Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Jia Li, Haiying Liu and Li Shang*

DOI: 10.2174/1871530322666220908153118

Tert-butylhydroquinone Mitigates Renal Dysfunction in Pregnant Diabetic Rats via Attenuation of Oxidative Stress and Modulation of the iNOs/ NFkB/TNF Alpha Signalling Pathway

Page: [633 - 646] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Aim: The aim of the study was to determine the effect of tert-butylhydroquinone (tBHQ) supplementation on some biochemical parameters in pregnant diabetic rats and the foetus.

Background: The global incidence of gestational diabetes mellitus (GDM) has been on the increase despite current interventional therapies, underscoring the need for alternative or complementary therapeutic approaches.

Objective: The objective is to determine the effect of tBHQ on blood glucose, insulin resistance, body weight, relative liver and kidney weights, serum lipid profile (total cholesterol, triacylglycerol, high-density lipoprotein cholesterol and very low-density lipoprotein cholesterol), liver function (albumin, aspartate and alanine amino transaminases) and kidney function markers (urea, creatinine and uric acid) in the sera, and study maternal and foetal renal levels of oxidative stress and inflammatory markers, foetal weights and histology of the kidney of streptozotocin (STZ)-induced GDM in rats.

Methods: Twenty female pregnant rats were used, and they were divided into four groups of control (normal pregnancy), disease (diabetic untreated), metformin (received 200 mg/kg metformin dissolved in distilled water) and tBHQ groups (received 25 mg/kg tBHQ in 1% corn oil), respectively, with five rats in each group. GDM was induced in the disease and treated groups by intraperitoneal injection of STZ (45 mg/kg in sodium citrate buffer, pH 4.5).

Results: STZ induction in the disease group significantly increased their blood glucose levels (P<0.05), altered their body and foetal weights, relative liver and kidney weights, serum lipid profile, liver and kidney function markers in the sera (relative to the control), inducing oxidative stress and inflammation to the maternal and foetal kidneys and altering the maternal kidney histology, which was found to be improved following supplementation with tBHQ in a manner akin to or even better than metformin.

Conclusion: tBHQ was found beneficial in protecting the foetal kidneys against oxidative stress and the foetus against mortality arising from maternal hyperglycaemia. Finally, the study showed the potential of tBHQ in mitigating histological changes in the maternal kidney arising from STZinduced hyperglycemia in rats.

Keywords: Antioxidants, Endocrine systems, Inflammation, Hyperglycaemia, Oxidative Stress, Insulin resistance

Graphical Abstract

[1]
Hosni, A.A.; Abdel-Moneim, A.A.; Abdel-Reheim, E.S.; Mohamed, S.M.; Helmy, H. Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ proinflammatory cytokines and oxidative stress. Biomed. Pharmacother., 2017, 88, 52-60.
[http://dx.doi.org/10.1016/j.biopha.2017.01.054] [PMID: 28092845]
[2]
International Diabetes Federation. Diabetes Atlas, 7th Ed; International Diabetes Federation: Brussels, Belgium, 2015.
[3]
Laurino, L.; Viroel, F.; Caetano, E.; Spim, S.; Pickler, T.; Rosa-Castro, R.; Vasconcelos, E.; Jozala, A.; Hataka, A.; Grotto, D.; Gerenutti, M. Lentinus edodes exposure before and after fetus implantation: Materno-fetal development in rats with gestational diabetes mellitus. Nutrients, 2019, 11(11), 2720.
[http://dx.doi.org/10.3390/nu11112720] [PMID: 31717560]
[4]
Ferrara, A. Increasing prevalence of gestational diabetes mellitus: A public health perspective. Diabetes Care, 2007, 30(Suppl. 2), S141-S146.
[http://dx.doi.org/10.2337/dc07-s206] [PMID: 17596462]
[5]
Lee, A.J.; Hiscock, R.J.; Wein, P.; Walker, S.P.; Permezel, M. Gestational diabetes mellitus: Clinical predictors and long-term risk of developing type 2 diabetes: A retrospective cohort study using survival analysis. Diabetes Care, 2007, 30(4), 878-883.
[http://dx.doi.org/10.2337/dc06-1816] [PMID: 17392549]
[6]
Lappas, M. GSK3β is increased in adipose tissue and skeletal muscle from women with gestational diabetes where it regulates the inflammatory response. PLoS One, 2014, 9(12), e115854.
[http://dx.doi.org/10.1371/journal.pone.0115854] [PMID: 25541965]
[7]
Tian, Z.H.; Miao, F.T.; Zhang, X.; Wang, Q.H.; Lei, N.; Guo, L.C. Therapeutic effect of okra extract on gestational diabetes mellitus rats induced by streptozotocin. Asian Pac. J. Trop. Med., 2015, 8(12), 1038-1042.
[http://dx.doi.org/10.1016/j.apjtm.2015.11.002] [PMID: 26706676]
[8]
NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases). Kidney Diseases in Diabetes; NIDDK: Bethesda, MD, USA, 2007.
[9]
Klisic, A.; Isakovic, A.; Kocic, G.; Kavaric, N.; Jovanovic, M.; Zvrko, E.; Skerovic, V.; Ninic, A. Relationship between oxidative stress, inflammation and dyslipidemia with fatty liver index in patients with type 2-diabetes mellitus. Exp. Clin. Endocrinol. Diabetes, 2018, 126(6), 371-378.
[PMID: 28895641]
[10]
Eleazu, C.; Suleiman, J.B.; Othman, Z.A.; Zakaria, Z.; Nna, V.U.; Hussain, N.H.N.; Mohamed, M. Bee bread attenuates high fat diet induced renal pathology in obese rats via modulation of oxidative stress, downregulation of NF-kB mediated inflammation and Bax signalling. Arch. Physiol. Biochem., 2022, 128(4), 1088-1104.
[http://dx.doi.org/10.1080/13813455.2020.1752258] [PMID: 32319823]
[11]
Soskić, S.S.; Dobutović, B.D.; Sudar, E.M.; Obradović, M.M.; Nikolić, D.M.; Djordjevic, J.D.; Radak, D.J.; Mikhailidis, D.P.; Isenović, E.R. Regulation of Inducible Nitric Oxide Synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc. Med. J., 2011, 5(1), 153-163.
[http://dx.doi.org/10.2174/1874192401105010153] [PMID: 21792376]
[12]
Rawal, S.; Olsen, S.F.; Grunnet, L.G.; Ma, R.C.; Hinkle, S.N.; Granström, C.; Wu, J.; Yeung, E.; Mills, J.L.; Zhu, Y.; Bao, W.; Ley, S.H.; Hu, F.B.; Damm, P.; Vaag, A.; Tsai, M.Y.; Zhang, C. Gestational diabetes mellitus and renal function: A prospective study with 9-to 16-year follow-up after pregnancy. Diabetes Care, 2018, 41(7), 1378-1384.
[http://dx.doi.org/10.2337/dc17-2629] [PMID: 29728364]
[13]
El-serag, H.B.; Tran, T.; Everhart, J.E. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology, 2004, 126(2), 460-468.
[http://dx.doi.org/10.1053/j.gastro.2003.10.065] [PMID: 14762783]
[14]
Abdul-hamid, M.; Hosni, A.A.; Moneim, A.A.; Moustafa, N.; Abdel-reheim, E.S. Maternal and fetal hepatic injury in gestational diabetic rats: Protective role of cinnamaldehyde and ellagic acid. Asian J. Pharm. Clin. Res., 2018, 11(7), 105-112.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i7.25126]
[15]
Chiva-Blanch, G.; Badimon, L. Effects of polyphenol intake on metabolic syndrome: Current evidences from human trials. Oxid. Med. Cell. Longev., 2017, 2017, 1-18.
[http://dx.doi.org/10.1155/2017/5812401] [PMID: 28894509]
[16]
Meydani, M.; Hasan, S.T. Dietary polyphenols and obesity. Nutrients, 2010, 2(7), 737-751.
[http://dx.doi.org/10.3390/nu2070737] [PMID: 22254051]
[17]
Tasset, I.; Pérez-De La Cruz, V.; Elinos-Calderón, D.; Carrillo-Mora, P.; González-Herrera, I.G.; Luna-López, A.; Konigsberg, M.; Pedraza-Chaverrí, J.; Maldonado, P.D.; Ali, S.F.; Túnez, I.; Santamaría, A. Protective effect of tert-butylhydroquinone on the quinolinic-acid-induced toxicity in rat striatal slices: Role of the Nrf2-antioxidant response element pathway. Neurosignals, 2010, 18(1), 24-31.
[http://dx.doi.org/10.1159/000243650] [PMID: 19797933]
[18]
Nishizono, S.; Hayami, T.; Ikeda, I.; Imaizumi, K. Protection against the diabetogenic effect of feeding tert-butylhydroquinone to rats prior to the administration of streptozotocin. Biosci. Biotechnol. Biochem., 2000, 64(6), 1153-1158.
[http://dx.doi.org/10.1271/bbb.64.1153] [PMID: 10923784]
[19]
Li, S.; Li, J.; Shen, C.; Zhang, X.; Sun, S.; Cho, M.; Sun, C.; Song, Z. tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2014, 1841(1), 22-33.
[http://dx.doi.org/10.1016/j.bbalip.2013.09.004] [PMID: 24055888]
[20]
Guerrero-Beltrán, C.E.; Tapia, E.; Sánchez-González, D.J.; Martínez-Martínez, C.M.; Cristobal-García, M.; Pedraza-Chaverri, J. Tert-Butylhydroquinone pretreatment protects kidney from ischemia-reperfusion injury. J. Nephrol., 2012, 25(1), 84-89.
[http://dx.doi.org/10.5301/JN.2011.8345] [PMID: 21607921]
[21]
Elsner, M.; Guldbakke, B.; Tiedge, M.; Munday, R.; Lenzen, S. Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Diabetologia, 2000, 43(12), 1528-1533.
[http://dx.doi.org/10.1007/s001250051564] [PMID: 11151762]
[22]
National Institute of Health. Guide for the care and use of laboratory animals (DHEW Publication 80-23, Revised 1985, Office of Science and Health Reports, DRR/NIH, Bethesda, MD 20205. 1985.
[23]
Kassab, B.M.; Hussein, H.H.; Mahmoud, O.M.; Abdel-Alrahman, G. Effects of insulin and metformin on fetal kidney development of streptozotocin-induced gestational diabetic albino rats. Anat. Cell Biol., 2019, 52(2), 161-175.
[http://dx.doi.org/10.5115/acb.2019.52.2.161] [PMID: 31338233]
[24]
Wang, Y.; Feng, Q.; Niu, X.; Liu, X.; Xu, K.; Yang, X.; Wang, H.; Li, Q. The therapeutic effect of zuogui wan in gestational diabetes mellitus rats. J. Anal. Methods Chem., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/737961] [PMID: 25136475]
[25]
Tietz, N.W. Clinical Guide to Laboratory Tests, 3rd ed; WB Saunders Company: Philadelphia, PA, 1995, pp. 518-519.
[26]
NCEP. Third report of the national cholesterol education programme. Expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult treatment panel 111). JAMA, 2001, 285, 2486-2497.
[http://dx.doi.org/10.1001/jama.285.19.2486] [PMID: 11368702]
[27]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[28]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[29]
Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and? Cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985, 28(7), 412-419.
[http://dx.doi.org/10.1007/BF00280883] [PMID: 3899825]
[30]
Al Batran, R.; Al-Bayaty, F.; Jamil Al-Obaidi, M.M.; Abdualkader, A.M.; Hadi, H.A.; Ali, H.M.; Abdulla, M.A. In vivo antioxidant and antiulcer activity of Parkia speciosa ethanolic leaf extract against ethanol-induced gastric ulcer in rats. PLoS One, 2013, 8(5), e64751.
[http://dx.doi.org/10.1371/journal.pone.0064751] [PMID: 23724090]
[31]
Doğan, P.; Tanrikulu, G.; Soyuer, Ü.; Köse, K. Oxidative enzymes of polymorphonuclear leucocytes and plasma fibrinogen, ceruloplasmin, and copper levels in Behcet’s disease. Clin. Biochem., 1994, 27(5), 413-418.
[http://dx.doi.org/10.1016/0009-9120(94)90046-9] [PMID: 7867220]
[32]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases. J. Biol. Chem., 1974, 249(22), 7130-7139.
[http://dx.doi.org/10.1016/S0021-9258(19)42083-8] [PMID: 4436300]
[33]
Chatterjee, P.K.; Cuzzocrea, S.; Brown, P.A.J.; Zacharowski, K.; Stewart, K.N.; Mota-Filipe, H.; Thiemermann, C. Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int., 2000, 58(2), 658-673.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00212.x] [PMID: 10916089]
[34]
Aboonabi, A.; Rahmat, A.; Othman, F. Effect of pomegranate on histopathology of liver and kidney on generated oxidative stress diabetic induced rats. J. Cytol. Histol., 2014, 6(1), 1.
[35]
Contreras-Duarte, S.; Carvajal, L.; Fuenzalida, B.; Cantin, C.; Sobrevia, L.; Leiva, A. Maternal dyslipidaemia in pregnancy with gestational diabetes mellitus: Possible impact on foetoplacental vascular function and lipoproteins in the neonatal circulation. Curr. Vasc. Pharmacol., 2018, 17(1), 52-71.
[http://dx.doi.org/10.2174/1570161115666171116154247] [PMID: 29149816]
[36]
Herrera, E.; Ortega-Senovilla, H. Disturbances in lipid metabolism in diabetic pregnancy – Are these the cause of the problem? Best Pract. Res. Clin. Endocrinol. Metab., 2010, 24(4), 515-525.
[http://dx.doi.org/10.1016/j.beem.2010.05.006] [PMID: 20832733]
[37]
Piao, Y.; Liu, Y.; Xie, X. Change trends of organ weight background data in Sprague Dawley rats at different ages. J. Toxicol. Pathol., 2013, 26(1), 29-34.
[http://dx.doi.org/10.1293/tox.26.29] [PMID: 23723565]
[38]
Kalu, W.O.; Okafor, P.N.; Ijeh, I.I.; Eleazu, C. Effect of kolaviron, a biflavanoid complex from Garcinia kola on some biochemical parameters in experimentally induced benign prostatic hyperplasic rats. Biomed. Pharmacother., 2016, 83, 1436-1443.
[http://dx.doi.org/10.1016/j.biopha.2016.08.064] [PMID: 27599375]
[39]
Ajmera, V.H.; Gunderson, E.P.; VanWagner, L.B.; Lewis, C.E.; Carr, J.J.; Terrault, N.A. Gestational diabetes mellitus is strongly associated with non-alcoholic fatty liver disease. Am. J. Gastroenterol., 2016, 111(5), 658-664.
[http://dx.doi.org/10.1038/ajg.2016.57] [PMID: 27002796]
[40]
Shivananda, N.B. Maniple Manuel of Clinical Biochemistry, 4th ed; Medical Publishers Pvt. Limited: Pakistan, 2007, p. 149.
[41]
Vasudevan, D.M.; Sreekumari, S.; Vaidyanathan, K. Textbook of Biochemistry for Medical Students, 7th ed; Jaypee Brothers Medical Publishers Ltd: New Delhi, India, 2013, p. 305.
[42]
Green, R.M.; Flamm, S. AGA technical review on the evaluation of liver chemistry tests. Gastroenterology, 2002, 123(4), 1367-1384.
[http://dx.doi.org/10.1053/gast.2002.36061] [PMID: 12360498]
[43]
Omodanisi, E.I.; Aboua, Y.G.; Chegou, N.N.; Oguntibeju, O.O. Hepatoprotective, antihyperlipidemic, and anti-inflammatory activity of Moringa oleifera in diabetic-induced damage in male wistar rats. Pharmacognosy Res., 2017, 9(2), 182-187.
[PMID: 28539743]
[44]
Malatiali, S.; Francis, I.; Barac-Nieto, M. Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp. Diabetes Res., 2008, 2008, 1-7.
[http://dx.doi.org/10.1155/2008/305403] [PMID: 18769499]
[45]
Eleazu, C.O.; Iroaganachi, M.; Eleazu, K.C. Ameliorative potentials of cocoyam (Colocasia esculenta L.) and unripe plantain (Musa paradisiaca L.) on the relative tissue weights of streptozotocin-induced diabetic rats. J. Diabetes Res., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/160964] [PMID: 23971053]
[46]
Emelike, C.U.; Anyaehie, U.S.B.; Iyare, E.E.; Obike, C.A.; Eleazu, C.; Chukwu, C. Acute and sub-acute toxicity studies on Combretum dolichopetalum engl. & diels leaves. Slov. Vet. Res., 2020, 57(3), 105-114.
[http://dx.doi.org/10.26873/SVR-899-2020]
[47]
Colak, E.; Zoric, L. Antioxidants and age-related muscular degeneration. In: Preedy, V.R.; Watson, R.R.; Eds. Handbook of Nutrition, Diet and the Eye;, 2nd Ed.; Academic Press: Cambridge, Massachusetts, 2019, 85-106.
[48]
Nieto, F.J.; Iribarren, C.; Gross, M.D.; Comstock, G.W.; Cutler, R.G. Uric acid and serum antioxidant capacity: A reaction to atherosclerosis? Atherosclerosis, 2000, 148(1), 131-139.
[http://dx.doi.org/10.1016/S0021-9150(99)00214-2] [PMID: 10580179]
[49]
Mikami, T.; Sorimachi, M. Uric acid contributes greatly to hepatic antioxidant capacity besides protein. Physiol. Res., 2017, 66(6), 1001-1007.
[http://dx.doi.org/10.33549/physiolres.933555] [PMID: 28937257]
[50]
Roumeliotis, S.; Roumeliotis, A.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Dietary antioxidant supplements and uric acid in chronic kidney disease: A review. Nutrients, 2019, 11(8), 1911.
[http://dx.doi.org/10.3390/nu11081911] [PMID: 31443225]
[51]
Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S. Is there a pathogenic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension, 2003, 41, 1183-1190.
[http://dx.doi.org/10.1161/01.HYP.0000069700.62727.C5] [PMID: 12707287]
[52]
Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids, 2008, 27(6-7), 608-619.
[http://dx.doi.org/10.1080/15257770802138558] [PMID: 18600514]
[53]
Chen, Y.J.; Kong, L.; Tang, Z.Z.; Zhang, Y.M.; Liu, Y.; Wang, T.Y.; Liu, Y.W. Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed. Pharmacother., 2019, 111, 1166-1175.
[http://dx.doi.org/10.1016/j.biopha.2019.01.030] [PMID: 30841430]
[54]
Diniz Vilela, D.; Gomes Peixoto, L.; Teixeira, R.R.; Belele Baptista, N.; Carvalho Caixeta, D.; Vieira de Souza, A.; Machado, H.L.; Pereira, M.N.; Sabino-Silva, R.; Espindola, F.S. The role of metformin in controlling oxidative stress in muscle of diabetic rats. Oxid. Med. Cell. Longev., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/6978625] [PMID: 27579154]
[55]
Abdul Aziz, S.H.; John, C.M.; Mohamed Yusof, N.I.S.; Nordin, M.; Ramasamy, R.; Adam, A.; Mohd Fauzi, F. Animal model of gestational diabetes mellitus with pathophysiological resemblance to the human condition induced by multiple factors (Nutritional, Pharmacological, and Stress) in rats. BioMed Res. Int., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/9704607] [PMID: 27379252]
[56]
He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem., 2017, 44(2), 532-553.
[http://dx.doi.org/10.1159/000485089] [PMID: 29145191]
[57]
Bequer, L.; Gómez, T.; Molina, J.L.; Álvarez, A.; Chaviano, C.; Clapés, S. Experimental diabetes impairs maternal reproductive performance in pregnant Wistar rats and their offspring. Syst Biol Reprod Med, 2018, 64(1), 60-70.
[http://dx.doi.org/10.1080/19396368.2017.1395928] [PMID: 29156994]
[58]
Townsend, D.M.; Tew, K.D. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 2003, 22(47), 7369-7375.
[http://dx.doi.org/10.1038/sj.onc.1206940] [PMID: 14576844]
[59]
Grissa, O.; Atègbo, J.M.; Yessoufou, A.; Tabka, Z.; Miled, A.; Jerbi, M.; Dramane, K.L.; Moutairou, K.; Prost, J.; Hichami, A.; Khan, N.A. Antioxidant status and circulating lipids are altered in human gestational diabetes and macrosomia. Transl. Res., 2007, 150(3), 164-171.
[http://dx.doi.org/10.1016/j.trsl.2007.03.007] [PMID: 17761369]
[60]
Aisa, M.C.; Cappuccini, B.; Barbati, A.; Clerici, G.; Torlone, E.; Gerli, S.; Di Renzo, G.C. Renal consequences of gestational diabetes mellitus in term neonates: A multidisciplinary approach to the DOHaD perspective in the prevention and early recognition of neonates of GDM mothers at risk of hypertension and chronic renal diseases in later life. J. Clin. Med., 2019, 8(4), 429.
[http://dx.doi.org/10.3390/jcm8040429] [PMID: 30925803]
[61]
Carvalho, C.; Correia, S.; Santos, M.S.; Seiça, R.; Oliveira, C.R.; Moreira, P.I. Metformin promotes isolated rat liver mitochondria impairment. Mol. Cell. Biochem., 2008, 308(1-2), 75-83.
[http://dx.doi.org/10.1007/s11010-007-9614-3] [PMID: 17909944]
[62]
Kosmas, C.E.; Silverio, D.; Tsomidou, C.; Salcedo, M.D.; Montan, P.D.; Guzman, E. The impact of insulin resistance and chronic kidney disease on inflammation and cardiovascular disease. Clin. Med. Insights Endocrinol. Diabetes, 2018, 11, 1179551418792257.
[http://dx.doi.org/10.1177/1179551418792257] [PMID: 30083062]
[63]
Aghadavod, E.; Khodadadi, S.; Baradaran, A.; Nasri, P.; Bahmani, M.; Rafieian-Kopaei, M. Role of oxidative stress and inflammatory factors in diabetic kidney disease. Iran. J. Kidney Dis., 2016, 10(6), 337-343.
[PMID: 27903991]
[64]
Rui, L.; Aguirre, V.; Kim, J.K.; Shulman, G.I.; Lee, A.; Corbould, A.; Dunaif, A.; White, M.F. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J. Clin. Invest., 2001, 107(2), 181-189.
[http://dx.doi.org/10.1172/JCI10934] [PMID: 11160134]
[65]
Kirwan, J.P.; Hauguel-De Mouzon, S.; Lepercq, J.; Challier, J.C.; Huston-Presley, L.; Friedman, J.E.; Kalhan, S.C.; Catalano, P.M. TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes, 2002, 51(7), 2207-2213.
[http://dx.doi.org/10.2337/diabetes.51.7.2207] [PMID: 12086951]
[66]
Malin, S.K.; Kashyap, S.R. Effects of metformin on weight loss. Curr. Opin. Endocrinol. Diabetes Obes., 2014, 21(5), 323-329.
[http://dx.doi.org/10.1097/MED.0000000000000095] [PMID: 25105996]
[67]
Mahabady, M.K.; Shamsi, M.M.; Ranjbar, R.; Tabandeh, M.R.; Khazaeel, K. Quercetin improved histological structure and upregulated adiponectin and adiponectin receptors in the placenta of rats with gestational diabetes mellitus. Placenta, 2021, 106(106), 49-57.
[http://dx.doi.org/10.1016/j.placenta.2021.02.008] [PMID: 33640737]
[68]
Dai, S.; Meng, X.; Cai, X.; Yuan, C.; Zhao, Z.; Zhong, L.; Shi, Y.; Yin, F. Therapeutic effect of ursolic acid on fetal development in pregnant rats with gestational diabetes mellitus via AGEs-RAGE signaling pathway. J. Food Biochem., 2021, 45(4), e13651.
[http://dx.doi.org/10.1111/jfbc.13651] [PMID: 33586798]
[69]
Zheng, Y.; Zhu, N.; Wang, J.; Zhao, N.; Yuan, C. Crocetin suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats via suppression of inflammatory reaction. J. Food Biochem., 2021, 45(9), e13857.
[http://dx.doi.org/10.1111/jfbc.13857] [PMID: 34309046]
[70]
Ma, Y.; Xu, S.; Meng, J.; Li, L. Protective effect of nimbolide against streptozotocin induced gestational diabetes mellitus in rats via alteration of inflammatory reaction, oxidative stress, and gut microbiota. Environ. Toxicol., 2022, 37(6), 1382-1393.
[http://dx.doi.org/10.1002/tox.23491] [PMID: 35212444]