Synthesis, Molecular Docking and ADME-TOX Studies of New Tacrine Analogs as Promising for Alzheimer's Disease Therapy

Page: [1218 - 1233] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

The modification of drug delivery routes can be used as a promising strategy to improve the therapeutic profile of various drug agents. Herein, the synthesis and molecular modeling of a series of 6,7,8,9-tetrahydrobenzo [b] [1,8] naphthyridines derivatives were reported to explore potent and less toxic scaffolds. The tacrine analogs 6-10 were obtained by an efficient strategy using Friedlander's condensation between 2-aminopyridine-3-carbonitriles 1- 5 and cyclohexanone under microwave irradiations without catalysts and solvents. The synthesized compounds were identified through 1H NMR, 13C NMR, IR. Their inhibition activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were focused as probable drug targets for Alzheimer’s disease (AD). The pharmaco-kinetic properties, the risk of probable hepato-toxic metabolites, and the toxicological properties were predicted using computational methods. The prediction of the toxicity risks via the GUSAR software allowed us to resolve the best approach for drug delivery, namely the subcutaneous, intravenous, or oral route., Also, the GUSAR software was used to reveal all possible adverse effects. All these techniques were tested for the L1-6 compounds by choosing tacrine as a template compound. Among these compounds, the optimal compound L1 was the most potent inhibitor and had the best score binding affinity compared to the reference drug (Tacrine) -7.926 and -7.007 kcal/mol for AChE and BuChE, respectively. Moreover, this same compound presented a satisfying pharmaceutical profile. In the present study, subcutaneous delivery is considered a promising administration of reference drug and their derivatives against AD.

Keywords: Tacrine analogs, Alzheimer’s disease. Molecular docking, ADME-TOX, drug delivery, green chemistry

Graphical Abstract

[1]
Zhu, J.; Wang, L.N.; Cai, R.; Geng, S.Q.; Dong, Y.F.; Liu, Y.M. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg. Med. Chem. Lett., 2019, 29(11), 1325-1329.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.050] [PMID: 30956012]
[2]
Lopes, J.P.B.; Silva, L.; da Costa Franarin, G.; Antonio Ceschi, M.; Seibert Lüdtke, D.; Ferreira Dantas, R.; de Salles, C.M.C.; Paes Silva-Jr, F.; Roberto Senger, M.; Alvim Guedes, I.; Emmanuel Dardenne, L. Design, synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives. Bioorg. Med. Chem., 2018, 26(20), 5566-5577.
[http://dx.doi.org/10.1016/j.bmc.2018.10.003] [PMID: 30340901]
[3]
Agatonovic-Kustrin, S.; Kettle, C.; Morton, D.W. A molecular approach in drug development for Alzheimer’s disease. Biomed. Pharmacother., 2018, 106, 553-565.
[http://dx.doi.org/10.1016/j.biopha.2018.06.147] [PMID: 29990843]
[4]
Salehi, N.; Mirjalili, B.B.F.; Nadri, H.; Abdolahi, Z.; Forootanfar, H.; Samzadeh-Kermani, A.; Küçükkılınç, T.T.; Ayazgok, B.; Emami, S.; Haririan, I.; Sharifzadeh, M.; Foroumadi, A.; Khoobi, M. Synthesis and biological evaluation of new N-benzylpyridinium-based benzoheterocycles as potential anti-Alzheimer’s agents. Bioorg. Chem., 2019, 83, 559-568.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.010] [PMID: 30471578]
[5]
Riazimontazer, E.; Sadeghpour, H.; Nadri, H.; Sakhteman, A. Design, synthesis and biological activity of novel tacrine-isatin Schiff base hybrid derivatives. Bioorg. Chem., 2019, 89, 103006.
[http://dx.doi.org/10.1016/j.bioorg.2019.103006]
[6]
Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and evaluation of heterobivalent tacrine derivatives as potential multi-functional anti-Alzheimer agents. Eur. J. Med. Chem., 2011, 46(6), 2609-2616.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.058] [PMID: 21497959]
[7]
Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules, 2021, 11(4), 543.
[http://dx.doi.org/10.3390/biom11040543] [PMID: 33917843]
[8]
Wu, W.Y.; Dai, Y.C.; Li, N.G.; Dong, Z.X.; Gu, T.; Shi, Z.H.; Xue, X.; Tang, Y.P.; Duan, J.A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 572-587.
[http://dx.doi.org/10.1080/14756366.2016.1210139] [PMID: 28133981]
[9]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Hamano, N.; Li, S.D.; Chougule, M.; Shoyele, S.A.; Gupta, U. Ajazuddin; Alexander, A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin. Drug Deliv., 2018, 15(6), 589-617.
[http://dx.doi.org/10.1080/17425247.2018.1471058] [PMID: 29733231]
[10]
Srivastava, S.; Ahmad, R.; Khare, S.K. Alzheimer’s disease and its treatment by different approaches: A review. Eur. J. Med. Chem., 2021, 216, 113320.
[http://dx.doi.org/10.1016/j.ejmech.2021.113320] [PMID: 33652356]
[11]
Fonseca-Santos, B.; Chorilli, M.; Palmira Daflon Gremião, M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2015, 10, 4981-5003.
[http://dx.doi.org/10.2147/IJN.S87148] [PMID: 26345528]
[12]
Li, X.; Wang, H.; Xu, Y.; Liu, W.; Gong, Q.; Wang, W.; Qiu, X.; Zhu, J.; Mao, F.; Zhang, H.; Li, J. Novel vilazodone–tacrine hybrids as potential multitarget-directed ligands for the treatment of Alzheimer’s disease accompanied with depression: Design, synthesis, and biological evaluation. ACS Chem. Neurosci., 2017, 8(12), 2708-2721.
[http://dx.doi.org/10.1021/acschemneuro.7b00259] [PMID: 28872831]
[13]
Badran, M.M.; Hakeem, M.A.; Abuel-Maaty, S.M.; El-Malah, A.; Salam, R.M.A. Design, synthesis, and molecular-modeling study of aminothienopyridine analogues of tacrine for Alzheimer’s disease. Arch. Pharm. (Weinheim), 2010, 343(10), 590-601.
[http://dx.doi.org/10.1002/ardp.200900226] [PMID: 20925094]
[14]
Tabet, N. Acetylcholinesterase inhibitors for Alzheimer’s disease: Anti-inflammatories in acetylcholine clothing! Age Ageing, 2006, 35(4), 336-338.
[http://dx.doi.org/10.1093/ageing/afl027] [PMID: 16788077]
[15]
Kim, J.H.; Cho, Y.J.; Choi, H.K. Effect of vehicles and pressure sensitive adhesives on the permeation of tacrine across hairless mouse skin. Int. J. Pharm., 2000, 196(1), 105-113.
[http://dx.doi.org/10.1016/S0378-5173(99)00449-4] [PMID: 10675712]
[16]
El-Malah, A.; Abouelatta, AIY; Mahmoud, Z.; Salem, HH New cyclooctathienopyridine derivatives in the aim of discovering better Anti-Alzheimer’s agents. J. Mol. Struct., 2019, 1196, 162-168.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.071]
[17]
Tokalı, F.S.; Taslimi, P.; Usanmaz, H.; Karaman, M.; Şendil, K. Synthesis, characterization, biological activity and molecular docking studies of novel schiff bases derived from thiosemicarbazide: Biochemical and computational approach. J. Mol. Struct., 2021, 1231, 129666.
[http://dx.doi.org/10.1016/j.molstruc.2020.129666]
[18]
Zhu, J.; Yang, H.; Chen, Y.; Lin, H.; Li, Q.; Mo, J.; Bian, Y.; Pei, Y.; Sun, H. Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 496-506.
[http://dx.doi.org/10.1080/14756366.2018.1430691] [PMID: 29405075]
[19]
Altintop, MD; Gurkan-Alp, AS; Özkay, Y Synthesis and biological evaluation of a series of dithiocarbamates as new cholinesterase inhibitors. Arch. Pharm., 2013, 346, 571-576.
[http://dx.doi.org/10.1002/ardp.201300045]
[20]
Martins, C.; Carreiras, MC; León, R Synthesis and biological assessment of diversely substituted furo[2,3-b]quinolin-4-amine and pyrrolo[2,3-b]quinolin-4-amine derivatives, as novel tacrine analogues. Eur. J. Med. Chem., 2011, 46, 6119-6130.
[21]
Bonacorso, H.G.; Silva, L.B.; Rocha, J.B.T.; Nogara, P.A.; Waczuk, E.P.; Silva, F.D.A.; Bueno, D.C.; Kader, Y.N.A.M.; Martins, M.A.P.; Zanatta, N. Synthesis, biological evaluation and molecular docking study of 7-amine-spiro[chromeno[4,3-b]quinoline-6,1′-cycloalkanes] as new tacrine hybrids. Tetrahedron Lett., 2015, 56(50), 7024-7027.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.008]
[22]
Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res., 2013, 36, 375-399.
[http://dx.doi.org/10.1007/s12272-013-0036-3]
[23]
Wen, M.M.; El-Salamouni, N.S.; El-Refaie, W.M.; Hazzah, H.A.; Ali, M.M.; Tosi, G.; Farid, R.M.; Blanco-Prieto, M.J.; Billa, N.; Hanafy, A.S. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J. Control. Release, 2017, 245, 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[24]
Sang, Z.; Song, Q.; Cao, Z.; Deng, Y.; Zhang, L. Design, synthesis, and evaluation of chalcone- Vitamin E-donepezil hybrids as multi-target- directed ligands for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2022, 37, 69-85.
[http://dx.doi.org/10.1080/14756366.2021.1993845]
[25]
Ekiz, M.; Tutar, A.; Ökten, S. Convenient synthesis of disubstituted tacrine derivatives via electrophilic and copper induced reactions. Tetrahedron, 2016, 72(35), 5323-5330.
[http://dx.doi.org/10.1016/j.tet.2016.07.012]
[26]
de los Ríos, C.; Marco, J.L.; Carreiras, M.D.C.; Chinchón, P.M.; García, A.G.; Villarroya, M. Novel tacrine derivatives that block neuronal calcium channels. Bioorg. Med. Chem., 2002, 10(6), 2077-2088.
[http://dx.doi.org/10.1016/S0968-0896(01)00378-9] [PMID: 11937366]
[27]
Kozurkova, M.; Hamulakova, S.; Gazova, Z.; Paulikova, H.; Kristian, P. Neuroactive multifunctional tacrine congeners with cholinesterase, anti-amyloid aggregation and neuroprotective properties. Pharmaceuticals (Basel), 2011, 4(2), 382-418.
[http://dx.doi.org/10.3390/ph4020382]
[28]
Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Friedländer annulation in the synthesis of azaheterocyclic compounds. Adv. Heterocycl. Chem., 2011, 102(102), 139-227.
[http://dx.doi.org/10.1016/B978-0-12-385464-3.00002-9]
[29]
Ökten, S.; Ekiz, M.; Koçyiğit, Ü.M.; Tutar, A.; Çelik, İ.; Akkurt, M.; Gökalp, F.; Taslimi, P.; Gülçin, İ. Synthesis, characterization, crystal structures, theoretical calculations and biological evaluations of novel substituted tacrine derivatives as cholinesterase and carbonic anhydrase enzymes inhibitors. J. Mol. Struct., 2019, 1175, 906-915.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.063]
[30]
Stefano, A.D.; Iannitelli, A.; Laserra, S. Drug delivery strategies for Alzheimer ’ s disease treatment. Expert Opin. Drug Deliv., 2011, 8(5), 581-603.
[http://dx.doi.org/10.1517/17425247.2011.561311]
[31]
Chioua, M.; Serrano, E.; Dgachi, Y.; Martin, H.; Jun, D.; Janockova, J.; Sepsova, V.; Soukup, O.; Moraleda, I.; Chabchoub, F.; Ismaili, L.; Iriepa, I.; Marco-Contelles, J. Synthesis, biological assessment and molecular modeling of racemic QuinoPyranoTacrines for Alzheimer’s disease therapy. ChemistrySelect, 2018, 3(2), 461-466.
[http://dx.doi.org/10.1002/slct.201702781]
[32]
Romero, A.; Cacabelos, R.; Oset-Gasque, M.J.; Samadi, A.; Marco-Contelles, J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2013, 23(7), 1916-1922.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.017] [PMID: 23481643]
[33]
Bhilare, N.V.; Marulkar, V.S.; Kumar, D.; Chatap, V.K.; Patil, K.S.; Shirote, P.J. An insight into prodrug strategy for the treatment of Alzheimer’s disease. Med. Chem. Res., 2022, 31(3), 383-399.
[http://dx.doi.org/10.1007/s00044-022-02859-1]
[34]
Nikseresht, A.; Ghasemi, S.; Parak, S. [Cu3(BTC)2]: A metal–organic framework as an environment-friendly and economically catalyst for the synthesis of tacrine analogues by Friedländer reaction under conventional and ultrasound irradiation. Polyhedron, 2018, 151, 112-117.
[http://dx.doi.org/10.1016/j.poly.2018.05.018]
[35]
Fonseca, L.C.; Lopes, J.A.; Vieira, J.; Viegas, C.; Oliveira, C.S.; Hartmann, R.P.; Fonte, P. Intranasal drug delivery for treatment of Alzheimer’s disease. Drug Deliv. Transl. Res., 2021, 11(2), 411-425.
[http://dx.doi.org/10.1007/s13346-021-00940-7] [PMID: 33638130]
[36]
Lathuilière, A; Laversenne, V; Astolfo, A; Kopetzki, E; Jacobsen, H; Stampanoni, M; Bohrmann, B; Schneider, BL A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies. Brain, 2016, 139, 1587-1604.
[http://dx.doi.org/10.1093/brain/aww036]
[37]
Garg, A.; Tadesse, A.; Eswaramoorthy, R. A four-component domino reaction: An eco-compatible and highly efficient construction of 1,8-naphthyridine derivatives, their in silico molecular docking, drug likeness, ADME, and toxicity studies. J. Chem., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/5589837]
[38]
Vasanthanathan, P.; Hritz, J.; Taboureau, O.; Olsen, L.; Steen Jørgensen, F.; Vermeulen, N.P.E.; Oostenbrink, C. Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands. J. Chem. Inf. Model., 2009, 49(1), 43-52.
[http://dx.doi.org/10.1021/ci800371f] [PMID: 19099399]
[39]
Zakharov, A.V.; Peach, M.L.; Sitzmann, M.; Nicklaus, M.C. A new approach to radial basis function approximation and its application to QSAR. J. Chem. Inf. Model., 2014, 54(3), 713-719.
[http://dx.doi.org/10.1021/ci400704f] [PMID: 24451033]
[40]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol. Inform., 2011, 30(2-3), 241-250.
[http://dx.doi.org/10.1002/minf.201000151] [PMID: 27466777]
[41]
Trifunović, J.; Borčić, V.; Vukmirović, S.; Kon, S.G.; Mikov, M. Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling. Eur. J. Pharm. Sci., 2016, 92, 194-202.
[http://dx.doi.org/10.1016/j.ejps.2016.07.011] [PMID: 27423261]
[42]
Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci., 2020, 27(1), 18.
[http://dx.doi.org/10.1186/s12929-019-0609-7] [PMID: 31906949]
[43]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline. Alzheimer’s Dement. Transl. Res. Clin. Interv., 2020, 6, 1-29.
[http://dx.doi.org/10.1002/trc2.12050]
[44]
Amine Khodja, I.; Boulebd, H.; Bensouici, C.; Belfaitah, A. Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz)imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. J. Mol. Struct., 2020, 1218, 128527.
[http://dx.doi.org/10.1016/j.molstruc.2020.128527]
[45]
Nouali, F.; Kibou, Z.; Boukoussa, B.; Choukchou-Braham, N.; Bengueddach, A.; Villemin, D.; Hamacha, R. Efficient multicomponent synthesis of 2-aminopyridines catalysed by basic mesoporous materials. Res. Chem. Intermed., 2020, 46(6), 3179-3191.
[http://dx.doi.org/10.1007/s11164-020-04144-5]
[46]
Hui, A.; Chen, Y.; Zhu, S.; Gan, C.; Pan, J.; Zhou, A. Design and synthesis of tacrine-phenothiazine hybrids as multitarget drugs for Alzheimer’s disease. Med. Chem. Res., 2014, 23(7), 3546-3557.
[http://dx.doi.org/10.1007/s00044-014-0931-2]
[47]
Ulus, R.; Zengin Kurt, B.; Gazioğlu, I.; Kaya, M. Microwave assisted synthesis of novel hybrid tacrine-sulfonamide derivatives and investigation of their antioxidant and anticholinesterase activities. Bioorg. Chem., 2017, 70, 245-255.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.005] [PMID: 28153340]
[48]
Bajda, M.; Więckowska, A.; Hebda, M.; Guzior, N.; Sotriffer, C.; Malawska, B. Structure-based search for new inhibitors of cholinesterases. Int. J. Mol. Sci., 2013, 14(3), 5608-5632.
[http://dx.doi.org/10.3390/ijms14035608] [PMID: 23478436]
[49]
Klebe, G. Virtual ligand screening: Strategies, perspectives and limitations. Drug Discov. Today, 2006, 11(13-14), 580-594.
[http://dx.doi.org/10.1016/j.drudis.2006.05.012] [PMID: 16793526]
[50]
Marechal, Y. The Hydrogen Bond and the Water Molecule: The physics and chemistry of water, aqueous, and bio-media; Elsevier: Amsterdam, 2007.
[51]
Mphahlele, M.J.; Agbo, E.N.; More, G.K.; Gildenhuys, S. In vitro enzymatic and kinetic studies, and in silico drug-receptor interactions, and drug-like profiling of the 5-styrylbenzamide derivatives as potential cholinesterase and β-secretase inhibitors with antioxidant properties. Antioxidants, 2021, 10(5), 647.
[http://dx.doi.org/10.3390/antiox10050647] [PMID: 33922328]
[52]
Sarfraz, M.; Rauf, A.; Keller, P.; Qureshi, A.M. N N,N’-dialkyl-2-thiobarbituric acid based sulfonamides as potential SARS-CoV-2 main protease inhibitors. Can. J. Chem., 2021, 99, 330-345.
[http://dx.doi.org/10.1139/cjc-2020-0332]
[53]
Ahmed, A.I.; Babatunji, E.O.; Basiru, O.A.; Abidemi, P.K. Molecular docking studies of flavonoids from andrographis paniculata as potential acetylcholinesterase, butyrylcholinesterase and monoamine oxidase inhibitors towards the treatment of neurodegenerative diseases. Biointerface Res. Appl. Chem., 2020, 11(3), 9871-9879.
[http://dx.doi.org/10.33263/BRIAC113.98719879]
[54]
Prasanna, S.; Doerksen, R. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem., 2009, 16(1), 21-41.
[http://dx.doi.org/10.2174/092986709787002817] [PMID: 19149561]
[55]
Ramos, R.; Costa, J.; Silva, R.; da Costa, G.; Rodrigues, A.; Rabelo, É.; Souto, R.; Taft, C.; Silva, C.; Rosa, J.; Santos, C.; Macêdo, W. Identification of potential inhibitors from pyriproxyfen with insecticidal activity by virtual screening. Pharmaceuticals (Basel), 2019, 12(1), 20.
[http://dx.doi.org/10.3390/ph12010020] [PMID: 30691028]
[56]
Daina, A.; Zoete, V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[57]
Viana Nunes, A.M. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? Environ. Toxicol. Pharmacol., 2020, 80, 103470.
[http://dx.doi.org/10.1016/j.etap.2020.103470]
[58]
Ma, X.; Chen, C.; Yang, J. Predictive model of blood-brain barrier penetration of organic compounds1. Acta Pharmacol. Sin., 2005, 26(4), 500-512.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00068.x] [PMID: 15780201]
[59]
Ajeet; Verma, M.; Rani, S.; Kumar, A. Antitarget interaction, acute toxicity and protein binding studies of quinazolinedione sulphonamides as GABA1 antagonists. Indian J. Pharm. Sci., 2016, 78(1), 48-53.
[http://dx.doi.org/10.4103/0250-474X.180249] [PMID: 27168681]
[60]
Zakharov, A.V.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. Quantitative prediction of antitarget interaction profiles for chemical compounds. Chem. Res. Toxicol., 2012, 25(11), 2378-2385.
[http://dx.doi.org/10.1021/tx300247r] [PMID: 23078046]
[61]
Banerjee, P.; Dunkel, M.; Kemmler, E.; Preissner, R. SuperCYPsPred—a web server for the prediction of cytochrome activity. Nucleic Acids Res., 2020, 48(W1), W580-W585.
[http://dx.doi.org/10.1093/nar/gkaa166] [PMID: 32182358]
[62]
Mceneny-king, A.; Osman, W.; Edginton, AN; Rao, PPN Cytochrome P450 binding studies of novel tacrine derivatives: Predicting the risk of hepatotoxicity. Bioorg. Med. Chem. Lett., 2017, 27, 2443-2449.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.006]
[63]
Zhou, M.; Maitra, S.; Wang, P. The potential role of transcription factor aryl hydrocarbon receptor in downregulation of hepatic cytochrome P-450 during sepsis. Int. J. Mol. Med., 2008, 21(4), 423-428.
[http://dx.doi.org/10.3892/ijmm.21.4.423] [PMID: 18360687]
[64]
Shah, N.K.; Torrico Guzmán, E.A.; Wang, Z.; Meenach, S.A. Routes of administration for nanocarriers. Nanoparticles Biomed. Appl. Fundam. Concepts, Biol. Interact. Clin. Appl., 2019, 67-87.
[http://dx.doi.org/10.1186/s40824-019-0166-x]
[65]
Khalilzadeh, M.A.; Hosseini, A.; Tajbakhsh’, M. Synthesis of tacrine derivatives under solventless conditions. J. Heterocycl. Chem., 2007, 44, 535-538.
[http://dx.doi.org/10.1002/jhet.5570440305]
[66]
Muscia, G.C.; Carnevale, J.P.; Buldain, G.Y.; Asís, S.E. Microwave-assisted one-pot synthesis of polycyclic 4-quinolone derivatives. Trends Heterocycl. Chem., 2014, 16, 4-8.
[http://dx.doi.org/10.1021/cc700124g]
[67]
Baba-Ahmed, I.; Kibou, Z. Recent advances in the synthesis of tacrine derivatives as multifunctional agents for Alzheimer’s disease. Curr. Org. Chem., 2021, 25, 2579-2624.
[http://dx.doi.org/10.2174/1385272825666210716154531]
[68]
Galdeano, C.; Coquelle, N.; Cieslikiewicz-Bouet, M.; Bartolini, M.; Pérez, B.; Clos, M.; Silman, I.; Jean, L.; Colletier, J.P.; Renard, P.Y.; Muñoz-Torrero, D. Increasing polarity in tacrine and huprine derivatives: Potent anticholinesterase agents for the treatment of myasthenia gravis. Molecules, 2018, 23(3), 634.
[http://dx.doi.org/10.3390/molecules23030634] [PMID: 29534488]
[69]
Nachon, F.; Carletti, E.; Ronco, C.; Trovaslet, M.; Nicolet, Y.; Jean, L.; Renard, P.Y. Crystal structures of human cholinesterases in complex with huprine W and tacrine: Elements of specificity for anti-Alzheimer’s drugs targeting acetyl- and butyryl-cholinesterase. Biochem. J., 2013, 453(3), 393-399.
[http://dx.doi.org/10.1042/BJ20130013] [PMID: 23679855]
[70]
Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model., 2007, 13(12), 1173-1213.
[http://dx.doi.org/10.1007/s00894-007-0233-4] [PMID: 17828561]
[71]
HyperChem v8. In: Molecular Modelling System; Hypercube Inc.: 1115 NW 4th Street, Gainesville, FL 32601, USA, 2009.
[72]
Molecular operating Environment (MOE); Chemical Computing Group Inc.: 1010 Sherbooke St. West, Suite 910, 2014. Montreal, QC, Canada, H3A2R77, 2014.
[73]
Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem., 1996, 17(5-6), 490-519.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P]
[74]
Halgren, T.A. MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular-interaction energies and geometries. J. Comput. Chem., 1999, 20(7), 730-748.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199905)20:7<730::AID-JCC8>3.0.CO;2-T] [PMID: 34376036]
[75]
Baxter, C.A.; Murray, C.W.; Clark, D.E.; Westhead, D.R.; Eldridge, M.D. Flexible docking using tabu search and an empirical estimate of binding affinity. Proteins, 1998, 33(3), 367-382.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19981115)33:3<367::AID-PROT6>3.0.CO;2-W] [PMID: 9829696]
[76]
Daoud, I.; Melkemi, N.; Salah, T.; Ghalem, S. Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors. Comput. Biol. Chem., 2018, 74, 304-326.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.03.021] [PMID: 29747032]
[77]
Abdelli, I.; Benariba, N.; Adjdir, S.; Fekhikher, Z.; Daoud, I.; Terki, M.; Benramdane, H.; Ghalem, S. In silico evaluation of phenolic compounds as inhibitors of Α-amylase and Α-glucosidase. J. Biomol. Struct. Dyn., 2021, 39(3), 816-822.
[http://dx.doi.org/10.1080/07391102.2020.1718553] [PMID: 31955660]
[78]
Toumi, A.; Boudriga, S.; Hamden, K.; Daoud, I.; Askri, M.; Soldera, A.; Lohier, J.F.; Strohmann, C.; Brieger, L.; Knorr, M. Diversity-oriented synthesis of spiropyrrolo[1,2- a]isoquinoline derivatives via diastereoselective and regiodivergent three-component 1,3-dipolar cycloaddition reactions: In vitro and in vivo evaluation of the antidiabetic activity of rhodanine analogues. J. Org. Chem., 2021, 86(19), 13420-13445.
[http://dx.doi.org/10.1021/acs.joc.1c01544] [PMID: 34546053]
[79]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[80]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[81]
Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction is a balancing act: Importance of sampling methods to balance sensitivity and specificity of predictive models based on imbalanced chemical data sets. Front Chem., 2018, 6, 362.
[http://dx.doi.org/10.3389/fchem.2018.00362] [PMID: 30271769]