2-Nucleobase-substituted 4,6-Diaminotriazine Analogs: Synthesis and Anti-cancer Activity in 5-Fluorouracil-sensitive and Resistant Colorectal Cancer Cells

Page: [3032 - 3049] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer continues to be the second leading cause of death worldwide, with colorectal cancer (CRC) being the third most common type. Despite significant advances in cancer therapies, the current treatment of CRC remains suboptimal. In addition, the effectiveness of available chemotherapeutic drugs such as 5-Fluorouracil (5-FU) is limited by CRC-acquired resistance.

Methods: In this study, we provide innovative approaches employed in synthesizing four novel nucleobase analogs. Equally, we describe the effects of these compounds on proliferation, migration, aggregation, and adhesion of 5-FU-sensitive (HCT116) and -resistant (5-FU-R-HCT116) human CRC cells. In either cell type, our synthesized novel analogs significantly inhibited cell viability in a concentration- and time-dependent manner. This highlights the higher potency of these novel analogs. In addition, these compounds attenuated migration and adhesion of both cell types while they promoted homotypic cell-cell interaction.

Results: These changes were reflected by the downregulation of matrix metalloproteases (MMP-2 and MMP-9). Furthermore, our analogs exhibited potent anti-angiogenic activity in vivo.

Conclusion: These novel nucleobase analogs reduced the level of secreted vascular endothelial growth factor (VEGF) and nitric oxide (NO) production in both 5-FU-sensitive and -resistant CRC cells. Taken together, our data highlight the potential chemotherapeutic properties of our novel analogs against CRC, including the 5-FU-resistant form.

Keywords: Colorectal cancer, 5-Fluorouracil, nucleobase, analogs, 2-Nucleobase-substituted 4, 6-Diamino-s-triazine analogues , malignancy

[1]
World Health Organization cancer. Available from: https://www.who.int/cancer/en/2018 [Accessed on: Dec 1, 2018].
[2]
Rassool, G.H. Global cancer rates could increase by 50% to 15 million by 2020. J. Adv. Nurs., 2003, 44(1), 7-8.
[http://dx.doi.org/10.1046/j.1365-2648.2003.02584.x-i1]
[3]
Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H.J.; Tveit, K.M.; Gibson, F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer, 2015, 14(1), 1-10.
[http://dx.doi.org/10.1016/j.clcc.2014.11.002] [PMID: 25579803]
[4]
McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. Colorectal cancer chemotherapy: The evolution of treatment and new approaches. Curr. Med. Chem., 2017, 24(15), 1537-1557.
[PMID: 28079003]
[5]
Bose, D.; Zimmerman, L.J.; Pierobon, M.; Petricoin, E.; Tozzi, F.; Parikh, A.; Fan, F.; Dallas, N.; Xia, L.; Gaur, P.; Samuel, S.; Liebler, D.C.; Ellis, L.M. Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br. J. Cancer, 2011, 105(11), 1759-1767.
[http://dx.doi.org/10.1038/bjc.2011.449] [PMID: 22045189]
[6]
Diab, R.; Degobert, G.; Hamoudeh, M.; Dumontet, C.; Fessi, H. Nucleoside analogue delivery systems in cancer therapy. Expert Opin. Drug Deliv., 2007, 4(5), 513-531.
[http://dx.doi.org/10.1517/17425247.4.5.513] [PMID: 17880274]
[7]
Galmarini, C.M.; Mackey, J.R.; Dumontet, C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol., 2002, 3(7), 415-424.
[http://dx.doi.org/10.1016/S1470-2045(02)00788-X] [PMID: 12142171]
[8]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[9]
Sampath, D.; Rao, V.A.; Plunkett, W. Mechanisms of apoptosis induction by nucleoside analogs. Oncogene, 2003, 22(56), 9063-9074.
[http://dx.doi.org/10.1038/sj.onc.1207229] [PMID: 14663485]
[10]
Plunkett, W.; Gandhi, V. Purine and pyrimidine nucleoside analogs. Cancer Chemother. Biol. Response Modif., 2001, 19, 21-45.
[PMID: 11686015]
[11]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[12]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[13]
Bertino, J.R. Chemotherapy of colorectal cancer: History and new themes. Semin Oncol, 1997, 24(5 Suppl 18), S18-13-s18-17.
[14]
The American Cancer Society How Chemotherapy Drugs Work. 2018. Available from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/how-chemotherapy-drugs-work.html [Accessed on: Dec 1, 2018].
[15]
Burke, M.P.; Borland, K.M.; Litosh, V.A. Base-modified nucleosides as chemotherapeutic agents: Past and future. Curr. Top. Med. Chem., 2016, 16(11), 1231-1241.
[http://dx.doi.org/10.2174/1568026615666150915111933] [PMID: 26369814]
[16]
Abdel-Samad, R.; Aouad, P.; Gali-Muhtasib, H.; Sweidan, Z.; Hmadi, R.; Kadara, H.; D’Andrea, E.L.; Fucci, A.; Pisano, C.; Darwiche, N. Mechanism of action of the atypical retinoid ST1926 in colorectal cancer: DNA damage and DNA polymerase α. Am. J. Cancer Res., 2018, 8(1), 39-55.
[PMID: 29416919]
[17]
Fardoun, M.; Al-Shehabi, T.; El-Yazbi, A.; Issa, K.; Zouein, F.; Maaliki, D.; Iratni, R.; Eid, A.H. Ziziphus nummularia Inhibits Inflammation-Induced Atherogenic Phenotype of Human Aortic Smooth Muscle Cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/4134093] [PMID: 28593025]
[18]
Karabanovich, G.; Zemanová, J.; Smutný, T.; Székely, R.; Šarkan, M.; Centárová, I.; Vocat, A.; Pávková, I.; Čonka, P.; Němeček, J.; Stolaříková, J.; Vejsová, M.; Vávrová, K.; Klimešová, V.; Hrabálek, A.; Pávek, P.; Cole, S.T.; Mikušová, K.; Roh, J. Development of 3,5-dinitrobenzylsulfanyl-1,3,4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating mycobacterium tuberculosis. J. Med. Chem., 2016, 59(6), 2362-2380.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00608] [PMID: 26948407]
[19]
Bouhadir, K.H.; Koubeissi, A.; Mohsen, F.A.; El-Harakeh, M.D.; Cheaib, R.; Younes, J.; Azzi, G.; Eid, A.A. Novel carbocyclic nucleoside analogs suppress glomerular mesangial cells proliferation and matrix protein accumulation through ROS-dependent mechanism in the diabetic milieu. II. Acylhydrazone-functionalized pyrimidines. Bioorg. Med. Chem. Lett., 2016, 26(3), 1020-1024.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.042] [PMID: 26733477]
[20]
Lira, E.P.; Huffman, C.W. Some Michael-Type Reactions with Adenine. J. Org. Chem., 1966, 31(7), 2188-2191.
[http://dx.doi.org/10.1021/jo01345a028]
[21]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278(1), 16-27.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07919.x] [PMID: 21087457]
[22]
Pranteda, A.; Piastra, V.; Stramucci, L.; Fratantonio, D.; Bossi, G. The p38 MAPKsignaling activation in colorectal cancer upon therapeutic treatments. Int. J. Mol. Sci., 2020, 21(8), 2773.
[http://dx.doi.org/10.3390/ijms21082773] [PMID: 32316313]
[23]
Hickok, J.; Thomas, D. Nitric oxide and cancer therapy: the emperor has NO clothes. Curr. Pharm. Des., 2010, 16(4), 381-391.
[http://dx.doi.org/10.2174/138161210790232149] [PMID: 20236067]
[24]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[25]
Kugimiya, N.; Nishimoto, A.; Hosoyama, T.; Ueno, K.; Enoki, T.; Li, T.S.; Hamano, K. The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells. J. Cell. Mol. Med., 2015, 19(7), 1569-1581.
[http://dx.doi.org/10.1111/jcmm.12531] [PMID: 25689483]
[26]
Zhang, S.; Chatterjee, T.; Godoy, C.; Wu, L.; Liu, Q.J.; Carmon, K.S. GPR56 Drives Colorectal Tumor Growth and Promotes Drug Resistance through Upregulation of MDR1 Expression via a RhoA-Mediated Mechanism. Mol. Cancer Res., 2019, 17(11), 2196-2207.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0436] [PMID: 31444231]
[27]
Wang, Z.; Li, Y.; Mao, R.; Zhang, Y.; Wen, J.; Liu, Q.; Liu, Y.; Zhang, T. DNAJB8 in small extracellular vesicles promotes Oxaliplatin resistance through TP53/MDR1 pathway in colon cancer. Cell Death Dis., 2022, 13(2), 151.
[http://dx.doi.org/10.1038/s41419-022-04599-x] [PMID: 35165262]
[28]
Bhardwaj, M.; Cho, H.J.; Paul, S.; Jakhar, R.; Khan, I.; Lee, S.J.; Kim, B.Y.; Krishnan, M.; Khaket, T.P.; Lee, H.G.; Kang, S.C. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget, 2018, 9(3), 3278-3291.
[http://dx.doi.org/10.18632/oncotarget.22890] [PMID: 29423046]
[29]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta Biomembr., 1976, 455(1), 152-162.
[http://dx.doi.org/10.1016/0005-2736(76)90160-7] [PMID: 990323]
[30]
Chen, C.; Chin, J.E.; Ueda, K.; Clark, D.P.; Pastan, I.; Gottesman, M.M.; Roninson, I.B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell, 1986, 47(3), 381-389.
[http://dx.doi.org/10.1016/0092-8674(86)90595-7] [PMID: 2876781]
[31]
Volpicelli, E.R.; Lezcano, C.; Zhan, Q.; Girouard, S.D.; Kindelberger, D.W.; Frank, M.H.; Frank, N.Y.; Crum, C.P.; Murphy, G.F. The multidrug-resistance transporter ABCB5 is expressed in human placenta. Int. J. Gynecol. Pathol., 2014, 33(1), 45-51.
[http://dx.doi.org/10.1097/PGP.0b013e31829c677f] [PMID: 24300535]
[32]
Ndreshkjana, B.; Çapci, A.; Klein, V.; Chanvorachote, P.; Muenzner, J.K.; Huebner, K.; Steinmann, S.; Erlenbach-Wuensch, K.; Geppert, C.I.; Agaimy, A.; Ballout, F.; El-Baba, C.; Gali-Muhtasib, H.; Roehe, A.V.; Hartmann, A.; Tsogoeva, S.B.; Schneider-Stock, R. Combination of 5-fluorouracil and thymoquinone targets stem cell gene signature in colorectal cancer cells. Cell Death Dis., 2019, 10(6), 379.
[http://dx.doi.org/10.1038/s41419-019-1611-4] [PMID: 31097715]
[33]
Pedrosa, P.; Corvo, M.L.; Ferreira-Silva, M.; Martins, P.; Carvalheiro, M.C.; Costa, P.M.; Martins, C.; Martins, L.M.D.R.S.; Baptista, P.V.; Fernandes, A.R. Targeting cancer resistance via multifunctional gold nanoparticles. Int. J. Mol. Sci., 2019, 20(21), 5510.
[http://dx.doi.org/10.3390/ijms20215510] [PMID: 31694227]
[34]
Thorat, N.D.; Bauer, J.; Tofail, S.A.M.; Gascón Pérez, V.; Bohara, R.A.; Yadav, H.M. Silica nano supra-assembly for the targeted delivery of therapeutic cargo to overcome chemoresistance in cancer. Colloids Surf. B Biointerfaces, 2020, 185, 110571.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110571] [PMID: 31683204]
[35]
Shen, C.J.; Lin, P.L.; Lin, H.C.; Cheng, Y.W.; Huang, H.S.; Lee, H. RV-59 suppresses cytoplasmic Nrf2-mediated 5-fluorouracil resistance and tumor growth in colorectal cancer. Am. J. Cancer Res., 2019, 9(12), 2789-2796.
[PMID: 31911862]
[36]
Adwan, H.; Elharouni, D.; Habashy, D.; Banna, N.; Georges, R.; Pervaiz, A.; Berger, M. Early Metastasis in Colorectal Cancer Poses an Option for New Diagnostic and Treatment Strategies in: Cancer metastatis; Intech Open: london 2018.
[37]
Sebolt-Leopold, J.S.; Dudley, D.T.; Herrera, R.; Becelaere, K.V.; Wiland, A.; Gowan, R.C.; Tecle, H.; Barrett, S.D.; Bridges, A.; Przybranowski, S.; Leopold, W.R.; Saltiel, A.R. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med., 1999, 5(7), 810-816.
[http://dx.doi.org/10.1038/10533] [PMID: 10395327]
[38]
Hoshino, R.; Chatani, Y.; Yamori, T.; Tsuruo, T.; Oka, H.; Yoshida, O.; Shimada, Y.; Ari-i, S.; Wada, H.; Fujimoto, J.; Kohno, M. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene, 1999, 18(3), 813-822.
[http://dx.doi.org/10.1038/sj.onc.1202367] [PMID: 9989833]
[39]
Chen, Y.; Deng, G.; Fu, Y.; Han, Y.; Guo, C.; Yin, L.; Cai, C.; Shen, H.; Wu, S.; Zeng, S. FOXC2 Promotes Oxaliplatin Resistance by Inducing Epithelial-Mesenchymal Transition via MAPK/ERK Signaling in Colorectal Cancer. OncoTargets Ther., 2020, 13, 1625-1635.
[http://dx.doi.org/10.2147/OTT.S241367] [PMID: 32110058]
[40]
Huang, L.; Chen, S.; Fan, H.; Ai, F.; Sheng, W. BZW2 promotes the malignant progression of colorectal cancer via activating the ERK/MAPK pathway. J. Cell. Physiol., 2020, 235(5), 4834-4842.
[http://dx.doi.org/10.1002/jcp.29361] [PMID: 31643092]
[41]
Vinot, S.; Anguille, C.; de Toledo, M.; Gadea, G.; Roux, P. Analysis of cell migration and its regulation by Rho GTPases and p53 in a three-dimensional environment. Methods Enzymol., 2008, 439, 413-424.
[http://dx.doi.org/10.1016/S0076-6879(07)00429-6] [PMID: 18374180]
[42]
Lin, T.H.; Kuo, H.C.; Chou, F.P.; Lu, F.J. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008, 8(1), 58.
[http://dx.doi.org/10.1186/1471-2407-8-58] [PMID: 18294404]
[43]
Park, J.M.; Kim, A.; Oh, J.H.; Chung, A.S. Methylseleninic acid inhibits PMA-stimulated pro-MMP-2 activation mediated by MT1-MMP expression and further tumor invasion through suppression of NF- B activation. Carcinogenesis, 2006, 28(4), 837-847.
[http://dx.doi.org/10.1093/carcin/bgl203] [PMID: 17071627]
[44]
Nabeshima, K.; Inoue, T.; Shimao, Y.; Sameshima, T. Matrix metalloproteinases in tumor invasion: Role for cell migration. Pathol. Int., 2002, 52(4), 255-264.
[http://dx.doi.org/10.1046/j.1440-1827.2002.01343.x] [PMID: 12031080]
[45]
Said, A.; Raufman, J.P.; Xie, G. The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel), 2014, 6(1), 366-375.
[http://dx.doi.org/10.3390/cancers6010366] [PMID: 24518611]
[46]
Dai, F.; Chen, Y.; Huang, L.; Wang, J.; Zhang, T.; Li, J.; Tong, W.; Liu, M.; Yi, Z. A novel synthetic small molecule YH -306 suppresses colorectal tumour growth and metastasis viaFAK pathway. J. Cell. Mol. Med., 2015, 19(2), 383-395.
[http://dx.doi.org/10.1111/jcmm.12450] [PMID: 25351103]
[47]
Saias, L.; Gomes, A.; Cazales, M.; Ducommun, B.; Lobjois, V. Cell–Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation. Cancer Res., 2015, 75(12), 2426-2433.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3534] [PMID: 25855380]
[48]
Mui, K.L.; Chen, C.S.; Assoian, R.K. The mechanical regulation of integrin–cadherin crosstalk organizes cells, signaling and forces. J. Cell Sci., 2016, 129(6), jcs.183699.
[http://dx.doi.org/10.1242/jcs.183699] [PMID: 26919980]
[49]
Canel, M.; Serrels, A.; Frame, M.C.; Brunton, V.G. E-cadherin–integrin crosstalk in cancer invasion and metastasis. J. Cell Sci., 2013, 126(2), 393-401.
[http://dx.doi.org/10.1242/jcs.100115] [PMID: 23525005]
[50]
Weber, G.F.; Bjerke, M.A.; DeSimone, D.W. Integrins and cadherins join forces to form adhesive networks. J. Cell Sci., 2011, 124(8), 1183-1193.
[http://dx.doi.org/10.1242/jcs.064618] [PMID: 21444749]
[51]
Ahn, J.Y.; Lee, J.S.; Min, H.Y.; Lee, H.Y. Acquired resistance to 5-fluorouracil via HSP90/Src-mediated increase in thymidylate synthase expression in colon cancer. Oncotarget, 2015, 6(32), 32622-32633.
[http://dx.doi.org/10.18632/oncotarget.5327] [PMID: 26416450]
[52]
Gasiulė, S.; Dreize, N.; Kaupinis, A.; Ražanskas, R.; Čiupas, L.; Stankevičius, V.; Kapustina, Ž.; Laurinavičius, A.; Valius, M.; Vilkaitis, G. Molecular insights into mirna-driven resistance to 5-fluorouracil and oxaliplatin chemotherapy: miR-23b modulates the epithelial–mesenchymal transition of colorectal cancer cells. J. Clin. Med., 2019, 8(12), 2115.
[http://dx.doi.org/10.3390/jcm8122115] [PMID: 31810268]
[53]
Du, B.; Shim, J. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7), 965.
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[54]
Roche, J. Theepithelial-to-mesenchymal transition in cancer. Cancers (Basel), 2018, 10(2), 52.
[http://dx.doi.org/10.3390/cancers10020052] [PMID: 29462906]
[55]
Seeber, A.; Gunsilius, E.; Gastl, G.; Pircher, A. Anti-angiogenics: Their value in colorectal cancer therapy. Oncol. Res. Treat., 2018, 41(4), 188-193.
[http://dx.doi.org/10.1159/000488301] [PMID: 29562227]
[56]
Hasan, M.R.; Ho, S.H.Y.; Owen, D.A.; Tai, I.T. Inhibition of VEGF induces cellular senescence in colorectal cancer cells. Int. J. Cancer, 2011, 129(9), 2115-2123.
[http://dx.doi.org/10.1002/ijc.26179] [PMID: 21618508]
[57]
Qiu, Y-Y.; Hu, S-J.; Bao, Y-J.; Liang, B.; Yan, C-N.; Shi, X-J.; Yu, H.; Zou, Y.; Tang, L-R.; Tang, Q-F.; Feng, W.; Yin, P-H. Anti-angiogenic and anti-proliferative effects of inhibition of HIF-1α by p-HIF-1α RNAi in colorectal cancer. Int. J. Clin. Exp. Pathol., 2015, 8(7), 7913-7920.
[PMID: 26339356]
[58]
Mavria, G.; Vercoulen, Y.; Yeo, M.; Paterson, H.; Karasarides, M.; Marais, R.; Bird, D.; Marshall, C.J. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell, 2006, 9(1), 33-44.
[http://dx.doi.org/10.1016/j.ccr.2005.12.021] [PMID: 16413470]
[59]
Xu, Z.; Zhu, C.; Chen, C.; Zong, Y.; Feng, H.; Liu, D.; Feng, W.; Zhao, J.; Lu, A. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/ Elk-1/HIF-1α/VEGF-A pathway in colorectal cancer. Cell Death Dis., 2018, 9(10), 974.
[http://dx.doi.org/10.1038/s41419-018-1010-2] [PMID: 30250188]
[60]
Oláh, G.; Módis, K.; Törö, G.; Hellmich, M.R.; Szczesny, B.; Szabo, C. Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochem. Pharmacol., 2018, 149, 186-204.
[http://dx.doi.org/10.1016/j.bcp.2017.10.011] [PMID: 29074106]
[61]
Gao, Y.; Zhou, S.; Xu, Y.; Sheng, S.; Qian, S.Y.; Huo, X. Nitric oxide synthase inhibitors 1400W and L-NIO inhibit angiogenesis pathway of colorectal cancer. Nitric Oxide, 2019, 83, 33-39.
[http://dx.doi.org/10.1016/j.niox.2018.12.008] [PMID: 30590117]
[62]
Zhou, Q.; Qi, C.L.; Li, Y.; He, X.D.; Li, J.C.; Zhang, Q.Q.; Tian, L.; Zhang, M.; Han, Z.; Wang, H.; Yang, X.; Wang, L.J. A novel four-step system for screening angiogenesis inhibitors. Mol. Med. Rep., 2013, 8(6), 1734-1740.
[http://dx.doi.org/10.3892/mmr.2013.1704] [PMID: 24068303]