Amplification of Amyloid Protein-induced Aggregation of the Eukaryotic Ribosome

Page: [993 - 1005] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Alzheimer’s disease (AD) is characterized by the aggregation of Tau protein and Amyloid-β peptides (Aβ 1-40 and Aβ 1-42). A loss of ribosomal population is also observed in the neurons in affected regions of AD. Our studies demonstrated that in vitro aggregation of amyloid forming proteins, Aβ peptides and Tau protein variants (AFPs), in the vicinity of yeast 80S ribosome can induce co-aggregation of ribosomal components.

Objective: In this study, the ability of minute quantities of AFP-ribosome co-aggregates to seed the aggregation of a large excess of untreated 80S ribosomes was explored.

Methods: The AFPs were purified using ion-exchange chromatography. Seeded aggregation of ribosomes in the presence of minute quantities of ribosome-protein co-aggregates or ribosomal components was studied using agarose gel electrophoretic and SDS-PAGE analysis of the pellets and Sucrose Density Gradient centrifugation of the supernatant obtained after centrifugation of the aggregation reaction mixture.

Results: Our studies, therefore, demonstrate that minute quantities of AFP-80S co-aggregate have significant seeding potential and could lead to aggregation of a large excess of fresh 80S ribosomes and this seeding ability is sustained over multiple cycles of ribosome aggregation. The aggregation propensity of ribosomal components alone could contribute towards the seeding of ribosome aggregation.

Conclusion: The ability of minute quantities of AFP-80S co-aggregates to seed the aggregation of a large excess of fresh 80S ribosomes would result in the loss of global ribosomal population in Alzheimer’s disease afflicted neurons. Hence, subject to further validation by in vivo studies, our in vitro studies indicate a significant mode of toxicity of amyloid aggregates that might be important in Alzheimer’s disease pathology.

Keywords: Amyloid-β, Tau protein, Ribosome, Aggregation, Seeding, Alzheimer’s disease, Ribosomal RNA (rRNA), Ribosomal protein

Graphical Abstract

[1]
Drew, L. An age-old story of dementia. Nature, 2018, 559(7715), S2-S3.
[http://dx.doi.org/10.1038/d41586-018-05718-5] [PMID: 30046085]
[2]
Cuello, A.C. Early and late CNS inflammation in Alzheimer’s disease: Two extremes of a continuum? Trends Pharmacol. Sci., 2017, 38(11), 956-966.
[http://dx.doi.org/10.1016/j.tips.2017.07.005] [PMID: 28867259]
[3]
Ballatore, C.; Lee, V.M.Y.; Trojanowski, J.Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci., 2007, 8(9), 663-672.
[http://dx.doi.org/10.1038/nrn2194] [PMID: 17684513]
[4]
Lee, S.J.C.; Nam, E.; Lee, H.J.; Savelieff, M.G.; Lim, M.H. Towards an understanding of amyloid-β oligomers: Characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev., 2017, 46(2), 310-323.
[http://dx.doi.org/10.1039/C6CS00731G] [PMID: 27878186]
[5]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-β in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8(7), 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[6]
Ding, Q.; Markesbery, W.R.; Cecarini, V.; Keller, J.N. Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem. Res., 2006, 31(5), 705-710.
[http://dx.doi.org/10.1007/s11064-006-9071-5] [PMID: 16770743]
[7]
Banerjee, S.; Ferdosh, S.; Ghosh, A.N.; Barat, C. Tau protein-induced sequestration of the eukaryotic ribosome: Implications in neurodegenerative disease. Sci. Rep., 2020, 10(1), 5225.
[http://dx.doi.org/10.1038/s41598-020-61777-7] [PMID: 32251304]
[8]
Ferdosh, S.; Banerjee, S.; Singh, J.; Barat, C. Amyloid protein‐induced sequestration of the eukaryotic ribosome: Effect of stoichiometry and polyphenolic inhibitors. FEBS Lett., 2022, 596(9), 1190-1202.
[http://dx.doi.org/10.1002/1873-3468.14308] [PMID: 35114013]
[9]
Chakraborty, B.; Bhakta, S.; Sengupta, J. Disassembly of yeast 80S ribosomes into subunits is a concerted action of ribosome-assisted folding of denatured protein. Biochem. Biophys. Res. Commun., 2016, 469(4), 923-929.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.107] [PMID: 26723252]
[10]
Walsh, D.M.; Thulin, E.; Minogue, A.M.; Gustavsson, N.; Pang, E.; Teplow, D.B.; Linse, S. A facile method for expression and purification of the Alzheimer’s disease-associated amyloid β-peptide. FEBS J., 2009, 276(5), 1266-1281.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06862.x] [PMID: 19175671]
[11]
Ramachandran, G.; Udgaonkar, J.B. Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by Tau protein. J. Biol. Chem., 2011, 286(45), 38948-38959.
[http://dx.doi.org/10.1074/jbc.M111.271874] [PMID: 21931162]
[12]
Ge, J.F.; Qiao, J.P.; Qi, C.C.; Wang, C.W.; Zhou, J.N. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem. Int., 2012, 61(7), 1192-1201.
[http://dx.doi.org/10.1016/j.neuint.2012.08.012] [PMID: 22981725]
[13]
Ono, K.; Li, L.; Takamura, Y.; Yoshiike, Y.; Zhu, L.; Han, F.; Mao, X.; Ikeda, T.; Takasaki, J.; Nishijo, H.; Takashima, A.; Teplow, D.B.; Zagorski, M.G.; Yamada, M. Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J. Biol. Chem., 2012, 287(18), 14631-14643.
[http://dx.doi.org/10.1074/jbc.M111.325456] [PMID: 22393064]
[14]
Piir, K.; Tamm, T.; Kisly, I.; Tammsalu, T.; Remme, J. Stepwise splitting of ribosomal proteins from yeast ribosomes by LiCl. PLoS One, 2014, 9(7), e101561.
[http://dx.doi.org/10.1371/journal.pone.0101561] [PMID: 24991888]
[15]
Schieber, G.L.; O’Brien, T.W. Extraction of proteins from the large subunit of bovine mitochondrial ribosomes under nondenaturing conditions. J. Biol. Chem., 1982, 257(15), 8781-8787.
[http://dx.doi.org/10.1016/S0021-9258(18)34198-X] [PMID: 6284743]
[16]
Conchillo, S.O.; De Groot, N.S.; Avilés, F.X.; Vendrell, J.; Daura, X.; Ventura, S. AGGRESCAN: A server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics, 2007, 8(1), 65.
[http://dx.doi.org/10.1186/1471-2105-8-65] [PMID: 17324296]
[17]
Garbuzynskiy, S.O.; Lobanov, M.Y.; Galzitskaya, O.V. FoldAmyloid: A method of prediction of amyloidogenic regions from protein sequence. Bioinformatics, 2010, 26(3), 326-332.
[http://dx.doi.org/10.1093/bioinformatics/btp691] [PMID: 20019059]
[18]
Oliveberg, M. Waltz, an exciting new move in amyloid prediction. Nat. Methods, 2010, 7(3), 187-188.
[http://dx.doi.org/10.1038/nmeth0310-187] [PMID: 20195250]
[19]
Walsh, I.; Seno, F.; Tosatto, S.C.E.; Trovato, A. PASTA 2.0: An improved server for protein aggregation prediction. Nucleic Acids Res., 2014, 42(W1), W301-W307.
[http://dx.doi.org/10.1093/nar/gku399] [PMID: 24848016]
[20]
Grishin, S.Y.; Deryusheva, E.I.; Machulin, A.V.; Selivanova, O.M.; Glyakina, A.V.; Gorbunova, E.Y.; Mustaeva, L.G.; Azev, V.N.; Rekstina, V.V.; Kalebina, T.S.; Surin, A.K.; Galzitskaya, O.V. Amyloidogenic propensities of ribosomal s1 proteins: Bioinformatics screening and experimental checking. Int. J. Mol. Sci., 2020, 21(15), 5199.
[http://dx.doi.org/10.3390/ijms21155199] [PMID: 32707977]
[21]
Friesen, M. Meyer, L.M. Aβ seeding as a tool to study cerebral amyloidosis and associated pathology. Front. Mol. Neurosci., 2019, 12, 233.
[http://dx.doi.org/10.3389/fnmol.2019.00233] [PMID: 31632238]
[22]
Makarava, N.; Savtchenko, R.; Baskakov, I.V. Methods of protein misfolding cyclic amplification. Methods Mol. Biol., 2017, 1658, 169-183.
[http://dx.doi.org/10.1007/978-1-4939-7244-9_13] [PMID: 28861790]
[23]
Meyer, V.; Dinkel, P.D.; Rickman Hager, E.; Margittai, M. Amplification of Tau fibrils from minute quantities of seeds. Biochemistry, 2014, 53(36), 5804-5809.
[http://dx.doi.org/10.1021/bi501050g] [PMID: 25153692]
[24]
Tran, J.; Chang, D.; Hsu, F.; Wang, H.; Guo, Z. Cross-seeding between Aβ40 and Aβ42 in Alzheimer’s disease. FEBS Lett., 2017, 591(1), 177-185.
[http://dx.doi.org/10.1002/1873-3468.12526] [PMID: 27981583]
[25]
Dinkel, P.D.; Holden, M.R.; Matin, N.; Margittai, M. RNA binds to tau fibrils and sustains template-assisted growth. Biochemistry, 2015, 54(30), 4731-4740.
[http://dx.doi.org/10.1021/acs.biochem.5b00453] [PMID: 26177386]
[26]
Harper, J.D.; Lansbury, P.T., Jr Models of amyloid seeding in Alzheimer’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem., 1997, 66(1), 385-407.
[http://dx.doi.org/10.1146/annurev.biochem.66.1.385] [PMID: 9242912]
[27]
Jäkel, S.; Mingot, J.M.; Schwarzmaier, P.; Hartmann, E.; Görlich, D. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J., 2002, 21(3), 377-386.
[http://dx.doi.org/10.1093/emboj/21.3.377] [PMID: 11823430]
[28]
Koch, B.; Mitterer, V.; Niederhauser, J.; Stanborough, T.; Murat, G.; Rechberger, G.; Bergler, H.; Kressler, D.; Pertschy, B. Yar1 protects the ribosomal protein Rps3 from aggregation. J. Biol. Chem., 2012, 287(26), 21806-21815.
[http://dx.doi.org/10.1074/jbc.M112.365791] [PMID: 22570489]
[29]
Pillet, B.; García, G.J.J.; Pausch, P.; Falquet, L.; Bange, G.; De La, C.J.; Kressler, D. The dedicated chaperone Acl4 escorts ribosomal protein Rpl4 to its nuclear pre-60S assembly site. PLoS Genet., 2015, 11(10), e1005565.
[http://dx.doi.org/10.1371/journal.pgen.1005565] [PMID: 26447800]
[30]
Peng, Z.; Oldfield, C.J.; Xue, B.; Mizianty, M.J.; Dunker, A.K.; Kurgan, L.; Uversky, V.N. A creature with a hundred waggly tails: Intrinsically disordered proteins in the ribosome. Cell. Mol. Life Sci., 2014, 71(8), 1477-1504.
[http://dx.doi.org/10.1007/s00018-013-1446-6] [PMID: 23942625]
[31]
Timsit, Y.; Acosta, Z.; Allemand, F.; Chiaruttini, C.; Springer, M. The role of disordered ribosomal protein extensions in the early steps of eubacterial 50 S ribosomal subunit assembly. Int. J. Mol. Sci., 2009, 10(3), 817-834.
[http://dx.doi.org/10.3390/ijms10030817] [PMID: 19399222]
[32]
Uversky, V. Amyloidogenesis of natively unfolded proteins. Curr. Alzheimer Res., 2008, 5(3), 260-287.
[http://dx.doi.org/10.2174/156720508784533312] [PMID: 18537543]
[33]
Gunawardana, C.G.; Mehrabian, M.; Wang, X.; Mueller, I.; Lubambo, I.B.; Jonkman, J.E.N.; Wang, H.; Schmitt-Ulms, G. The human tau interactome: Binding to the ribonucleoproteome, and impaired binding of the proline-to-leucine mutant at Position 301 (P301L) to chaperones and the proteasome. Mol. Cell. Proteomics, 2015, 14(11), 3000-3014.
[http://dx.doi.org/10.1074/mcp.M115.050724] [PMID: 26269332]
[34]
Meier, S.; Bell, M.; Lyons, D.N.; Rodriguez, R.J.; Ingram, A.; Fontaine, S.N.; Mechas, E.; Chen, J.; Wolozin, B.; LeVine, H., III; Zhu, H.; Abisambra, J.F. Pathological tau promotes neuronal damage by impairing ribosomal function and decreasing protein synthesis. J. Neurosci., 2016, 36(3), 1001-1007.
[http://dx.doi.org/10.1523/JNEUROSCI.3029-15.2016] [PMID: 26791227]
[35]
Iseki, E.; Matsumura, T.; Marui, W.; Hino, H.; Odawara, T.; Sugiyama, N.; Suzuki, K.; Sawada, H.; Arai, T.; Kosaka, K. Familial frontotemporal dementia and parkinsonism with a novel N296H mutation in exon 10 of the tau gene and a widespread tau accumulation in the glial cells. Acta Neuropathol., 2001, 102(3), 285-292.
[http://dx.doi.org/10.1007/s004010000333] [PMID: 11585254]
[36]
Nelson, P.T.; Marton, L.; Saper, C.B. Alz-50 immunohisto-chemistry in the normal sheep striatum: A light and electron microscope study. Brain Res., 1993, 600(2), 285-297.
[http://dx.doi.org/10.1016/0006-8993(93)91385-6] [PMID: 8094642]
[37]
Nelson, P.T.; Saper, C.B. Ultrastructure of neurofibrillary tangles in the cerebral cortex of sheep. Neurobiol. Aging, 1995, 16(3), 315-323.
[http://dx.doi.org/10.1016/0197-4580(94)00175-Z] [PMID: 7566341]
[38]
Papasozomenos, S.C. Tau protein immunoreactivity in dementia of the Alzheimer type. I. Morphology, evolution, distribution, and pathogenetic implications. Lab. Invest., 1989, 60(1), 123-137.
[PMID: 2492060]
[39]
Papasozomenos, S.C.; Binder, L.I. Phosphorylation determines two distinct species of tau in the central nervous system. Cell Motil. Cytoskeleton, 1987, 8(3), 210-226.
[http://dx.doi.org/10.1002/cm.970080303] [PMID: 2446784]
[40]
Piao, Y.S.; Hayashi, S.; Wakabayashi, K.; Kakita, A.; Aida, I.; Yamada, M.; Takahashi, H. Cerebellar cortical tau pathology in progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol., 2002, 103(5), 469-474.
[http://dx.doi.org/10.1007/s00401-001-0488-2] [PMID: 11935262]
[41]
Tanemura, K.; Murayama, M.; Akagi, T.; Hashikawa, T.; Tominaga, T.; Ichikawa, M.; Yamaguchi, H.; Takashima, A. Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J. Neurosci., 2002, 22(1), 133-141.
[http://dx.doi.org/10.1523/JNEUROSCI.22-01-00133.2002] [PMID: 11756496]
[42]
Koren, S.A.; Hamm, M.J.; Meier, S.E.; Weiss, B.E.; Nation, G.K.; Chishti, E.A.; Arango, J.P.; Chen, J.; Zhu, H.; Blalock, E.M.; Abisambra, J.F. Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol., 2019, 137(4), 571-583.
[http://dx.doi.org/10.1007/s00401-019-01970-9] [PMID: 30759285]
[43]
Ding, Q.; Markesbery, W.R.; Chen, Q.; Li, F.; Keller, J.N. Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci., 2005, 25(40), 9171-9175.
[http://dx.doi.org/10.1523/JNEUROSCI.3040-05.2005] [PMID: 16207876]
[44]
Langstrom, N.S.; Anderson, J.P.; Lindroos, H.G.; Winbland, B.; Wallace, W.C. Alzheimer’s disease-associated reduction of polysomal mRNA translation. Brain Res. Mol. Brain Res., 1989, 5(4), 259-269.
[http://dx.doi.org/10.1016/0169-328X(89)90060-0] [PMID: 2747450]
[45]
Mann, D.M.; Neary, D.; Yates, P.O.; Lincoln, J.; Snowden, J.S.; Stanworth, P. Alterations in protein synthetic capability of nerve cells in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 1981, 44(2), 97-102.
[http://dx.doi.org/10.1136/jnnp.44.2.97] [PMID: 6163842]
[46]
Sajdel, S.E.M.; Marotta, C.A. Alzheimer’s disease brain: Alterations in RNA levels and in a ribonuclease-inhibitor complex. Science, 1984, 225(4665), 947-949.
[http://dx.doi.org/10.1126/science.6206567] [PMID: 6206567]
[47]
Ginsberg, S.D.; Crino, P.B.; Lee, V.M.Y.; Eberwine, J.H.; Trojanowski, J.Q. Sequestration of RNA in Alzheimer’s disease neurofibrillary tangles and senile plaques. Ann. Neurol., 1997, 41(2), 200-209.
[http://dx.doi.org/10.1002/ana.410410211] [PMID: 9029069]
[48]
Ginsberg, S.D.; Galvin, J.E.; Chiu, T.S.; Lee, V.M.Y.; Masliah, E.; Trojanowski, J.Q. RNA sequestration to pathological lesions of neurodegenerative diseases. Acta Neuropathol., 1998, 96(5), 487-494.
[http://dx.doi.org/10.1007/s004010050923] [PMID: 9829812]
[49]
Yang, H.; Hu, H.Y. Sequestration of cellular interacting partners by protein aggregates: Implication in a loss‐of‐function pathology. FEBS J., 2016, 283(20), 3705-3717.
[http://dx.doi.org/10.1111/febs.13722] [PMID: 27016044]
[50]
Chakraborty, P.; Rivière, G.; Liu, S.; De Opakua, A.I. Dervişoğlu, R; Hebestreit, A; Andreas, LB; Vorberg, IM; Zweckstetter, M Co-factor-free aggregation of tau into seeding-competent RNA-sequestering amyloid fibrils. Nature Communications, 2021, 12(1), 4231.
[http://dx.doi.org/10.1038/s41467-021-24362-8] [PMID: 34244499]
[51]
Brunello, C.A.; Merezhko, M.; Uronen, R.L.; Huttunen, H.J. Mechanisms of secretion and spreading of pathological tau protein. Cell. Mol. Life Sci., 2020, 77(9), 1721-1744.
[http://dx.doi.org/10.1007/s00018-019-03349-1] [PMID: 31667556]
[52]
Clavaguera, F.; Hench, J.; Goedert, M.; Tolnay, M. Invited review: Prion-like transmission and spreading of tau pathology. Neuropathol. Appl. Neurobiol., 2015, 41(1), 47-58.
[http://dx.doi.org/10.1111/nan.12197] [PMID: 25399729]