Multidrug-Resistant Acinetobacter baumannii: An Emerging Aspect of New Drug Discovery

Page: [29 - 41] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Acinetobacter baumannii is an opportunistic multidrugresistant, aerobic, glucose non-fermentative, and oxidative-negative coccobacilli bacteria. This life-threatening nosocomial infection is associated with immunocompromised patients.

Objective: This review aims to investigate the multiple drug resistance mechanisms and new emerging diagnostics & treatments for Acinetobacter baumannii.

Methods: All the articles that were most relevant to A. baumannii virulence and drug resistance mechanisms were founded by a literature search on PubMed. Google Patents were used to find discoveries related to diagnostics and treatment.

Results: Efflux pumps, β-lactamases, aminoglycosides, outer membrane proteins, and alteration of the target sites were identified in the Acinetobacter baumannii pathogen as the most prevalent drug resistance mechanisms. Gene detection, peptide detection, and antigen-antibody-associated detection were the latest diagnostics. Novel antimicrobial peptides, sterilization techniques using blue light, and combination therapies are being developed to effectively treat A. baumannii infections.

Conclusion: This review concludes that new drugs and formulations with high efficiency, low cytotoxicity, and no nephrotoxicity are in absolute need. In the near future, we can expect omics technology to play a significant role in discovering new drugs and potential targets.

Keywords: Antimicrobial resistance, Acinetobacter baumannii, Multidrug resistance, Efflux pump, β-lactamases, Aminoglycosidases, Porins, Immunocompromised patients

Graphical Abstract

[1]
Pires D, de Kraker MEA, Tartari E, Abbas M, Pittet D. ‘Fight antibiotic resistance—it’s in your hands’: Call from the world health organization for 5th may 2017. Clin Infect Dis 2017; 64(12): 1780-3.
[http://dx.doi.org/10.1093/cid/cix226]
[2]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2019; 10: 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[3]
World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
[4]
Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist 2018; 11: 1249-60.
[http://dx.doi.org/10.2147/IDR.S166750] [PMID: 30174448]
[5]
Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol 2017; 7: 55.
[http://dx.doi.org/10.3389/fcimb.2017.00055] [PMID: 28348979]
[6]
Li Y, Yang X, Zhao W. Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol 2017; 22(6): 585-608.
[http://dx.doi.org/10.1177/2472630317727519] [PMID: 28850804]
[7]
Vijayakumar S, Biswas I, Veeraraghavan B. Accurate identification of clinically important Acinetobacter spp.: An update. Future Sci OA 2019; 5(6): FSO395.
[http://dx.doi.org/10.2144/fsoa-2018-0127] [PMID: 31285840]
[8]
Lin MF, Lin YY, Yeh HW, Lan CY. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol 2014; 14(1): 119.
[http://dx.doi.org/10.1186/1471-2180-14-119] [PMID: 24885279]
[9]
García-Garmendia JL, Ortiz-Leyba C, Garnacho-Montero J, et al. Risk factors for Acinetobacter baumannii nosocomial bacteremia in critically ill patients: A cohort study. Clin Infect Dis 2001; 33(7): 939-46.
[http://dx.doi.org/10.1086/322584] [PMID: 11528563]
[10]
Robenshtok E, Paul M, Leibovici L, et al. The significance of Acinetobacter baumannii bacteraemia compared with Klebsiella pneumoniae bacteraemia: Risk factors and outcomes. J Hosp Infect 2006; 64(3): 282-7.
[http://dx.doi.org/10.1016/j.jhin.2006.06.025] [PMID: 16930770]
[11]
Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis 2008; 8(12): 751-62.
[http://dx.doi.org/10.1016/S1473-3099(08)70279-2] [PMID: 19022191]
[12]
Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of acinetobacter infections: A century of challenges. Clin Microbiol Rev 2017; 30(1): 409-47.
[http://dx.doi.org/10.1128/CMR.00058-16] [PMID: 27974412]
[13]
Morris FC, Dexter C, Kostoulias X, Uddin MI, Peleg AY. The mechanisms of disease caused by Acinetobacter baumannii. Front Microbiol 2019; 10: 1601.
[http://dx.doi.org/10.3389/fmicb.2019.01601] [PMID: 31379771]
[14]
Mohd Sazlly Lim S, Zainal Abidin A, Liew SM, Roberts JA, Sime FB. The global prevalence of multidrug-resistance among Acinetobacter baumannii causing hospital-acquired and ventilator-associated pneumonia and its associated mortality: A systematic review and meta-analysis. J Infect 2019; 79(6): 593-600.
[http://dx.doi.org/10.1016/j.jinf.2019.09.012] [PMID: 31580871]
[15]
Goic-Barisic I, Seruga Music M, Kovacic A, Tonkic M, Hrenovic J. Pan drug-resistant environmental isolate of Acinetobacter baumannii from Croatia. Microb Drug Resist 2017; 23(4): 494-6.
[http://dx.doi.org/10.1089/mdr.2016.0229] [PMID: 27792476]
[16]
Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol 2016; 63(4): 233-9.
[http://dx.doi.org/10.1111/lam.12627] [PMID: 27479925]
[17]
Catalano M, Quelle LS, Jeric PE, Di Martino A, Maimone SM. Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect 1999; 42(1): 27-35.
[http://dx.doi.org/10.1053/jhin.1998.0535] [PMID: 10363208]
[18]
Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature 2017; 551(7680): 313-20.
[http://dx.doi.org/10.1038/nature24624] [PMID: 29144467]
[19]
Harding CM, Tracy EN, Carruthers MD, Rather PN, Actis LA, Munson RS Jr. Acinetobacter baumannii strain M2 produces type IV pili which play a role in natural transformation and twitching motility but not surface-associated motility. MBio 2013; 4(4): e00360-13.
[http://dx.doi.org/10.1128/mBio.00360-13] [PMID: 23919995]
[20]
Eijkelkamp BA, Stroeher UH, Hassan KA, Elbourne LDH, Paulsen IT, Brown MH. H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun 2013; 81(7): 2574-83.
[http://dx.doi.org/10.1128/IAI.00065-13] [PMID: 23649094]
[21]
Pérez-Varela M, Corral J, Vallejo JA, et al. Mutations in the β-subunit of the RNA polymerase impair the surface-associated motility and virulence of Acinetobacter baumannii. Infect Immun 2017; 85(8): e00327-17.
[http://dx.doi.org/10.1128/IAI.00327-17] [PMID: 28507065]
[22]
Ahmad I, Nygren E, Khalid F, Myint SL, Uhlin BE. A Cyclic-di-GMP signalling network regulates biofilm formation and surface associated motility of Acinetobacter baumannii 17978. Sci Rep 2020; 10(1): 1991.
[http://dx.doi.org/10.1038/s41598-020-58522-5] [PMID: 32029764]
[23]
Tipton KA, Rather PN. An ompR-envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in Acinetobacter baumannii strain AB5075. J Bacteriol 2017; 199(3): e00705-16.
[http://dx.doi.org/10.1128/JB.00705-16] [PMID: 27872182]
[24]
Moore JL, Becker KW, Nicklay JJ, Boyd KL, Skaar EP, Caprioli RM. Imaging mass spectrometry for assessing temporal proteomics: Analysis of calprotectin in Acinetobacter baumannii pulmonary infection. Proteomics 2014; 14(7-8): 820-8.
[http://dx.doi.org/10.1002/pmic.201300046] [PMID: 23754577]
[25]
Nairn BL, Lonergan ZR, Wang J, et al. The response of Acinetobacter baumannii to zinc starvation. Cell Host Microbe 2016; 19(6): 826-36.
[http://dx.doi.org/10.1016/j.chom.2016.05.007] [PMID: 27281572]
[26]
Weber BS, Kinsella RL, Harding CM, Feldman MF. The secrets of acinetobacter secretion. Trends Microbiol 2017; 25(7): 532-45.
[http://dx.doi.org/10.1016/j.tim.2017.01.005] [PMID: 28216293]
[27]
Hood RD, Singh P, Hsu F, et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 2010; 7(1): 25-37.
[http://dx.doi.org/10.1016/j.chom.2009.12.007] [PMID: 20114026]
[28]
Smani Y, Dominguez-Herrera J, Pachón J. Association of the outer membrane protein Omp33 with fitness and virulence of Acinetobacter baumannii. J Infect Dis 2013; 208(10): 1561-70.
[http://dx.doi.org/10.1093/infdis/jit386] [PMID: 23908480]
[29]
Rumbo C, Tomás M, Fernández Moreira E, et al. The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infect Immun 2014; 82(11): 4666-80.
[http://dx.doi.org/10.1128/IAI.02034-14] [PMID: 25156738]
[30]
Moffatt JH, Harper M, Mansell A, et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect Immun 2013; 81(3): 684-9.
[http://dx.doi.org/10.1128/IAI.01362-12] [PMID: 23250952]
[31]
Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 2010; 6(4): e1000834.
[http://dx.doi.org/10.1371/journal.ppat.1000834] [PMID: 20368969]
[32]
Green DW. The bacterial cell wall as a source of antibacterial targets. Expert Opin Ther Targets 2002; 6(1): 1-20.
[http://dx.doi.org/10.1517/14728222.6.1.1] [PMID: 11901475]
[33]
Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 1980; 289(1036): 321-31.
[http://dx.doi.org/10.1098/rstb.1980.0049] [PMID: 6109327]
[34]
Moubareck C, Brémont S, Conroy MC, Courvalin P, Lambert T. GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob Agents Chemother 2009; 53(8): 3579-81.
[http://dx.doi.org/10.1128/AAC.00072-09] [PMID: 19451292]
[35]
Hammoudi D, Moubareck CA, Hakime N, et al. Spread of imipenem-resistant Acinetobacter baumannii co-expressing OXA-23 and GES-11 carbapenemases in Lebanon. Int J Infect Dis 2015; 36: 56-61.
[http://dx.doi.org/10.1016/j.ijid.2015.05.015]
[36]
Sun X, Liu B, Chen Y, et al. Molecular characterization of ambler class A to D β-lactamases, IS Aba1, and integrons reveals multidrug-resistant Acinetobacter spp. isolates in northeastern China. J Chemother 2016; 28(6): 469-75.
[http://dx.doi.org/10.1080/1120009X.2015.1133014] [PMID: 27077928]
[37]
Kumburu HH, Sonda T, van Zwetselaar M, et al. Using WGS to identify antibiotic resistance genes and predict antimicrobial resistance phenotypes in MDR Acinetobacter baumannii in Tanzania. J Antimicrob Chemother 2019; 74(6): 1484-93.
[http://dx.doi.org/10.1093/jac/dkz055] [PMID: 30843063]
[38]
Jeon J, Lee J, Lee J, et al. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16(12): 9654-92.
[http://dx.doi.org/10.3390/ijms16059654] [PMID: 25938965]
[39]
Evans BA, Amyes SGB. OXA β-lactamases. Clin Microbiol Rev 2014; 27(2): 241-63.
[http://dx.doi.org/10.1128/CMR.00117-13] [PMID: 24696435]
[40]
Jiang N, Zhang X, Zhou Y, Zhang Z, Zheng X. Whole-genome sequencing of an NDM-1- and OXA-58-producing Acinetobacter towneri isolate from hospital sewage in Sichuan Province, China. J Glob Antimicrob Resist 2019; 16: 4-5.
[http://dx.doi.org/10.1016/j.jgar.2018.11.015] [PMID: 30472400]
[41]
Sarikhani Z, Nazari R, Nateghi Rostami M. First report of OXA-143-lactamase producing Acinetobacter baumannii in Qom, Iran. Iran J Basic Med Sci 2017; 20(11): 1282-6.
[http://dx.doi.org/10.22038/IJBMS.2017.9490] [PMID: 29299207]
[42]
Higgins PG, Pérez-Llarena FJ, Zander E, Fernández A, Bou G, Seifert H. OXA-235, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother 2013; 57(5): 2121-6.
[http://dx.doi.org/10.1128/AAC.02413-12] [PMID: 23439638]
[43]
Paton R, Miles RS, Hood J, Amyes SGB, Miles RS, Amyes SGB. ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int J Antimicrob Agents 1993; 2(2): 81-7.
[http://dx.doi.org/10.1016/0924-8579(93)90045-7] [PMID: 18611526]
[44]
Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, et al. Acinetobacter baumannii resistance: A real challenge for clinicians. Antibiotics 2020; 9(4): 205.
[http://dx.doi.org/10.3390/antibiotics9040205] [PMID: 32340386]
[45]
Doi Y, Adams JM, Yamane K, Paterson DL. Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America. Antimicrob Agents Chemother 2007; 51(11): 4209-10.
[http://dx.doi.org/10.1128/AAC.00560-07] [PMID: 17785513]
[46]
Livermore DM. Tigecycline: What is it, and where should it be used? J Antimicrob Chemother 2005; 56(4): 611-4.
[http://dx.doi.org/10.1093/jac/dki291] [PMID: 16120626]
[47]
Hasani A, Sheikhalizadeh V, Ahangarzadeh Rezaee M, et al. Frequency of aminoglycoside-modifying enzymes and ArmA among different sequence groups of Acinetobacter baumannii in Iran. Microb Drug Resist 2016; 22(5): 347-53.
[http://dx.doi.org/10.1089/mdr.2015.0254] [PMID: 26779992]
[48]
Zhu J, Wang C, Wu J, Jiang R, Mi Z, Huang Z. A novel aminoglycoside-modifying enzyme gene aac(6′)-Ib in a pandrug-resistant Acinetobacter baumannii strain. J Hosp Infect 2009; 73(2): 184-5.
[http://dx.doi.org/10.1016/j.jhin.2009.05.012] [PMID: 19703723]
[49]
Sugawara E, Nikaido H. OmpA is the principal nonspecific slow porin of Acinetobacter baumannii. J Bacteriol 2012; 194(15): 4089-96.
[http://dx.doi.org/10.1128/JB.00435-12] [PMID: 22636785]
[50]
Jyothisri K, Deepak V, Rajeswari MR. Purification and characterization of a major 40 kDa outer membrane protein of Acinetobacter baumannii. FEBS Lett 1999; 443(1): 57-60.
[http://dx.doi.org/10.1016/S0014-5793(98)01679-2] [PMID: 9928952]
[51]
Smani Y, Fàbrega A, Roca I, Sánchez-Encinales V, Vila J, Pachón J. Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrob Agents Chemother 2014; 58(3): 1806-8.
[http://dx.doi.org/10.1128/AAC.02101-13] [PMID: 24379205]
[52]
Iyer R, Moussa SH, Durand-Réville TF, Tommasi R, Miller A. Acinetobacter baumannii ompa is a selective antibiotic permeant porin. ACS Infect Dis 2018; 4(3): 373-81.
[http://dx.doi.org/10.1021/acsinfecdis.7b00168] [PMID: 29260856]
[53]
Kwon HI, Kim S, Oh MH, et al. Outer membrane protein A contributes to antimicrobial resistance of Acinetobacter baumannii through the OmpA-like domain. J Antimicrob Chemother 2017; 72(11): 3012-5.
[http://dx.doi.org/10.1093/jac/dkx257] [PMID: 28981866]
[54]
Limansky AS, Mussi MA, Viale AM. Loss of a 29-kilodalton outer membrane protein in Acinetobacter baumannii is associated with imipenem resistance. J Clin Microbiol 2002; 40(12): 4776-8.
[http://dx.doi.org/10.1128/JCM.40.12.4776-4778.2002] [PMID: 12454194]
[55]
Mussi MA, Limansky AS, Relling V, et al. Horizontal gene transfer and assortative recombination within the Acinetobacter baumannii clinical population provide genetic diversity at the single carO gene, encoding a major outer membrane protein channel. J Bacteriol 2011; 193(18): 4736-48.
[http://dx.doi.org/10.1128/JB.01533-10] [PMID: 21764928]
[56]
Mussi MA, Limansky AS, Viale AM. Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: Natural insertional inactivation of a gene encoding a member of a novel family of beta-barrel outer membrane proteins. Antimicrob Agents Chemother 2005; 49(4): 1432-40.
[http://dx.doi.org/10.1128/AAC.49.4.1432-1440.2005] [PMID: 15793123]
[57]
Jeong HW, Cheong HJ, Kim WJ, et al. Loss of the 29-kilodalton outer membrane protein in the presence of OXA-51-like enzymes in Acinetobacter baumannii is associated with decreased imipenem susceptibility. Microb Drug Resist 2009; 15(3): 151-8.
[http://dx.doi.org/10.1089/mdr.2009.0828] [PMID: 19728771]
[58]
Khorsi K, Messai Y, Ammari H, Hamidi M, Bakour R. ISAba36 inserted into the outer membrane protein gene carO and associated with the carbapenemase gene blaOXA-24-like in Acinetobacter baumannii. J Glob Antimicrob Resist 2018; 15: 107-8.
[http://dx.doi.org/10.1016/j.jgar.2018.08.020] [PMID: 30172044]
[59]
Zhu LJ, Chen XY, Hou PF. Mutation of CarO participates in drug resistance in imipenem-resistant Acinetobacter baumannii. J Clin Lab Anal 2019; 33(8): e22976.
[http://dx.doi.org/10.1002/jcla.22976] [PMID: 31318107]
[60]
Vila J, Martí S, Sánchez-Céspedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother 2007; 59(6): 1210-5.
[http://dx.doi.org/10.1093/jac/dkl509] [PMID: 17324960]
[61]
Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms 2020; 8(6): 935.
[http://dx.doi.org/10.3390/microorganisms8060935] [PMID: 32575913]
[62]
Floss HG, Yu TW. Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 2005; 105(2): 621-32.
[http://dx.doi.org/10.1021/cr030112j] [PMID: 15700959]
[63]
Hwa KG. Marker for diagnosing Acinetobacter baumannii infection and uses thereof. KR101996643B1, 2018.
[64]
Quanxin L, Zhang LP, Yanfen ZD. Primers, kit and method for detecting drug resistance of Acinetobacter baumannii. CN105349694B, 2015.
[65]
Reddington KM, Tuite N, Minogue E, Barry TG. Diagnostic method for bacterial organisms using the smpB gene. US11085090B2, 2016.
[66]
Toman Ulrich. Neely H, Lori, Angies, Heidi, Townsend S, Jessica, Andanda, Rahul, Lowry K, Thomas, Jay, Ved Jr., Manning W, Fong B, Wildebe, Igerver, Joanne, Stone L, Benjamin, Bee. NMR method and system for detecting bacteria quickly. JP2019512208A, 2017.
[67]
Ying YC. Acinetobacter baumannii antigens and respective uses. BR102016013224A2, 2018.
[68]
Miller MJ, Ji C, Bohn P, Branagan S, Yang Y. Pathogen detection. US20190352691A1, 2018.
[69]
Walker GT, Rockweiler T, Saeed A, Sapiro V, Kersey R. Methods of detecting multi-drug resistant organisms. US10876162B2, 2018.
[70]
Lowery TJ, Pfaller MA, Dhanda RK, et al. Rapid antimicrobial susceptibility testing using high-sensitivity direct detection methods. WO2017127727A1, 2017.
[71]
Møller NI, Mattsson AH. Peptides derived from Acinetobacter baumannii and their use in vaccination. US20200268866A1, 2020.
[72]
Riley LW, Jackson N. Anti-Acinetobacter baumannii polyclonal antibody (ab-pab), and uses thereof. WO2021202495A2, 2021.
[73]
Guo T, Li G, Sun X. Use of metformin combined with minocycline in treating Acinetobacter baumannii infection. AU2021103201A4, 2021.
[74]
Kejian W, Ying Z, Yi C F, Hui P. Antibacterial peptide Scybaumancin105-127And uses thereof. CN113121666A, 2021.
[75]
Tonghui M, Wukun L, Xiuli C, Xiaochi M, Sheng H. Application of nitrogen heterocyclic carbene selenium- gold compound in preparation of carbapenemresistant Acinetobacter baumannii resistant medicine. CN113135958A, 2021.
[76]
Tingting G, Mengying L, Wenhao Z, Xiaoli S, Changchao H, Guocai L. Application of capsaicin and colistin in preparation of medicines for inhibiting Acinetobacter baumannii infection. CN111420026A, 2020.
[77]
Xiuyun L, Yanxin W, Zhongtao G, Shifu W, Lehai Z. Application of desloratadine in preparation of multiple- drug-resistant Acinetobacter baumannii preparation. CN111920810A, 2020.
[78]
Il-seon H, Samahana D, Nagi MNPRRVDR, Chamilani LN. Octopus-derived peptide octopromycin having antibacterial and anti-biofilm activity against Acinetobacter baumannii. WO2022039544A1, 2020.
[79]
Condron. Housefly derived antibacterial peptide D- 26M and preparation method and application thereof. CN112480223A, 2020.
[80]
Naiqi H, Mingde L, Yongli X, Jing Y, Ziyuan Z, Lei G. Application and method for killing drug-resistant Acinetobacter baumannii by blue light-activated (S) - blebbistatin molecules. CN110755612A, 2020.
[81]
Tianyu S. Composition for treating carbapenemresistant antibiotic Acinetobacter baumannii infection. WO2020177546A1, 2020.
[82]
Spellberg B, Luna B. Rifabutin for the treatment of Acinetobacter baumannii. US20200222373A1, 2020.
[83]
Tripathi PK, Jain CK. Computational drug discovery based on natural products against Acinetobacter baumannii. J Mater Sci Surf Eng 2019; 6(6): 895-8.
[http://dx.doi.org/10.jmsse/2348-8956/6-6.4]