An Insight into Diverse Activities and Targets of Flavonoids

Page: [89 - 102] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Flavonoids belong to the chemical class of polyphenols and are in the category of secondary metabolites imparting a wide protective effect against acute and chronic diseases.

Objective: The study aims to investigate and summarize the information of various flavonoids extracted, isolated from various sources, and possess different pharmacological properties by acting on multiple targets.

Methods: This comprehensive review summarizes the research information related to flavonoids and their pharmacological action targets from various sources like PubMed, Google Scholar and Google websites.

Results: Extracted information in the paper discusses various therapeutic effects of flavonoids isolated from medicinal plant sources, which have the property to inhibit several enzymes, which finally results in health benefits like anti-cancer, anti-bacterial, antioxidant, anti-allergic, and anti-viral effects. This study also showed the different solvents and methods involved in the extraction and characterization of the isolated phytochemical constituents.

Conclusion: The findings showed the contribution of several flavonoids in the management and inhibition of various acute and chronic sicknesses by acting on different sites in the body. This study may lead to gaining interest for more research on the bioactives of different medicinal plants for the discovery of new lead compounds or further improvement of the efficacy of the existing compound.

Keywords: Flavonoids, Targets, Phytochemicals, Medicinal Plants, Bioactive, Secondary Metabolites

Graphical Abstract

[1]
Middleton E Jr, Kandaswami C. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 1992; 43(6): 1167-79.
[http://dx.doi.org/10.1016/0006-2952(92)90489-6] [PMID: 1562270]
[2]
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018; 5(3): 93.
[http://dx.doi.org/10.3390/medicines5030093] [PMID: 30149600]
[3]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J 2013; 2013: 162750.
[http://dx.doi.org/10.1155/2013/162750]
[4]
Andreu L, Nuncio-Jáuregui N, Carbonell-Barrachina ÁA, Legua P, Hernández F. Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J Sci Food Agric 2018; 98(4): 1566-73.
[http://dx.doi.org/10.1002/jsfa.8628] [PMID: 28833143]
[5]
Meng XH, Liu C, Fan R, et al. Antioxidative flavan-3-ol dimers from the leaves of Camellia fangchengensis. J Agric Food Chem 2018; 66(1): 247-54.
[http://dx.doi.org/10.1021/acs.jafc.7b04572] [PMID: 29232949]
[6]
Castro-Vazquez L, Alañón ME, Rodríguez-Robledo V, et al. Bioactive flavonoids, antioxidant behaviour, and cytoprotective effects of dried grapefruit peels (Citrus paradisi Macf.). Oxid Med Cell Longev 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/8915729] [PMID: 26904169]
[7]
Ahmed SI, Hayat MQ, Tahir M, et al. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement Altern Med 2016; 16(1): 460.
[http://dx.doi.org/10.1186/s12906-016-1443-z] [PMID: 27835979]
[8]
Ahmed SI, Hayat MQ, Zahid S, et al. Isolation and identification of flavonoids from anticancer and neuroprotective extracts of Trigonella foenum graecum. Trop J Pharm Res 2017; 16(6): 1391-8.
[http://dx.doi.org/10.4314/tjpr.v16i6.25]
[9]
Eldahshan O. Rhoifolin; a potent antiproliferative effect on cancer cell lines. Br J Pharm Res 2013; 3(1): 46-53.
[http://dx.doi.org/10.9734/BJPR/2013/1864]
[10]
Yuan G, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci Rep 2021; 11(1): 10471.
[http://dx.doi.org/10.1038/s41598-021-90035-7] [PMID: 34006930]
[11]
Osonga FJ, Akgul A, Miller RM, et al. Antimicrobial activity of a new class of phosphorylated and modified flavonoids. ACS Omega 2019; 4(7): 12865-71.
[http://dx.doi.org/10.1021/acsomega.9b00077] [PMID: 31460413]
[12]
Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 2019; 18(1): 241-72.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[13]
Hanáková Z, Hošek J, Kutil Z, et al. Anti-inflammatory activity of natural geranylated flavonoids: Cyclooxygenase and lipoxygenase inhibitory properties and proteomic analysis. J Nat Prod 2017; 80(4): 999-1006.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01011] [PMID: 28322565]
[14]
Ginwala R, Bhavsar R, Chigbu DI, Jain P, Khan ZK. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019; 8(2): 35.
[http://dx.doi.org/10.3390/antiox8020035] [PMID: 30764536]
[15]
Joo M, Kim HS, Kwon TH, et al. Anti-inflammatory effects of flavonoids on TNBS-induced colitis of rats. Korean J Physiol Pharmacol 2015; 19(1): 43-50.
[http://dx.doi.org/10.4196/kjpp.2015.19.1.43] [PMID: 25605996]
[16]
Kim K, Vance T, Chun O. Greater total antioxidant capacity from diet and supplements is associated with a less atherogenic blood profile in US adults. Nutrients 2016; 8(1): 15.
[http://dx.doi.org/10.3390/nu8010015]
[17]
Luo Y, Shang P, Li D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front Pharmacol 2017; 8: 692.
[http://dx.doi.org/10.3389/fphar.2017.00692] [PMID: 29056912]
[18]
Kim HY, Nam SY, Hong SW, Kim MJ, Jeong HJ, Kim HM. Protective effects of rutin through regulation of vascular endothelial growth factor in allergic rhinitis. Am J Rhinol Allergy 2015; 29(3): e87-94.
[http://dx.doi.org/10.2500/ajra.2015.29.4195] [PMID: 25975244]
[19]
Choi JK, Kim SH. Rutin suppresses atopic dermatitis and allergic contact dermatitis. Exp Biol Med 2013; 238(4): 410-7.
[http://dx.doi.org/10.1177/1535370213477975] [PMID: 23760007]
[20]
Huang Y, Hao J, Tian D, et al. Antidiabetic activity of a flavonoid-rich extract from Sophora davidii (Franch.) Skeels in KK-Ay mice via activation of AMP-activated protein kinase. Front Pharmacol 2018; 9: 760.
[http://dx.doi.org/10.3389/fphar.2018.00760] [PMID: 30061831]
[21]
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: Promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[22]
Dixon RA, Pasinetti GM. Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiol 2010; 154(2): 453-7.
[http://dx.doi.org/10.1104/pp.110.161430] [PMID: 20921162]
[23]
Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992; 339(8808): 1523-6.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[24]
Borges F, Fernandes E, Roleira F. Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem 2002; 9(2): 195-217.
[http://dx.doi.org/10.2174/0929867023371229] [PMID: 11860355]
[25]
Rana AC, Gulliya B. Chemistry and pharmacology of flavonoids- A review. Ind J Pharma Edu Res 2019; 53(1): 8-20.
[http://dx.doi.org/10.5530/ijper.53.1.3]
[26]
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 2012; 3: 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[27]
Chávez-González ML, Sepúlveda L, Verma DK, et al. Conventional and emerging extraction processes of flavonoids. Processes (Basel) 2020; 8(4): 434.
[http://dx.doi.org/10.3390/pr8040434]
[28]
Chang YH, Chiang YF, Chen HY, et al. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of nlrp3 inflammasome signaling pathway. Antioxidants 2021; 10(4): 564.
[http://dx.doi.org/10.3390/antiox10040564] [PMID: 33917369]
[29]
Stompor-Gorący M, Bajek-Bil A, Machaczka M. Chrysin: Perspectives on contemporary status and future possibilities as pro-health agent. Nutrients 2021; 13(6): 2038.
[http://dx.doi.org/10.3390/nu13062038] [PMID: 34198618]
[30]
Mohos V, Fliszár-Nyúl E, Poór M. Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by flavonoid aglycones and some of their conjugates. Int J Mol Sci 2020; 21(9): 3256.
[http://dx.doi.org/10.3390/ijms21093256] [PMID: 32380641]
[31]
Huang L, Jin K, Lan H. Luteolin inhibits cell cycle progression and induces apoptosis of breast cancer cells through downregulation of human telomerase reverse transcriptase. Oncol Lett 2019; 17(4): 3842-50.
[http://dx.doi.org/10.3892/ol.2019.10052] [PMID: 30930986]
[32]
Pouyfung P, Sukati S. Anti-coagulant properties of flavonoid compounds: Potential structure-functional relationship. J Appl Pharm Sci 2021; 31: 9.
[33]
Khandelwal N, Chander Y, Kumar R, et al. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Res 2020; 181: 104870.
[http://dx.doi.org/10.1016/j.antiviral.2020.104870] [PMID: 32707051]
[34]
Cho BO, Yin HH, Park SH, Byun EB, Ha HY, Jang SI. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-κB and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7 macrophages. Biosci Biotechnol Biochem 2016; 80(8): 1520-30.
[http://dx.doi.org/10.1080/09168451.2016.1171697] [PMID: 27068250]
[35]
Guo P, Feng YY. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Trop J Pharm Res 2017; 16(8): 1819-26.
[http://dx.doi.org/10.4314/tjpr.v16i8.10]
[36]
Erkan H, Aliseydi B, Keskin E, et al. Effect of rutin on oxidative and proinflammatory damage induced by cisplatin in blood serum, ureter, bladder and urethra in rats. Biotechnol Biotechnol Equip 2020; 34(1): 171-81.
[http://dx.doi.org/10.1080/13102818.2020.1727362]
[37]
Brinza I, Abd-Alkhalek AM, El-Raey MA, Boiangiu RS, Eldahshan OA, Hritcu L. Ameliorative effects of rhoifolin in scopolamine-induced amnesic zebrafish (Danio rerio) model. Antioxidants 2020; 9(7): 580.
[http://dx.doi.org/10.3390/antiox9070580] [PMID: 32635149]
[38]
Vabeiryureilai M, Lalrinzuali K, Jagetia GC. Determination of anti-inflammatory and analgesic activities of a citrus bioflavanoid, hesperidin in mice. Immunochem Immunopathol 2015; 1(2): 2.
[http://dx.doi.org/10.4172/2469-9756.1000107]
[39]
Carballo-Villalobos AI, González-Trujano ME, Alvarado-Vázquez N, López-Muñoz FJ. Pro-inflammatory cytokines involvement in the hesperidin antihyperalgesic effects at peripheral and central levels in a neuropathic pain model. Inflammopharmacology 2017; 25(2): 265-9.
[http://dx.doi.org/10.1007/s10787-017-0326-3] [PMID: 28265836]
[40]
Ming D, Wang D, Cao F, et al. Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Front Microbiol 2017; 8: 2263.
[http://dx.doi.org/10.3389/fmicb.2017.02263] [PMID: 29187848]
[41]
Zakaria A, Abdel-Motaal F, Mahalel U. Antifungal activity of Ficus sycomorus L. extracts against dermatophytes and other associated fungi isolated from Camels ringworm lesions. J Biol Studies 2018; 1(3): 116-32.
[42]
Lim W, Park S, Bazer FW, Song G. Naringenin‐induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J Cell Biochem 2017; 118(5): 1118-31.
[http://dx.doi.org/10.1002/jcb.25729] [PMID: 27606834]
[43]
Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 2018; 36: 18-28.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.015] [PMID: 30279143]
[44]
Sun H, Yin M, Hao D, Shen Y. Anti-cancer activity of catechin against A549 lung carcinoma cells by induction of cyclin kinase inhibitor p21 and suppression of Cyclin E1 and P-AKT. Appl Sci (Basel) 2020; 10(6): 2065.
[http://dx.doi.org/10.3390/app10062065]
[45]
Liu M, Du Y, Li H, et al. Cyanidin-3-o-glucoside pharmacologically inhibits tumorigenesis via estrogen receptor β in melanoma mice. Front Oncol 2019; 9: 1110.
[http://dx.doi.org/10.3389/fonc.2019.01110] [PMID: 31696058]
[46]
Wee HN, Neo SY, Singh D, et al. Effects of Vitex trifolia L. leaf extracts and phytoconstituents on cytokine production in human U937 macrophages. BMC complementary medicine and therapies 2020; 20(1): 1-5.
[47]
Lei X, Yang Y. Vitexin and an HMG-Co A reductase inhibitor prevent the risks of atherosclerosis in high-fat atherogenic diet fed rats. J King Saud Univ Sci 2020; 32(3): 2088-95.
[http://dx.doi.org/10.1016/j.jksus.2020.01.037]
[48]
Kim JY, Shim SH. Anti-atherosclerotic effects of fruits of Vitex rotundifolia and their isolated compounds via inhibition of human LDL and HDL oxidation. Biomolecules 2019; 9(11): 727.
[http://dx.doi.org/10.3390/biom9110727] [PMID: 31726713]
[49]
Bang S, Li W, Ha TKQ, Lee C, Oh WK, Shim SH. Anti-influenza effect of the major flavonoids from Salvia plebeia R.Br. via inhibition of influenza H1N1 virus neuraminidase. Nat Prod Res 2018; 32(10): 1224-8.
[http://dx.doi.org/10.1080/14786419.2017.1326042] [PMID: 28504013]
[50]
Wang SP, Lin SC, Li S, Chao YH, Hwang GY, Lin CC. Potent antiarthritic properties of phloretin in murine collagen-induced arthritis. Evid Based Complement Alternat Med 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/9831263] [PMID: 28044086]
[51]
Lin YM, Anderson H, Flavin MT, et al. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod 1997; 60(9): 884-8.
[http://dx.doi.org/10.1021/np9700275] [PMID: 9322359]
[52]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 5: e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[53]
Dwivedi S, Malik C, Chhokar V. Molecular structure, biological functions, and metabolic regulation of flavonoids.Plant Biotechnology: Recent Advancements and Developments. Singapore: Springer 2017; pp. 171-88.
[http://dx.doi.org/10.1007/978-981-10-4732-9_9]
[54]
de Souza Farias SA, da Costa KS, Martins JBL. Analysis of conformational, structural, magnetic, and electronic properties related to antioxidant activity: revisiting flavan, anthocyanidin, flavanone, flavonol, isoflavone, flavone, and flavan-3-ol. ACS Omega 2021; 6(13): 8908-18.
[http://dx.doi.org/10.1021/acsomega.0c06156] [PMID: 33842761]
[55]
Qiu T, Wu D, Yang L, et al. Exploring the mechanism of flavonoids through systematic bioinformatics analysis. Front Pharmacol 2018; 9: 918.
[http://dx.doi.org/10.3389/fphar.2018.00918] [PMID: 30158870]
[56]
Ribeiro D, Freitas M, Tomé SM, et al. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 2015; 38(2): 858-70.
[http://dx.doi.org/10.1007/s10753-014-9995-x] [PMID: 25139581]
[57]
Srivastava JK, Pandey M, Gupta S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sci 2009; 85(19-20): 663-9.
[http://dx.doi.org/10.1016/j.lfs.2009.09.007] [PMID: 19788894]
[58]
Bai HW, Yang C, Wang P, Rao S, Zhu BT. Inhibition of cyclooxygenase by blocking the reducing cosubstrate at the peroxidase site: Discovery of galangin as a novel cyclooxygenase inhibitor. Eur J Pharmacol 2021; 899: 174036.
[http://dx.doi.org/10.1016/j.ejphar.2021.174036] [PMID: 33737009]
[59]
Makanjuola SBL, Ogundaini AO, Ajonuma LC, Dosunmu A. Apigenin and apigeninidin isolates from the Sorghum bicolor leaf targets inflammation via cyclo‐oxygenase‐2 and prostaglandin‐E 2 blockade. Int J Rheum Dis 2018; 21(8): 1487-95.
[http://dx.doi.org/10.1111/1756-185X.13355] [PMID: 30146750]
[60]
Akinloye OA, Metibemu DS, Akinloye DI, et al. Flavanones from Sorghum bicolor selectively inhibit COX-2: In silico and in vivo validation. Egypt J Med Hum Genet 2019; 20(1): 1-5.
[61]
Li J, Gong Y, Li J, Fan L. In vitro inhibitory effects of polyphenols from Tartary buckwheat on xanthine oxidase: Identification, inhibitory activity, and action mechanism. Food Chem 2022; 379: 132100.
[http://dx.doi.org/10.1016/j.foodchem.2022.132100] [PMID: 35066353]
[62]
Sianipar RN, Sutriah K, Iswantini D, Achmadi SS. Inhibitory capacity of xanthine oxidase in antigout therapy by Indonesian Medicinal plants. Pharmacogn J 2022; 14(2)
[63]
Husnunnisa H, Hartati R, Mauludin R, Insanu M. A review of the Phyllanthus genus plants: Their phytochemistry, traditional uses, and potential inhibition of xanthine oxidase. Pharmacia 2022; 69(3): 681-7.
[http://dx.doi.org/10.3897/pharmacia.69.e87013]
[64]
Spanou C, Veskoukis AS, Kerasioti T, et al. Flavonoid glycosides isolated from unique legume plant extracts as novel inhibitors of xanthine oxidase. PLoS One 2012; 7(3): e32214.
[http://dx.doi.org/10.1371/journal.pone.0032214] [PMID: 22396752]
[65]
Tian Y, Lin L, Zhao M, Peng A, Zhao K. Xanthine oxidase inhibitory activity and antihyperuricemic effect of Moringa oleifera Lam. leaf hydrolysate rich in phenolics and peptides. J Ethnopharmacol 2021; 270: 113808.
[http://dx.doi.org/10.1016/j.jep.2021.113808] [PMID: 33450289]
[66]
Lin S, Zhang G, Liao Y, Pan J, Gong D. Dietary flavonoids as xanthine oxidase inhibitors: Structure-affinity and structure-activity relationships. J Agric Food Chem 2015; 63(35): 7784-94.
[http://dx.doi.org/10.1021/acs.jafc.5b03386] [PMID: 26285120]
[67]
Kostic DA, Dimitrijevic DS, Stojanovic GS, Palic IR, Dordevic AS, Ickovski JD. Xanthine oxidase: Isolation, assays of activity, and inhibition. J Chem 2015; 8: 294858.
[http://dx.doi.org/10.1155/2015/294858]
[68]
Abdulhafiz F, Mohammed A, Kayat F, et al. Xanthine oxidase inhibitory activity, chemical composition, antioxidant properties and GC-MS Analysis of Keladi Candik (Alocasia longiloba Miq). Molecules 2020; 25(11): 2658.
[http://dx.doi.org/10.3390/molecules25112658] [PMID: 32521624]
[69]
Jahan N, Hussian F, Ayub AR, et al. Isolation and characterization of flavonoids from roots of Rauvolfia serpentina and evaluation of their hypotensive potential through angiotensin-converting enzyme (ACE) inhibition mode of action. Chem Zvesti 2022; 76(8): 5133-43.
[http://dx.doi.org/10.1007/s11696-022-02238-5]
[70]
Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol 2010; 127(1): 7-10.
[http://dx.doi.org/10.1016/j.jep.2009.09.059] [PMID: 19808084]
[71]
Hussain F, Jahan N, Rahman K, Sultana B, Jamil S. Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their angiotensin-converting enzyme (ACE) inhibition potential. Oxid Med Cell Longev 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/4643736] [PMID: 30581531]
[72]
Guerrero L, Castillo J, Quiñones M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS One 2012; 7(11): e49493.
[http://dx.doi.org/10.1371/journal.pone.0049493] [PMID: 23185345]
[73]
Gasparotto Junior A, Gasparotto FM, Lourenço ELB, et al. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: Evidence for the inhibition of angiotensin converting enzyme. J Ethnopharmacol 2011; 134(2): 363-72.
[http://dx.doi.org/10.1016/j.jep.2010.12.026] [PMID: 21185932]
[74]
Nileeka Balasuriya BW, Vasantha Rupasinghe HP. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Func Foods Health Dise 2010; 5(5): 172-88.
[http://dx.doi.org/10.31989/ffhd.v1i5.132]
[75]
Ding X, Ouyang MA, Liu X, Wang RZ. Acetylcholinesterase inhibitory activities of flavonoids from the leaves of Ginkgo biloba against brown planthopper. J Chem 2013; 2013: 645086.
[76]
Xie Y, Yang W, Chen X, Xiao J. Inhibition of flavonoids on acetylcholine esterase: Binding and structure-activity relationship. Food Funct 2014; 5(10): 2582-9.
[http://dx.doi.org/10.1039/C4FO00287C] [PMID: 25143139]
[77]
Remya C, Dileep KV, Tintu I, Variyar EJ, Sadasivan C. Design of potent inhibitors of acetylcholinesterase using morin as the starting compound. Front Life Sci 2012; 6(3-4): 107-17.
[http://dx.doi.org/10.1080/21553769.2013.815137]
[78]
Vladimir-Knežević S, Blažeković B, Kindl M, Vladić J, Lower-Nedza A, Brantner A. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules 2014; 19(1): 767-82.
[http://dx.doi.org/10.3390/molecules19010767] [PMID: 24413832]
[79]
Nuria MC, Suganda AG, Sukandar EY, Insanu M. Acetylcholinesterase: Inhibitory activity of some Indonesian vegetables and fraction of selected plants. J Appl Pharm Sci 2020; 10(1): 101-7.
[http://dx.doi.org/10.7324/JAPS.2020.101014]
[80]
Balkis A, Tran K, Lee YZ, Balkis KN, Ng K. Screening flavonoids for inhibition of acetylcholinesterase identified baicalein as the most potent inhibitor. J Agric Sci 2015; 7(9): 26.
[81]
Syam N, Ariyandy A, Yustisia I. In silico testing on the activity of flavonol in Sterculia foetida leaf as natural anti hyperlipidemia compounds. Int J Appl Biol 2022; 6(1): 144-8.
[82]
Salsabil SS, Ardana VP, Larastiyasa RR, Pratiwi IW, Widianti RA, Pratama AM. Nanoparticles of Kirinyuh (Chromolaena odorata (L.) RM King & H. Rob.) leaves extract as a candidate for natural remedies lowering hypercholesterol: In silico and in vivo study. J Nanomater 2021; 666986.
[83]
Baskaran G, Shukor MY, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Des Devel Ther 2015; 9: 509-17.
[http://dx.doi.org/10.2147/DDDT.S75056] [PMID: 25609924]
[84]
Tuansulong KA, Hutadilok-Towatana N, Mahabusarakam W, Pinkaew D, Fujise K. Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase. Phytother Res 2011; 25(3): 424-8.
[PMID: 20734327]
[85]
Leopoldini M, Malaj N, Toscano M, Sindona G, Russo N. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. J Agric Food Chem 2010; 58(19): 10768-73.
[http://dx.doi.org/10.1021/jf102576j] [PMID: 20843083]
[86]
Salvamani S, Gunasekaran B, Shukor MY, Shaharuddin NA, Sabullah MK, Ahmad SA. Anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities of Amaranthus viridis leaf extract as a potential treatment for hypercholesterolemia. Evid Based Complement Alternat Med 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/8090841] [PMID: 27051453]
[87]
Hartanti L, Yonas SMK, Mustamu JJ, Wijaya S, Setiawan HK, Soegianto L. Influence of extraction methods of bay leaves (Syzygium polyanthum) on antioxidant and HMG-CoA Reductase inhibitory activity. Heliyon 2019; 5(4): e01485.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01485] [PMID: 31008409]
[88]
Huyut Z, Beydemir Ş, Gülçin İ. Inhibition properties of some flavonoids on carbonic anhydrase I and II isoenzymes purified from human erythrocytes. J Biochem Mol Toxicol 2017; 31(9): e21930.
[http://dx.doi.org/10.1002/jbt.21930] [PMID: 28445001]
[89]
Ekinci D, Karagoz L, Ekinci D, Senturk M, Supuran CT. Carbonic anhydrase inhibitors: In vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids. J Enzyme Inhib Med Chem 2013; 28(2): 283-8.
[http://dx.doi.org/10.3109/14756366.2011.643303] [PMID: 22168126]
[90]
Imran M, Irfan A, Ibrahim M, et al. Carbonic anhydrase and cholinesterase inhibitory activities of isolated flavonoids from Oxalis corniculata L. and their first-principles investigations. Ind Crops Prod 2020; 148: 112285.
[http://dx.doi.org/10.1016/j.indcrop.2020.112285]
[91]
Roy A, Khan A, Ahmad I, et al. Flavonoids a bioactive compound from medicinal plants and its therapeutic applications. BioMed Res Int 2022; 2022: 1-9.
[http://dx.doi.org/10.1155/2022/5445291] [PMID: 35707379]
[92]
Zain WZ, Hamid NA, Nazihah N, et al. Phytochemical screening, total phenolic and flavonoid content of jupiter variety leaves extract and their antioxidant and insecticidal activity. IOP Conf Series: Earth Environ Sci 1059(1): 12059.
[93]
Lahmar I, Ben Nasri-Ayachi M, Belghith K. Laticifer identification, rubber characterization, phenolic content, and antioxidant activity of Pergularia tomentosa latex extract. BioMed Res Int 2022; 2022: 1-8.
[http://dx.doi.org/10.1155/2022/7158905] [PMID: 35909492]