hsieh MC, Kuo JM, et al. 6-Shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol Nutr Food Res 2008; 52(5): 527-37.
[http://dx.doi.org/10.1002/mnfr.200700157] [PMID: 18384088]
[77]
Wilasrusmee C, Siddiqui J, Bruch D, Wilasrusmee S, Kittur S, Kittur DS. In vitro immunomodulatory effects of herbal products. Am Surg 2002; 68(10): 860-4.
[PMID: 12412711]
[78]
Ryu HS, Kim HSJKJN. Effect of Zingiber officinale Roscoe extracts on mice immune cell activation. Korean J Nutr 2004; 37(1): 23-30.
[79]
Mahassni SH, Bukhari OA. Beneficial effects of an aqueous ginger extract on the immune system cells and antibodies, hematology, and thyroid hormones in male smokers and non-smokers. J Nutr Intermed Metab 2019; 15: 10-7.
[http://dx.doi.org/10.1016/j.jnim.2018.10.001]
[80]
Khan AM, Shahzad M, Raza Asim MB, Imran M, Shabbir A. Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharm Biol 2015; 53(3): 359-67.
[http://dx.doi.org/10.3109/13880209.2014.920396] [PMID: 25420680]
[81]
Malu SP, Obochi GO, Tawo EN, Nyong BE. Antibacterial activity and medicinal properties of ginger (Zingiber officinale). Glob J Pure Appl Sci 2009; 15(3-4): 15.
[http://dx.doi.org/10.4314/gjpas.v15i3-4.48561]
[82]
Park M, Bae J, Lee DS. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother Res 2008; 22(11): 1446-9.
[http://dx.doi.org/10.1002/ptr.2473] [PMID: 18814211]
[83]
Hiserodt RD, Franzblau SG, Rosen RT. Isolation of 6-, 8-, and 10-gingerol from ginger rhizome by HPLC and preliminary evaluation of inhibition of Mycobacterium avium and Mycobacterium tuberculosis. J Agric Food Chem 1998; 46(7): 2504-8.
[http://dx.doi.org/10.1021/jf970948l]
[84]
Shishoo C, Shah S, Rathod I, Patel S. Determination of vitamin C content of Phyllanthus emblica and chyavanprash. Indian J Pharm Sci 1997; 59(5): 268.
[85]
Tarwadi K, Agte V. Antioxidant and micronutrient potential of common fruits available in the Indian subcontinent. Int J Food Sci Nutr 2007; 58(5): 341-9.
[http://dx.doi.org/10.1080/09637480701243905] [PMID: 17558726]
[86]
Variya BC, Bakrania AK, Patel SS. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol Res 2016; 111: 180-200.
[http://dx.doi.org/10.1016/j.phrs.2016.06.013] [PMID: 27320046]
[87]
Joskova M, Sadlonova V, Nosalova G, Novakova E, Franova S. Polyphenols and their components in experimental allergic asthma. Adv Exp Med Biol 2013; 756: 91-8.
[http://dx.doi.org/10.1007/978-94-007-4549-0_12] [PMID: 22836623]
[88]
Badoni H, Sharma P, Waheed SM, Singh S. Phytochemical analyses and evaluation of antioxidant, antibacterial and toxic properties of Emblica officinalis and Terminalia bellirica fruit extracts. Asian J Pharm Clin Res 2016; 9(6): 96-102.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i6.13731]
[89]
Koshy SM, Bobby Z, Hariharan AP, Gopalakrishna SM. Amla (Emblica officinalis) extract is effective in preventing high fructose diet-induced insulin resistance and atherogenic dyslipidemic profile in ovariectomized female albino rats. Menopause 2012; 19(10): 1146-55.
[http://dx.doi.org/10.1097/gme.0b013e31824e5bf7] [PMID: 22692334]
[90]
Sai Ram M, Neetu D, Yogesh B, et al. Cyto-protective and immunomodulating properties of Amla (Emblica officinalis) on lymphocytes: An in-vitro study. J Ethnopharmacol 2002; 81(1): 5-10.
[http://dx.doi.org/10.1016/S0378-8741(01)00421-4] [PMID: 12020921]
[91]
Koshy SM, Bobby Z, Jacob SE, Ananthanarayanan PH, Sridhar MG, Paulose DT. Amla prevents fructose-induced hepatic steatosis in ovariectomized rats: Role of liver FXR and LXRα. Climacteric 2015; 18(2): 299-310.
[http://dx.doi.org/10.3109/13697137.2014.933408] [PMID: 24940994]
[92]
Baby B, Antony P, Vijayan R. Antioxidant and anticancer properties of berries. Crit Rev Food Sci Nutr 2018; 58(15): 2491-507.
[http://dx.doi.org/10.1080/10408398.2017.1329198] [PMID: 28609132]
[93]
Yang B, Liu P. Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica. J Agric Food Chem 2014; 62(3): 529-41.
[http://dx.doi.org/10.1021/jf404703k] [PMID: 24369850]
[94]
De A, De A, Papasian C, et al. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS One 2013; 8(8): e72748.
[http://dx.doi.org/10.1371/journal.pone.0072748] [PMID: 24133573]
[95]
Liu X, Zhao M, Wu K, et al. Immunomodulatory and anticancer activities of phenolics from Emblica fruit (Phyllanthus emblica L.). Food Chem 2012; 131(2): 685-90.
[http://dx.doi.org/10.1016/j.foodchem.2011.09.063]
[96]
Singh MK, Yadav SS, Gupta V, Khattri S. Immunomodulatory role of Emblica officinalis in arsenic induced oxidative damage and apoptosis in thymocytes of mice. BMC Complement Altern Med 2013; 13(1): 193.
[http://dx.doi.org/10.1186/1472-6882-13-193] [PMID: 23889914]
[97]
Haque R, Bin-Hafeez B, Ahmad I, Parvez S, Pandey S, Raisuddin S. Protective effects of Emblica officinalis Gaertn. in cyclophosphamide-treated mice. Hum Exp Toxicol 2001; 20(12): 643-50.
[http://dx.doi.org/10.1191/096032701718890568] [PMID: 11936579]
[98]
Santoshkumar J, Devarmani MS, Sajjanar M, Pranavakumar M, Dass PJMI. A study of Anti-inflammatory activity of fruit of Emblica officinalis (Amla) in Albino rats. Medica Innov 2013; 2(1): 17-26.
[99]
Suresh K, Vasudevan DM. Augmentation of murine natural killer cell and antibody dependent cellular cytotoxicity activities by Phyllanthus emblica, a new immunomodulator. J Ethnopharmacol 1994; 44(1): 55-60.
[http://dx.doi.org/10.1016/0378-8741(94)90099-X] [PMID: 7990505]
[100]
Pandey K, Lokhande KB, Swamy KV, Nagar S, Dake M. In silico exploration of phytoconstituents from Phyllanthus emblica and Aegle marmelos as potential therapeutics against SARS-CoV-2 RdRp. Bioinform Biol Insights 2021; 15: 11779322211027403.
[http://dx.doi.org/10.1177/11779322211027403] [PMID: 34248355]
[101]
Murugesan S, Kottekad S, Crasta I, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants – Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) – A molecular docking and simulation study. Comput Biol Med 2021; 136: 104683.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104683] [PMID: 34329860]
[102]
Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J Physiol Pharmacol 2005; 49(2): 125-31.
[PMID: 16170979]
[103]
Singh D, Chaudhuri PK. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind Crops Prod 2018; 118: 367-82.
[http://dx.doi.org/10.1016/j.indcrop.2018.03.048]
[104]
Pattanayak P, Behera P, Das D, Panda S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev 2010; 4(7): 95-105.
[http://dx.doi.org/10.4103/0973-7847.65323] [PMID: 22228948]
[105]
Manikandan P, Murugan RS, Abbas H, Abraham SK, Nagini S. Ocimum sanctum Linn. (Holy Basil) ethanolic leaf extract protects against 7,12-dimethylbenz(a)anthracene-induced genotoxicity, oxidative stress, and imbalance in xenobiotic-metabolizing enzymes. J Med Food 2007; 10(3): 495-502.
[http://dx.doi.org/10.1089/jmf.2006.125] [PMID: 17887944]
[106]
Shivananjappa M, Joshi M. Aqueous extract of tulsi (Ocimum sanctum) enhances endogenous antioxidant defenses of human hepatoma cell line (HepG2). J Herbs Spices Med Plants 2012; 18(4): 331-48.
[http://dx.doi.org/10.1080/10496475.2012.712939]
[107]
Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 2000; 7(1): 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X] [PMID: 10782484]
[108]
Mirje MM, Zaman SU, Ramabhimaiah SJIJCMAS. Evaluation of the anti-inflammatory activity of Ocimum sanctum Linn (Tulsi) in albino rats. Int J Curr Microbiol App Sci 2014; 3(1): 198-205.
[109]
Yamani HA, Pang EC, Mantri N, Deighton MA. Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria. Front Microbiol 2016; 7: 681.
[http://dx.doi.org/10.3389/fmicb.2016.00681] [PMID: 27242708]
[110]
Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol 2005; 32(10): 811-6.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04270.x] [PMID: 16173941]
[111]
Mediratta PK, Sharma KK, Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J Ethnopharmacol 2002; 80(1): 15-20.
[http://dx.doi.org/10.1016/S0378-8741(01)00373-7] [PMID: 11891082]
[112]
Mitra SK, Gupta M, Sarma DNK. Immunomodulatory effect ofIM-133. Phytother Res 1999; 13(4): 341-3.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<341:AID-PTR410>3.0.CO;2-6] [PMID: 10404544]
[113]
Jeba C, Vaidyanathan R. Immunomodulatory activity of aqueous extract of Ocimum sanctum in rat. Int J Pharma Biol Res 2011; 2: 33-8.