Recent Patents of Pharmaceutical Co-Crystals: Product Development on Anti-Cancer Drugs and Beyond

Page: [246 - 267] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Background: Scientists, academicians, and researchers from academics and the pharmaceutical industries have all expressed interest in the design and production of pharmaceutical cocrystals in recent years. The development of novel drug products with enhanced physicochemical and pharmacological characteristics is aided by the cocrystallization of drug substances.

Objective: The major problem with drug candidates is their solubility and bioavailability, which may be solved with the appropriate molecular modifications. The failure of most drug candidates in earlier clinical trials is also reawakening interest. In that connection, pharmaceutical cocrystals are vital in the development of dosage forms in the field of pharmaceutical technology. The goal of this manuscript is to provide a comprehensive overview of cocrystal synthesis methods and characterization techniques.

Conclusion: In this review, it is evident that the solvent-free technique has several benefits over solvent-based approaches in the design and production of pharmaceutical cocrystals, and that these methodologies can also open opportunities for further advancement in the field of cocrystal synthesis. This manuscript provides a brief overview of each technique for manufacturing pharmaceutical cocrystals and an analysis of cocrystals. This manuscript has highlighted points on whether cocrystals comply with the requirements for intellectual property rights and how they will impact the current pharmaceutical industry. The impact of recent patents on pharmaceutical cocrystals is examined in depth with relevant examples.

Keywords: Pharmaceutical cocrystals, cocrystallization, crystal engineering, characterizations, regulatory guidelines, patents

[1]
Shamshina JL, Barber PS, Rogers RD. Ionic liquids in drug delivery. Expert Opin Drug Deliv 2013; 10(10): 1367-81.
[http://dx.doi.org/10.1517/17425247.2013.808185 ] [PMID: 23795613]
[2]
Garg U, Azim Y. Challenges and opportunities of pharmaceutical cocrystals: A focused review on non-steroidal anti-inflammatory drugs. RSC Med Chem 2021; 12(5): 705-21.
[3]
Kale DP, Zode SS, Bansal AK. Challenges in translational development of pharmaceutical cocrystals. J Pharm Sci 2017; 106(2): 457-70.
[http://dx.doi.org/10.1016/j.xphs.2016.10.021 ] [PMID: 27914793]
[4]
Wang N, Xie C, Lu H. et al. Cocrystal and its application in the field of active pharmaceutical ingredients and food ingredients. Curr Pharm Des 2018; 24(21): 2339-48.
[http://dx.doi.org/10.2174/1381612824666180522102732 ] [PMID: 29788878]
[5]
Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. Int J Pharm 2013; 453(1): 233-52.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.001 ] [PMID: 23178213]
[6]
Bharate SS, Vishwakarma RA. Impact of preformulation on drug development. Expert Opin Drug Deliv 2013; 10(9): 1239-57.
[http://dx.doi.org/10.1517/17425247.2013.783563 ] [PMID: 23534681]
[7]
Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Cocrystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci 2009; 71(4): 359-70.
[http://dx.doi.org/10.4103/0250-474X.57283 ] [PMID: 20502540]
[8]
Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292: 91-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.016 ] [PMID: 30118788]
[9]
Aungst BJ. Optimizing oral bioavailability in drug discovery: An overview of design and testing strategies and formulation options. J Pharm Sci 2017; 106(4): 921-9.
[http://dx.doi.org/10.1016/j.xphs.2016.12.002 ] [PMID: 27986598]
[10]
Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm 2020; 586, 119560.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119560 ] [PMID: 32565285]
[11]
Avdeef A. Absorption and Drug Development: Solubility, Permeability, and Charge State. Hoboken, New Jersey: John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9781118286067]
[12]
García-Arieta A, Gordon J. Bioequivalence requirements in the European Union: Critical discussion. AAPS J 2012; 14(4): 738-48.
[http://dx.doi.org/10.1208/s12248-012-9382-1 ] [PMID: 22826032]
[13]
Gadade DD, Pekamwar SS. Pharmaceutical cocrystals: Regulatory and strategic aspects, design and development. Adv Pharm Bull 2016; 6(4): 479-94.
[http://dx.doi.org/10.15171/apb.2016.062 ] [PMID: 28101455]
[14]
Desiraju GR. Crystal and co-crystal. CrystEngComm 2003; 5(82): 466-7.
[http://dx.doi.org/10.1039/b313552g]
[15]
Srivastava D, Fatima Z, Kaur CD. Multicomponent pharmaceutical cocrystals: A novel approach for combination therapy. Mini Rev Med Chem 2018; 18(14): 1160-7.
[http://dx.doi.org/10.2174/1389557518666180305163613 ] [PMID: 29512461]
[16]
Sokal A, Pindelska E. Pharmaceutical cocrystals as an opportunity to modify drug properties: From the idea to application: A review. Curr Pharm Des 2018; 24(13): 1357-65.
[http://dx.doi.org/10.2174/1381612824666171226130828 ] [PMID: 29278209]
[17]
Almarsson O, Zaworotko MJ. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem Commun (Camb) 2004; (17): 1889-96.
[http://dx.doi.org/10.1039/b402150a ] [PMID: 15340589]
[18]
Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des 2009; 9(6): 2950-67.
[http://dx.doi.org/10.1021/cg900129f ] [PMID: 19503732]
[19]
U.S. Food and Drug Administration. Generally Recognized as Safe (GRAS). Available from: https://www.fda.gov/food/foodingredients-packaging/generally-recognized-safe-gras
[20]
Bolla G, Nangia A. Pharmaceutical cocrystals: Walking the talk. Chem Commun (Camb) 2016; 52(54): 8342-60.
[http://dx.doi.org/10.1039/C6CC02943D ] [PMID: 27278109]
[21]
Morissette SL, Almarsson O, Peterson ML. et al. High-throughput crystallization: Polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 2004; 56(3): 275-300.
[http://dx.doi.org/10.1016/j.addr.2003.10.020 ] [PMID: 14962582]
[22]
Baertschi SW, Alsante KM, Reed RA. Solid-state pharmaceutical development: Ensuring stability through salt and polymorph screening.In: Baertschi SW, Alsante KM, Reed RA, Eds Pharmaceutical Stress Testing Boca Raton: CRC Press. 2016; pp. 266-97.
[23]
Steele G, Austin T. Preformulation investigations using small amounts of compound as an aid to candidate drug selection and early development.In: Gibson M, Ed Pharmaceutical Preformulation and Formulation Boca Raton: CRC Press. 2016; pp. 29-140.
[24]
Steed JW. The role of co-crystals in pharmaceutical design. Trends Pharmacol Sci 2013; 34(3): 185-93.
[http://dx.doi.org/10.1016/j.tips.2012.12.003 ] [PMID: 23347591]
[25]
Aneef Mohammed Y. Solubility enhancement of co-crystal based solid dosage form Available from: http://repositorytnmgrmu.ac.in/id/eprint/2686
[26]
Rams-Baron M, Jachowicz R, Boldyreva E, Zhou D, Jamroz W, Paluch M. Amorphous drug formulation.In: Amorphous Drugs Cham: Springer. 2018; pp. 159-223.
[27]
Zhang GG, Zhou D. Crystalline and amorphous solids Developing solid oral dosage forms. Cambridge, Massachusetts: Academic Press 2017; pp. 23-57.
[http://dx.doi.org/10.1016/B978-0-12-802447-8.00002-9]
[28]
Gould PL. Salt selection for basic drugs. Int J Pharm 1986; 33(1-3): 201-17.
[http://dx.doi.org/10.1016/0378-5173(86)90055-4]
[29]
Thipparaboina R, Thumuri D, Chavan R, Naidu VGM, Shastri NR. Fast dissolving drug-drug eutectics with improved compressibility and synergistic effects. Eur J Pharm Sci 2017; 104: 82-9.
[http://dx.doi.org/10.1016/j.ejps.2017.03.042 ] [PMID: 28366649]
[30]
dos Santos JA, Júnior JV, de Araujo Batista RS. et al. Preparation, physicochemical characterization and solubility evaluation of pharma-ceutical cocrystals of cinnamic acid. J Therm Anal Calorim 2021; 145(2): 379-90.
[http://dx.doi.org/10.1007/s10973-020-09708-6]
[31]
Inam M, Liu L, Wang JW. et al. Enhancing the physiochemical properties of puerarin via L-proline co-crystallization: Synthesis, charac-terization, and dissolution studies of two phases of pharmaceutical co-crystals. Int J Mol Sci 2021; 22(2): 928.
[http://dx.doi.org/10.3390/ijms22020928 ] [PMID: 33477727]
[32]
Sathisaran I, Dalvi SV. Engineering cocrystals of poorly watersoluble drugs to enhance dissolution in aqueous medium. Pharmaceutics 2018; 10(3): 108.
[http://dx.doi.org/10.3390/pharmaceutics10030108 ] [PMID: 30065221]
[33]
Almarsson Ö, Peterson ML, Zaworotko M. The A to Z of pharmaceutical cocrystals: A decade of fast-moving new science and patents. Pharm Pat Anal 2012; 1(3): 313-27.
[http://dx.doi.org/10.4155/ppa.12.29 ] [PMID: 24236844]
[34]
Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach.In: Toda F, Ed Organic Solid State Reactions Heidelberg, Berlin: Springer. 2005; pp. 41-70.
[http://dx.doi.org/10.1007/b100995]
[35]
Vogt FG, Clawson JS, Strohmeier M, Edwards AJ, Pham TN, Watson SA. Solid-state NMR analysis of organic cocrystals and complexes. Cryst Growth Des 2009; 9(2): 921-37.
[http://dx.doi.org/10.1021/cg8007014]
[36]
Jones W, Motherwell WS, Trask AV. Pharmaceutical cocrystals: An emerging approach to physical property enhancement. MRS Bull 2006; 31(11): 875-9.
[http://dx.doi.org/10.1557/mrs2006.206]
[37]
Shaikh R, Singh R, Walker GM, Croker DM. Pharmaceutical cocrystal drug products: An outlook on product development. Trends Pharmacol Sci 2018; 39(12): 1033-48.
[http://dx.doi.org/10.1016/j.tips.2018.10.006 ] [PMID: 30376967]
[38]
Chen J, Sarma B, Evans JM, Myerson AS. Pharmaceutical crystallization. Cryst Growth Des 2011; 11(4): 887-95.
[http://dx.doi.org/10.1021/cg101556s]
[39]
Wouters J, Quéré L. Pharmaceutical salts and co-crystals London, United Kingdom: Royal Society of Chemistry. 2011.
[http://dx.doi.org/10.1039/9781849733502]
[40]
Ibrahim AY, Forbes RT, Blagden N. Spontaneous crystal growth of co-crystals: The contribution of particle size reduction and convection mixing of the co-formers. CrystEngComm 2011; 13(4): 1141-52.
[http://dx.doi.org/10.1039/C004371K]
[41]
Luo YH, Sun BW. Pharmaceutical Co-crystals of pyrazinecarboxamide (PZA) with various carboxylic acids: Crystallography, hirshfeld surfaces, and dissolution study. Cryst Growth Des 2013; 13(5): 2098-106.
[http://dx.doi.org/10.1021/cg400167w]
[42]
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug cocrystals: Towards the development of effective therapeutic hybrids. Drug Discov Today 2016; 21(3): 481-90.
[http://dx.doi.org/10.1016/j.drudis.2016.02.001 ] [PMID: 26869329]
[43]
Bhavani AK, Usha AL, Ashritha K, Rani ER. Review on pharmaceutical co-crystals and design strategies. Asian J Pharm Technol 2021; 11(2): 175-80.
[http://dx.doi.org/10.52711/2231-5713.2021.00029]
[44]
Athiyah U, Kusuma PA, Tutik T. et al. Crystal engineering of quercetin by liquid assisted grinding method. J Teknol 2019; 81(1)
[http://dx.doi.org/10.11113/jt.v81.12639]
[45]
Karki S, Friscić T, Jones W, Motherwell WD. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm 2007; 4(3): 347-54.
[http://dx.doi.org/10.1021/mp0700054 ] [PMID: 17497885]
[46]
Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics 2018; 10(1): 18.2.1.3.
[http://dx.doi.org/10.3390/pharmaceutics10010018]
[47]
Sathisaran I, Dalvi SV. Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers. Cryst Growth Des 2017; 17: 3974-88.
[http://dx.doi.org/10.1021/acs.cgd.7b00599]
[48]
Kumar SS, Athimoolam S, Sridhar B. Structural, spectral, theoretical and anticancer studies on new co-crystal of the drug 5-fluorouracil. J Mol Struct 2018; 1173: 951-8.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.079]
[49]
Ying P, Yu J, Su W. Liquid‐assisted grinding mechanochemistry in the synthesis of pharmaceuticals. Adv Synth Catal 2021; 363(5): 1246-71.
[http://dx.doi.org/10.1002/adsc.202001245]
[50]
Sanphui P, Goud NR, Khandavilli UR, Nangia A. Fast dissolving curcumin cocrystals. Cryst Growth Des 2011; 11(9): 4135-45.
[http://dx.doi.org/10.1021/cg200704s]
[51]
Kulla H, Greiser S, Benemann S, Rademann K, Emmerling F. In situ investigation of a self-accelerated cocrystal formation by grinding pyrazinamide with oxalic acid. Molecules 2016; 21(7): 917.
[http://dx.doi.org/10.3390/molecules21070917 ] [PMID: 27428942]
[52]
Wang J, Dai XL, Lu TB, Chen JM. Temozolomide–hesperetin drug–drug cocrystal with optimized performance in stability, dissolution, and tabletability. Cryst Growth Des 2021; 21(2): 838-46.
[http://dx.doi.org/10.1021/acs.cgd.0c01153]
[53]
Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res 2012; 29(3): 806-17.
[http://dx.doi.org/10.1007/s11095-011-0605-4 ] [PMID: 22009589]
[54]
Gajda M, Nartowski KP, Pluta J, Karolewicz B. The role of the polymer matrix in solvent-free hot melt extrusion continuous process for mechanochemical synthesis of pharmaceutical cocrystal. Eur J Pharm Biopharm 2018; 131: 48-59.
[http://dx.doi.org/10.1016/j.ejpb.2018.07.002 ] [PMID: 30205892]
[55]
Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res 2010; 27(12): 2725-33.
[http://dx.doi.org/10.1007/s11095-010-0273-9 ] [PMID: 20872053]
[56]
Srinivasan P, Almutairi M, Dumpa N. et al. Theophylline-nicotinamide pharmaceutical co-crystals generated using hot melt extrusion technology: Impact of polymeric carriers on processability. J Drug Deliv Sci Technol 2021; 61, 102128.
[http://dx.doi.org/10.1016/j.jddst.2020.102128 ] [PMID: 33717231]
[57]
Kumari N, Ghosh A. Cocrystallization: Cutting edge tool for physicochemical modulation of active pharmaceutical ingredients. Curr Pharm Des 2020; 26(38): 4858-82.
[http://dx.doi.org/10.2174/1381612826666200720114638 ] [PMID: 32691702]
[58]
B Shekhawat P, B Pokharkar V. Understanding peroral absorption: Regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 2017; 7(3): 260-80.
[http://dx.doi.org/10.1016/j.apsb.2016.09.005 ] [PMID: 28540164]
[59]
Aitipamula S, Tan RB. Pharmaceutical co-crystals: Crystal engineering and applications.In: Multi-Component Crystals. Berlin, Germany: De Gruyter 2017; pp. 1-31.
[60]
Aitipamula S, Antonijevic I, Baruah JB. et al Multi-Component Crystals: Synthesis, Concepts, Function. Berlin, Germany: De Gruyter 2017.
[61]
Lv WT, Liu XX, Dai XL, Long XT, Chen JMA. 5-fluorouracil–kaempferol drug–drug cocrystal: A ternary phase diagram, characterization and property evaluation. CrystEngComm 2020; 22(46): 8127-8135. Slurry Crystallization.
[http://dx.doi.org/10.1039/D0CE01289K]
[62]
Thorat SH, George CP, Shaligram PS, Suresha PR, Gonnade RG. Polymorphs and hydrates of the anticancer drug erlotinib: X-ray crystallography, phase transition and biopharmaceutical studies. CrystEngComm 2021.
[http://dx.doi.org/10.1039/D1CE00032B]
[63]
Silverberg LJ, Kelly S, Vemishetti P. et al. A crystallizationinduced stereoselective glycosidation reaction in the synthesis of the anti-cancer drug etoposide. Org Lett 2000; 2(21): 3281-3.
[http://dx.doi.org/10.1021/ol006262n ] [PMID: 11029190]
[64]
Aakeröy CB, Welideniya D, Desper J, Moore C. Halogen-bond driven co-crystallization of potential anti-cancer compounds: A structural study. CrystEngComm 2014; 16(44): 10203-9.
[http://dx.doi.org/10.1039/C4CE01614A]
[65]
Kai-Hang L, Mengying S, Guping T, Xiurong HU. Preparation, characterization and antitumor of cyclodextrin inclusion of an anticancer drug regorafenib. J Zhejiang Univ Med Sci 2017; 46(2): 151-9.
[66]
Marpaung AM, Lee M, Kartawiria IS. The development of butterfly pea (Clitoria ternatea) flower powder drink by cocrystallization. Indones Food Sci Tech J 2020; 3(2): 34-7.
[67]
Huang S, Xue Q, Xu J, Ruan S, Cai T. Simultaneously improving the physicochemical properties, dissolution performance, and bioavailability of apigenin and daidzein by co-crystallization with theophylline. J Pharm Sci 2019; 108(9): 2982-93.
[http://dx.doi.org/10.1016/j.xphs.2019.04.017 ] [PMID: 31029571]
[68]
Guo C, Zhang Q, Zhu B. et al. Pharmaceutical cocrystals of nicorandil with enhanced chemical stability and sustained release. Cryst Growth Des 2020; 20: 6995-7005.
[http://dx.doi.org/10.1021/acs.cgd.0c01043]
[69]
Mannava MC, Gunnam A, Lodagekar A, Shastri NR, Nangia AK, Solomon KA. Enhanced solubility, permeability, and tabletability of nicorandil by salt and cocrystal formation. CrystEngComm 2021; 23(1): 227-37.
[http://dx.doi.org/10.1039/D0CE01316A]
[70]
Sopyan I, Fudholi A, Muchtaridi MU, Puspitasari I. A simple effort to enhance solubility and dissolution rate of simvastatin using cocrystallization. Int J Pharm Pharm Sci 2016; 8(8): 342-6.
[71]
Enkelmann DD, Handelmann J, Schauerte C, Merz K. Cocrystallization and polymorphic behaviour of 5-fluorouracil. CrystEngComm 2019; 21(13): 2130-4.
[http://dx.doi.org/10.1039/C8CE01692E]
[72]
Shuren F, Hailin W, Zhisheng G, Yin Z. Thermal behaviour of the anticancer drug carboxyethylgermanium sesquioxide. J Therm Anal 1989; 35(3): 791-6.
[http://dx.doi.org/10.1007/BF02057234]
[73]
Saha R, Sengupta S, Dey SK. et al. A pharmaceutical cocrystal with potential anticancer activity. RSC Advances 2014; 4(90): 49070-8.
[http://dx.doi.org/10.1039/C4RA03207A]
[74]
Mohite R, Mehta P, Arulmozhi S, Kamble R, Pawar A, Bothiraja C. Synthesis of fisetin co-crystals with caffeine and nicotinamide using the cooling crystallization technique: Biopharmaceutical studies. New J Chem 2019; 43(34): 13471-9.
[http://dx.doi.org/10.1039/C9NJ01848D]
[75]
Thakor P, Yadav B, Modani S, Shastri NR. Preparation and optimization of nano-sized cocrystals using a quality by design approach. CrystEngComm 2020; 22: 2304-14.
[http://dx.doi.org/10.1039/C9CE01930H]
[76]
Sathisaran I, Devidas Bhatia D, Vishvanath Dalvi S. New curcumin-trimesic acid cocrystal and anti-invasion activity of curcumin multicomponent solids against 3D tumor models. Int J Pharm 2020; 587, 119667.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119667 ] [PMID: 32702448]
[77]
Pessoa AS, Aguiar GP, Oliveira JV, Bortoluzzi AJ, Paulino A, Lanza M. Precipitation of resveratrol-isoniazid and resveratrolnicotinamide cocrystals by gas antisolvent. J Supercrit Fluids 2019; 145: 93-102.
[http://dx.doi.org/10.1016/j.supflu.2018.11.014]
[78]
Kuminek G, Cavanagh KL, da Piedade MF, Rodríguez-Hornedo N. Posaconazole cocrystal with superior solubility and dissolution behavior. Cryst Growth Des 2019; 19(11): 6592-602.
[http://dx.doi.org/10.1021/acs.cgd.9b01026]
[79]
Rai SK, Gunnam A, Mannava MC, Nangia AK. Improving the dissolution rate of the anticancer drug dabrafenib. Cryst Growth Des 2020; 20(2): 1035-46.
[http://dx.doi.org/10.1021/acs.cgd.9b01365]
[80]
Lange L, Heisel S, Sadowski G. Predicting the solubility of pharmaceutical cocrystals in solvent/anti-solvent mixtures. Molecules 2016; 21(5): 593.
[http://dx.doi.org/10.3390/molecules21050593 ] [PMID: 27164075]
[81]
Liu G, Lin Q, Huang Y, Guan G, Jiang Y. Tailoring the particle microstructures of gefitinib by supercritical CO2 anti-solvent process. J CO2 Utilization 2017; 20: 43-51.
[82]
Cuadra IA, Cabañas A, Cheda JA, Türk M, Pando C. Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). J Supercrit Fluids 2020; 160, 104813.
[http://dx.doi.org/10.1016/j.supflu.2020.104813]
[83]
Anwar M, Ahmad I, Warsi MH. et al. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. Eur J Pharm Biopharm 2015; 96: 162-72.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.021 ] [PMID: 26241925]
[84]
Aakeröy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc 2009; 131(47): 17048-9.
[http://dx.doi.org/10.1021/ja907674c ] [PMID: 19894718]
[85]
Yu YM, Wang LY, Bu FZ. et al. The supramolecular self-assembly of 5-fluorouracil and caffeic acid through cocrystallization strategy opens up a new way for the development of synergistic antitumor pharmaceutical cocrystal. CrystEngComm 2020; 22(45): 7992-8006.
[http://dx.doi.org/10.1039/D0CE01297A]
[86]
Liu M, Hong C, Yao Y. et al. Development of a pharmaceutical cocrystal with solution crystallization technology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm 2016; 107: 151-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.008 ] [PMID: 27395394]
[87]
Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 2010; 53(1-3): 156-64.
[http://dx.doi.org/10.1016/j.supflu.2010.01.010]
[88]
Duncan AJ, Dudovitz RL, Dudovitz SJ, Stojaković J, Mariappan SV, MacGillivray LR. Quantitative and regiocontrolled crossphotocycloaddition of the anticancer drug 5-fluorouracil achieved in a cocrystal. Chem Commun (Camb) 2016; 52(89): 13109-11.
[http://dx.doi.org/10.1039/C6CC06570H ] [PMID: 27759136]
[89]
Wang JR, Yu X, Zhou C. et al. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotina-mide. Bioorg Med Chem Lett 2015; 25(5): 1036-9.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.022 ] [PMID: 25630224]
[90]
Aakeröy CB, Sinha AS. Eds Co-crystals: Preparation, characterization and applications. Royal Society of Chemistry 2018.
[http://dx.doi.org/10.1039/9781788012874]
[91]
Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev 2017; 117: 178-95.
[http://dx.doi.org/10.1016/j.addr.2017.07.008 ] [PMID: 28712924]
[92]
Shi X, Wang C, Chen Q, Shen S, Song S, Zhou X. Improving physicochemical properties of Ibrutinib with cocrystal strategy based on structures and natures of the carboxylic acid co-formers. J Drug Deliv Sci Technol 2021; 63, 102554.
[http://dx.doi.org/10.1016/j.jddst.2021.102554]
[93]
Tan J, Liu J, Ran L. A review of pharmaceutical nano-cocrystals: A novel strategy to improve the chemical and physical properties for poorly soluble drugs. Crystals (Basel) 2021; 11(5): 463.
[http://dx.doi.org/10.3390/cryst11050463]
[94]
Cuadra IA, Cabañas A, Cheda JAR, Pando C. Polymorphism in the co- crystallization of the anticonvulsant drug carbamazepine and saccharin using supercritical CO2 as an anti-solvent. J Supercrit Fluids 2018; 136: 60-9.
[http://dx.doi.org/10.1016/j.supflu.2018.02.004]
[95]
Ribas MM, Sakata GS, Santos AE. et al. Curcumin cocrystals using supercritical fluid technology. J Supercrit Fluids 2019; 152, 104564.
[http://dx.doi.org/10.1016/j.supflu.2019.104564]
[96]
Ray E, Vaghasiya K, Sharma A. et al. Autophagy- inducing inhalable co-crystal formulation of Niclosamide-Nicotinamide for lung cancer therapy. AAPS PharmSciTech 2020; 21(7): 260.
[http://dx.doi.org/10.1208/s12249-020-01803-z ] [PMID: 32944787]
[97]
Walsh D, Serrano DR, Worku ZA, Norris BA, Healy AM. Production of cocrystals in an excipient matrix by spray drying. Int J Pharm 2018; 536(1): 467-77.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.020 ] [PMID: 29241701]
[98]
Titapiwatanakun V, Basit AW, Gaisford S. A new method for producing pharmaceutical co-crystals: Laser irradiation of powder blends. Cryst Growth Des 2016; 16(6): 3307-12.
[http://dx.doi.org/10.1021/acs.cgd.6b00289]
[99]
Aher S, Dhumal R, Mahadik K, Ketolainen J, Paradkar A. Effect of cocrystallization techniques on compressional properties of caffeine/oxalic acid 2:1 cocrystal. Pharm Dev Technol 2013; 18(1): 55-60.
[http://dx.doi.org/10.3109/10837450.2011.618950 ] [PMID: 21981663]
[100]
Zhang Z, Yu N, Xue C. et al. Potential anti- tumor drug: Co-crystal 5-fluorouracil-nicotinamide. ACS Omega 2020; 5(26): 15777-82.
[http://dx.doi.org/10.1021/acsomega.9b03574 ] [PMID: 32656396]
[101]
Tanaka R, Hattori Y, Otsuka M, Ashizawa K. Application of spray freeze drying to theophylline-oxalic acid cocrystal engineering for inhaled dry powder technology. Drug Dev Ind Pharm 2020; 46(2): 179-87.
[http://dx.doi.org/10.1080/03639045.2020.1716367 ] [PMID: 31937148]
[102]
Patil S, Kulkarni J, Mahadik K. Exploring the potential of electrospray technology in cocrystal synthesis. Ind Eng Chem Res 2016; 55(30): 8409-14.
[http://dx.doi.org/10.1021/acs.iecr.6b01938]
[103]
Horstman EM, Goyal S, Pawate A. et al. Crystallization optimization of pharmaceutical solid forms with X-ray compatible microfluidic platforms. Cryst Growth Des 2015; 15(3): 1201-9.
[http://dx.doi.org/10.1021/cg5016065]
[104]
Desiraju GR. Supramolecular synthons in crystal engineering-a new organic synthesis. Angew Chem Int Ed Engl 1995; 34(21): 2311-27.
[http://dx.doi.org/10.1002/anie.199523111]
[105]
Mohamed S, Tocher DA, Price SL. Computational prediction of salt and cocrystal structures--does a proton position matter? Int J Pharm 2011; 418(2): 187-98.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.063 ] [PMID: 21497185]
[106]
Ouyang J, Chen J, Zhou L, Han F, Huang X. Effect of solid forms on physicochemical properties of valnemulin. Crystals (Basel) 2019; 9(12): 675.
[http://dx.doi.org/10.3390/cryst9120675]
[107]
Fábián L. Cambridge structural database analysis of molecular complementarity in cocrystals. Cryst Growth Des 2009; 9(3): 1436-43.
[http://dx.doi.org/10.1021/cg800861m]
[108]
Galek PT, Fábián L, Motherwell WD, Allen FH, Feeder N. Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallogr B 2007; 63(Pt 5): 768-82.
[http://dx.doi.org/10.1107/S0108768107030996 ] [PMID: 17873446]
[109]
Andree SN, Aakeröy CB. Molecular electrostatic potentials as a quantitative measure of hydrogen bonding preferences in solution. Supramol Chem 2018; 30(5-6): 455-63.
[http://dx.doi.org/10.1080/10610278.2017.1418876]
[110]
MacEachern LA, Walwyn-Venugopal R, Kermanshahi-Pour A, Mirmehrabi M. Ternary phase diagram development and production of niclosamide-urea co-crystal by spray drying. J Pharm Sci 2021; 110(5): 2063-73.
[http://dx.doi.org/10.1016/j.xphs.2020.11.036 ] [PMID: 33285181]
[111]
Malamatari M, Ross SA, Douroumis D, Velaga SP. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv Drug Deliv Rev 2017; 117: 162-77.
[http://dx.doi.org/10.1016/j.addr.2017.08.006 ] [PMID: 28811184]
[112]
Bofill L, Barbas R, de Sande D. et al. Novel, extremely bioavailable cocrystal of pterostilbene. Cryst Growth Des 2021; 21(4): 2315-23.
[http://dx.doi.org/10.1021/acs.cgd.0c01716]
[113]
Pantwalawalkar J, More H, Bhange D, Patil U, Jadhav N. Novel curcumin ascorbic acid cocrystal for improved solubility. J Drug Deliv Sci Technol 2021; 61, 102233.
[http://dx.doi.org/10.1016/j.jddst.2020.102233]
[114]
Smith AJ, Kavuru P, Wojtas L, Zaworotko MJ, Shytle RD. Cocrystals of quercetin with improved solubility and oral bioavailability. Mol Pharm 2011; 8(5): 1867-76.
[http://dx.doi.org/10.1021/mp200209j ] [PMID: 21846121]
[115]
Ross SA, Hurt AP, Antonijevic M. et al. Continuous manufacture and scale-up of theophylline-nicotinamide cocrystals. Pharmaceutics 2021; 13(3): 419.
[http://dx.doi.org/10.3390/pharmaceutics13030419 ] [PMID: 33804705]
[116]
Li S, Yu T, Tian Y, McCoy CP, Jones DS, Andrews GP. Mechanochemical synthesis of pharmaceutical cocrystal suspensions via hot melt extrusion: Feasibility studies and physicochemical characterization. Mol Pharm 2016; 13(9): 3054-68.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00134 ] [PMID: 27314248]
[117]
Qiu S, Li M. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets. Int J Pharm 2015; 479(1): 118-28.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.049 ] [PMID: 25542989]
[118]
Uppoor VR. Regulatory perspectives on in vitro (dissolution)/in vivo (bioavailability) correlations. J Control Release 2001; 72(1-3): 127-32.
[http://dx.doi.org/10.1016/S0168-3659(01)00268-1 ] [PMID: 11389991]
[119]
Kostewicz ES, Aarons L, Bergstrand M. et al. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 2014; 57: 300-21.
[http://dx.doi.org/10.1016/j.ejps.2013.09.008 ] [PMID: 24060672]
[120]
Skelly JP, Robinson JR, Shah VP. et al. In vitro and in vivo testing and correlation for oral controlled/modified-release dosage forms. Pharm Res 1990; 7: 975-82.
[121]
Higashino H, Hasegawa T, Yamamoto M. et al. In vitro-in vivo correlation of the effect of supersaturation on the intestinal absorption of BCS Class 2 drugs. Mol Pharm 2014; 11(3): 746-54.
[http://dx.doi.org/10.1021/mp400465p ] [PMID: 24460473]
[122]
Stanton MK, Kelly RC, Colletti A. et al. Improved pharmacokinetics of AMG 517 through co-crystallization part 2: Analysis of 12 carboxylic acid co-crystals. J Pharm Sci 2011; 100(7): 2734-43.
[http://dx.doi.org/10.1002/jps.22502 ] [PMID: 21287556]
[123]
Weyna DR, Cheney ML, Shan N. et al. Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol Pharm 2012; 9(7): 2094-102.
[http://dx.doi.org/10.1021/mp300169c ] [PMID: 22642304]
[124]
Martin F, Pop M, Kacso I. et al. Ketoconazole-p-aminobenzoic acid cocrystal: Revival of an old drug by crystal engineering. Mol Pharm 2020; 17(3): 919-32.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01178 ] [PMID: 31986050]
[125]
Kimoto K, Yamamoto M, Karashima M. et al. Pharmaceutical cocrystal development of TAK-020 with enhanced oral absorption. Crystals (Basel) 2020; 10(3): 211.
[http://dx.doi.org/10.3390/cryst10030211]
[126]
He H, Zhang Q, Wang JR, Mei X. Structure, physicochemical properties and pharmacokinetics of resveratrol and piperine cocrystals. CrystEngComm 2017; 19(41): 6154-63.
[http://dx.doi.org/10.1039/C7CE01468F]
[127]
Soliman II, Kandil SM, Abdou EM. Gabapentin-saccharin co-crystals with enhanced physicochemical properties and in vivo absorption formulated as oro-dispersible tablets. Pharm Dev Technol 2020; 25(2): 227-36.
[http://dx.doi.org/10.1080/10837450.2019.1687521 ] [PMID: 31671004]
[128]
Srivastava D, Fatima Z, Kaur CD, Tulsankar SL, Nashik SS, Rizvi DA. Pharmaceutical cocrystal: A novel approach to tailor the biopharmaceutical properties of a poorly water soluble drug. Recent Pat Drug Deliv Formul 2019; 13(1): 62-9.
[http://dx.doi.org/10.2174/1872211313666190306160116 ] [PMID: 30848223]
[129]
Chadha K, Karan M, Bhalla Y, et al. Cocrystals of hesperetin: Structural, pharmacokinetic, and pharmacodynamic evaluation. Cryst Growth Des 2017; 17(5): 2386-405.
[http://dx.doi.org/10.1021/acs.cgd.6b01769]
[130]
He H, Huang Y, Zhang Q, Wang JR, Mei X. Zwitterionic cocrystals of flavonoids and proline: Solid-state characterization, pharmaceutical properties, and pharmacokinetic performance. Cryst Growth Des 2016; 16(4): 2348-56.
[http://dx.doi.org/10.1021/acs.cgd.6b00142]
[131]
Xu J, Huang Y, Ruan S, Chi Z, Qin K, Cai B. et al. Cocrystals of isoliquiritigenin with enhanced pharmacokinetic performance. CrystEngComm 2016; 18(45): 8776-86.
[http://dx.doi.org/10.1039/C6CE01809B]
[132]
Li W, Pi J, Zhang Y. et al. A strategy to improve the oral availability of baicalein: The baicalein-theophylline cocrystal. Fitoterapia 2018; 129: 85-93.
[http://dx.doi.org/10.1016/j.fitote.2018.06.018 ] [PMID: 29936192]
[133]
Ganesh M, Ubaidulla U, Rathnam G, Jang HT. Chitosan-telmisartan polymeric cocrystals for improving oral absorption: In vitro and in vivo evaluation. Int J Biol Macromol 2019; 131: 879-85.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.141 ] [PMID: 30905757]
[134]
Suresh K, Mannava MK, Nangia A. Cocrystals and alloys of nitazoxanide: Enhanced pharmacokinetics. Chem Commun (Camb) 2016; 52(22): 4223-6.
[http://dx.doi.org/10.1039/C6CC00975A ] [PMID: 26911515]
[135]
Abbas N, Latif S, Afzal H. et al. Simultaneously improving mechanical, formulation, and in vivo performance of naproxen by cocrystallization. AAPS PharmSciTech 2018; 19(7): 3249-57.
[http://dx.doi.org/10.1208/s12249-018-1152-7 ] [PMID: 30194682]
[136]
Luo Y, Chen S, Zhou J. et al. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol 2019; 50: 248-54.
[http://dx.doi.org/10.1016/j.jddst.2019.02.004]
[137]
Ma XQ, Zhuang C, Wang BC, Huang YF, Chen Q, Lin N. Cocrystal of apigenin with higher solubility, enhanced oral bioavailability, and anti-inflammatory effect. Cryst Growth Des 2019; 19(10): 5531-7.
[http://dx.doi.org/10.1021/acs.cgd.9b00249]
[138]
Chen Y, Li L, Yao J, Ma YY, Chen JM, Lu TB. Improving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystal. Cryst Growth Des 2016; 16(5): 2923-30.
[http://dx.doi.org/10.1021/acs.cgd.6b00266]
[139]
Gautam MK, Besan M, Pandit D, Mandal S, Chadha R. Cocrystal of 5-fluorouracil: Characterization and evaluation of biopharmaceutical parameters. AAPS PharmSciTech 2019; 20(4): 149.
[http://dx.doi.org/10.1208/s12249-019-1360-9 ] [PMID: 30903402]
[140]
Haneef J, Chadha R. Sustainable synthesis of ambrisentan-syringic acid cocrystal: Employing mechanochemistry in the development of novel pharmaceutical solid form. CrystEngComm 2020; 22(14): 2507-16.
[http://dx.doi.org/10.1039/C9CE01818B]
[141]
Dai XL, Wu C, Li JH. et al. Modulating the solubility and pharmacokinetic properties of 5-fluorouracilviacocrystallization. CrystEngComm 2020; 22(21): 3670-82.
[http://dx.doi.org/10.1039/D0CE00409J]
[142]
Wu N, Zhang Y, Ren J, Zeng A, Liu J. Preparation of quercetin-nicotinamide cocrystals and their evaluation under in vivo and in vitro conditions. RSC Adv 2020; 10(37): 21852-9.
[http://dx.doi.org/10.1039/D0RA03324C ] [PMID: 35516602]
[143]
Liu F, Jiang FB, Li YT, Liu RM, Wu ZY, Yan CW. Cocrystallization with syringic acid presents a new opportunity for effectively reducing the hepatotoxicity of isoniazid. Drug Dev Ind Pharm 2020; 46(6): 988-95.
[http://dx.doi.org/10.1080/03639045.2020.1764024 ] [PMID: 32366135]
[144]
Thimmasetty J, Ghosh T, Nayak NS, Raheem A. Oral bioavailability enhancement of paliperidone by the use of cocrystalization and pre-cipitation inhibition. J Pharm Innov 2021; 16: 160-9.
[http://dx.doi.org/10.1007/s12247-020-09428-2]
[145]
Madhuri G, Nagaraju R, Killari AKN. Enhancement of the physicochemical properties of poorly soluble lovastatin by co-crystallization techniques-in vivo studies. Indian J Pharm Sci 2020; 82(2): 66-76.
[146]
Song Y, Wang LY, Liu F, Li YT, Wu ZY, Yan CW. Simultaneously enhancing the: In vitro / in vivo performances of acetazolamide using proline as a zwitterionic coformer for cocrystallization. CrystEngComm 2019; 21: 3064-73.
[http://dx.doi.org/10.1039/C9CE00270G]
[147]
Zhou F, Zhou J, Zhang H. et al. Structure determination and in vitro/vivo study on carbamazepine-naringenin (1:1) cocrystal. J Drug Deliv Sci Technol 2019; 54, 101244.
[http://dx.doi.org/10.1016/j.jddst.2019.101244]
[148]
Tharik AM, Santhosh SB, Manjari MS, Meyyanathan SN. Potential role of in vitro-in vivo correlations (IVIVC) for the development of plant derived anticancer drugs. Curr Drug Targets 2021; 22(12): 1357-75.
[149]
Garbacz P, Paukszta D, Sikorski A, Wesolowski M. Structural characterization of co- crystals of chlordiazepoxide with paminobenzoic acid and lorazepam with nicotinamide by DSC, Xray diffraction, FTIR and Raman Spectroscopy. Pharmaceutics 2020; 12(7): 648.
[http://dx.doi.org/10.3390/pharmaceutics12070648 ] [PMID: 32659986]
[150]
Jaafar IS, Radhi AA. Preparation and physicochemical characterization of cocrystals for enhancing the dissolution rate of glimepiride. J Adv Pharm Educ Res 2020; 10(3): 69.
[151]
Afzal H, Abbas N, Hussain A. et al. Physicomechanical, stability, and pharmacokinetic evaluation of aceclofenac dimethyl urea cocrystals. AAPS PharmSciTech 2021; 22(2): 68.
[http://dx.doi.org/10.1208/s12249-021-01938-7 ] [PMID: 33564940]
[152]
Battini S, Mannava MKC, Nangia A. Improved stability of tuberculosis drug fixed-dose combination using isoniazid-caffeic acid and vanillic acid cocrystal. J Pharm Sci 2018; 107(6): 1667-79.
[http://dx.doi.org/10.1016/j.xphs.2018.02.014 ] [PMID: 29462633]
[153]
Deka P, Gogoi D, Althubeiti K, Rao DR, Thakuria R. Mechanosynthesis, characterization, and physicochemical property investigation of a favipiravir cocrystal with theophylline and GRAS coformers. Cryst Growth Des 2021; 21(8): 4417-25.
[http://dx.doi.org/10.1021/acs.cgd.1c00339]
[154]
Liu W, Ma R, Liang F. et al. New cocrystals of antipsychotic drug aripiprazole: Decreasing the dissolution through cocrystallization. Molecules 2021; 26(9): 2414.
[http://dx.doi.org/10.3390/molecules26092414 ] [PMID: 33919175]
[155]
Gong W, Mondal PK, Ahmadi S, Wu Y, Rohani S. Cocrystals, salts, and salt-solvates of olanzapine; selection of coformers and improved solubility. Int J Pharm 2021; 608, 121063.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121063 ] [PMID: 34481007]
[156]
Zhang X, Chen S, Wu Y. et al. A novel cocrystal composed of CL-20 and an energetic ionic salt. Chem Commun (Camb) 2018; 54(94): 13268-70.
[http://dx.doi.org/10.1039/C8CC06540C ] [PMID: 30411743]
[157]
Kozak A, Marek PH, Pindelska E. Structural characterization and pharmaceutical properties of three novel cocrystals of ethenzamide with aliphatic dicarboxylic acids. J Pharm Sci 2019; 108(4): 1476-85.
[http://dx.doi.org/10.1016/j.xphs.2018.10.060 ] [PMID: 30414866]
[158]
Jia JL, Dai XL, Che HJ. et al. Cocrystals of regorafenib with dicarboxylic acids: Synthesis, characterization and property evaluation. CrystEngComm 2021; 23(3): 653-62.
[http://dx.doi.org/10.1039/D0CE01341B]
[159]
Myz SA, Mikhailovskaya AV, Mikhailenko MA, Bulina NV, Kuznetsova SA, Shakhtshneider TP. New crystalline betulin-based materials: Improving betulin solubility via cocrystal formation. Mater Today Proc 2019; 12: 82-5.
[http://dx.doi.org/10.1016/j.matpr.2019.03.069]
[160]
Zhao L, Hanrahan MP, Chakravarty P. et al. Characterization of pharmaceutical cocrystals and salts by dynamic nuclear polarization-enhanced solid-state NMR spectroscopy. Cryst Growth Des 2018; 18(4): 2588-601.
[http://dx.doi.org/10.1021/acs.cgd.8b00203]
[161]
Rajput L, Banik M, Yarava JR. et al. Exploring the salt-cocrystal continuum with solid-state NMR using natural-abundance samples: Implications for crystal engineering. IUCrJ 2017; 4(Pt 4): 466-75.
[http://dx.doi.org/10.1107/S205225251700687X ] [PMID: 28875033]
[162]
Vigilante NJ, Mehta MAAA. 13C solid-state NMR investigation of four cocrystals of caffeine and theophylline. Acta Crystallogr C Struct Chem 2017; 73(Pt 3): 234-43.
[http://dx.doi.org/10.1107/S2053229617000869 ] [PMID: 28257018]
[163]
Shaikh R, Shirazian S, Guerin S. et al. Understanding solid-state processing of pharmaceutical cocrystals via milling: Role of tablet excipi-ents. Int J Pharm 2021; 601, 120514.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120514 ] [PMID: 33766638]
[164]
McIntyre K. Polymorphs and Patents-the US Perspective.In: Solid state development and processing of pharmaceutical molecules: Salts, cocrystals, and polymorphism. John Wiley and Sons Hoboken 2021; Vol. 79.
[http://dx.doi.org/10.1002/9783527823048.ch9-1]
[165]
Manchanda D, Kumar A, Nanda A. Recent advancements in pharmaceutical cocrystals, preparation methods, and their applications. Curr Pharm Des 2021; 27(44): 4477-95.
[http://dx.doi.org/10.2174/1381612827666210415104411 ] [PMID: 33858309]
[166]
Aitipamula S, Banerjee R, Bansal AK. et al. Polymorphs, salts, and cocrystals: What’s in a name? Cryst Growth Des 2012; 12(5): 2147-52.
[http://dx.doi.org/10.1021/cg3002948]
[167]
Kapczynski A, Park C, Sampat B. Polymorphs and prodrugs and salts (oh my!): An empirical analysis of “secondary” pharmaceutical patents. PLoS One 2012; 7(12), e49470.
[http://dx.doi.org/10.1371/journal.pone.0049470 ] [PMID: 23227141]
[168]
Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm 2007; 4(3): 301-9.
[http://dx.doi.org/10.1021/mp070001z ] [PMID: 17477544]
[169]
Nangia AK, Desiraju GR. Crystal engineering: An outlook for the future. Angew Chem Int Ed Engl 2019; 58(13): 4100-7.
[http://dx.doi.org/10.1002/anie.201811313 ] [PMID: 30488598]
[170]
Desiraju GR. Pharmaceutical salts and co-crystals: Retrospect and prospects.In: Pharmaceutical Salts and Co-Crystals. Cambridge: RSC Publishing 2011; pp. 1-8.
[171]
Daud S, Pol S D, Nawale R B. et al. Novel pharmaceutical cocrystal of Dabigatran etexilate. WO Patent 2019008605A1, 2019.
[172]
Bertolini G, Feliciani L, Ferrando I. Crystalline compounds of dabigatran etexilate. US Patent 20170165247A1, 2017.
[173]
Brittain HG, Felice PV. Characterization of the cocrystal products formed by metoprolol and dabigatran bases with L-theanine. US Patent 10376464B2, 2019.
[174]
Dubey S K, Mishra H, Bansal D, Choudhary A S, Vir D, Agarwal A. Solid state forms of azilsartan and azilsartan medoxomil monopotassium and preparation thereof. WO Patent 2013088384A2 2013.
[175]
Chiodo T, Salvador B, Vossen M. et al. Solid form of abiraterone acetate. US Patent 20160303143A1 2018.
[176]
Connelly PR, Collier S, Tauber M. Co-crystals and pharmaceutical compositions comprising the same. US Patent 8039475B2, 2011.
[177]
Connelly PR, Collier S, Tauber M. Co-crystals and pharmaceutical compositions comprising the same. US Patent 8372846B2, 2013.
[178]
Grunenberg A, Fähnrich K, Queckenberg O. et al. Co-crystal compound of rivaroxaban and malonic acid. US Patent 8466280B2, 2013.
[179]
Sipos É, Lax G K, Volk B. et al. New co crystals useful in the preparation of pharmaceutical compositions. WO Patent 2013054146A1, 2013.
[180]
Jiajia W, Suxiang W, Guping T, Xiurong H. Two kinds of ticagrelor pharmaceutical co-crystals and preparation method thereof. CN Patent 103601726B, 2016.
[181]
Cosgrove S, Jonaitis D T, Sutch J C D. Novel ticagrelor co-crystal. WO Patent 2012164286A1, 2012.
[182]
Cosgrove SD, Jonaitis DT, Sutch JCD. Ticagrelor co-crystal. US Patent 9101642B2, 2015.
[183]
Cosgrove SD, Jones MJ, Polyakova-Akkus A, Smolenskaya VN, Wolfe BS. Co-crystals of a triazolo [4, 5-D] pyrimide platelet aggregation inhibitor. US Patent 8883802B2 2014.
[184]
Viertelhaus M, Chiodo T, Salvador B. et al. Multi-componentcrystals of vismodegib and selected cocrystal formers or solvents. US Patent 10105355B2, 2018.
[185]
Strohmeier M, Caesar J, Connelly PR, Fawaz M. Co-crystals of modulators of cystic fibrosis transmembrane conductance regulator. US Patent 9701639B2, 2017.
[186]
Gagnoni A, Germani A, Tesson N. Crystal forms of immunomodulatorydrug pomalidomide and co-crystal with gentisic acid. US Patent 10155740B2, 2018.
[187]
Stahly GP, Jonaitis D, Hui H-W, Klopfer KJ. Solid forms comprising4-amino-2-(2, 6-dioxopiperidine-3-yl) isoindoline-1, 3-dione and a coformer, compositions and methods of use thereof. US Patent 9695146B2, 2017.
[188]
Chivukula KR, Thaimattam R, Bandlamudi V. et al. Cocrystals of SGLT2 inhibitors, process for their preparation and pharmaceutical compositions thereof US Patent 10428053B2, 2019.
[189]
Kadam V T, Saikrishna S R. A novel pipecolic acid co-crystal of canagliflozin and process for the preparation thereof WO Patent 2017060924A1, 2017.
[190]
Nguyen M, Collier E A. L-proline and citric acid cocrystals of (2s, 3r, 4r, 5s, 6r)- 2- (3- ((5- (4-fluorophenyl) thiophen-2-yl) methyl) - 4-methylphenyl)-6- (hydroxymethyl) tetrahydro-2h-pyran-3,4,5- triol. WO Patent 2012154812A1, 2012.
[191]
Henschke J P, Ho M-F, Chen S-P, Chen Y-F. Crystalline and noncrystalline forms of SGLT2 inhibitors. WO Patent 2013064909A2, 2012.
[192]
Roy P, Ghosh A. Progress on cocrystallization of poorly soluble NME’s in the last decade. CrystEngComm 2020; 22(42): 6958-74.
[http://dx.doi.org/10.1039/D0CE01276A]
[193]
Albrecht W, Geier J, Sebastian R, Palacios DP. Cocrystals of ibrutinib with carboxylic acids. US Patent 10377758B2, 2019.
[194]
Goldman E, Smyth MS, Bonnaud T, Suleiman O, Worrall CP. Co-crystals of a Bruton’s tyrosine kinase inhibitor. US Patent 20180072739A1, 2018.
[195]
Oracz M, Skoczen P. Cocrystals of apremilast. EP Patent 3339292A1, 2018.
[196]
Xuefeng M, Fengyuan W, Qi Z, Jianrong W. Apremilast and nicotinamide co-crystal as well as preparation method and application thereof. CN Patent 107721902A, 2018.
[197]
Minhua C, Yanfeng Z, Kai L, Xiaoyu Z. Co-crystal of olaparib and urea and preparation method therefor. WO Patent 2016165650A1, 2016.
[198]
Trzaska S, Duran-Capece AV, Lamm M. Co-crystal of the PAR-1 receptor antagonists vorapaxar and aspirin. US Patent 9604971B2, 2017.
[199]
Chen M, Zhang Y, Chaohui Y, Zhang X, Wang P, Li P. Salts and co-crystals of lesinurad. US 9969701B2, 2018.
[200]
Gerster JL, Rantanen KA, Rey AW. Crystalline forms of Lesinurad. US Patent 10513500B2, 2019.
[201]
Godbole H, Rananaware U, Sadaphal V, Sanphui P, Shivdavkar R, Singh G. Novel cocrystal of lesinurad and process for the preparation thereof. WO Patent 2018150335A1, 2018.
[202]
Liao X, Zhu HJ, Grill A. Crystalline form of carbamoylcyclohexane derivatives. US Patent 8912197B2, 2014.
[203]
Kui X. Tartaric acid Cariliprazine and preparation method thereof and medical usage. CN Patent 105218484B, 2018.
[204]
Souza FES, Khalili B, Rantanen KA. Crystalline form of lumacaftor. US Patent 2019112299A, 2019.
[205]
Galvin G M, Rewolinski M. Crystalline forms of obeticholic acid WO Patent 2018165269A2, 2018.
[206]
Xiaohong S, Xiaoxia S, Jian C. Co-crystals of ribociclib and cocrystals of ribociclib mono-succinate, preparation method therefor, compositions thereof, and uses thereof. WO Patent 2019062854A1, 2019.
[207]
Emanuele RM, Shattock-Gordon T, Williford T, Andres M, Andres P. Solid forms of cannabidiol and uses thereof. US Patent 10604467B2, 2020.
[208]
Online. DRUGBANK Dasatinib. Available from: https://go.drugbank.com/drugs/DB01254
[209]
Ondrej S, Jirí F, Alexandr M. et al. Polymorphs of dasatinib and process for preparation thereof. US Patent 20100256158A1, 2011.
[210]
Rampalli S, Pothana P, Garbapu S, Chaturvedi A. Dasatinib glucuronate salt and process for preparation thereof. WO Patent 2015011578A1, 2015.
[211]
Zelenka K, Hajicek J, Dammer O. A method for the preparation and purification of new and known polymorphs and solvates of dasatinib. WO Patent 2014086326 A1, 2014.
[212]
Tiziana C, Andreas H, Tobias H, et al. Multicomponent crystals comprising dasatinib and selected co-crystal formers. US Patent 20150133463 A1, 2015.
[213]
Tesson N, Trilla C. Co-crystals of an antitumoral compound. WO Patent 2018134190 A1, 2018.
[214]
Tiziana C, Andreas H, Tobias H, et al. Multicomponent crystals comprising dasatinib and selected co-crystal formers. US Patent 9,340,536 B2, 2016.
[215]
Tiziana C, Andreas H, Tobias H, et al. Multicomponent crystals comprising dasatinib and selected cocrystal formers. WO Patent 2013186726 A3, 2013.
[216]
Martin V, Tiziana C, Beate S. Multicomponent crystals of dasatinib with menthol or vanillin. WO Patent 2016001025 A1, 2016.
[217]
Ondrej S, Jirí F, Alexandr M. et al. Polymorphs of dasatinib and process for preparation thereof. WO Patent 2009053854 A3, 2009.
[218]
U.S. Food and Drug Administration. Regulatory classification of pharmaceutical co-crystals. 2018.Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/regulatory-classification-pharmaceutical-co-crystals
[219]
U.S. Food and Drug Administration. Guidances (Drugs). Available from: https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs
[220]
Elder D. Cocrystals: Defining the opportunity. EPR. Available from: https://www.europeanpharmaceuticalreview.com/artic le/28692/cocrystals-defining-opportunity/