Current Pharmaceutical Design

Author(s): Qipeng Cheng and Ping Zeng*

DOI: 10.2174/1381612828666220902124856

Hydrophobic-hydrophilic Alternation: An effective Pattern to de novo Designed Antimicrobial Peptides

Page: [3527 - 3537] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

The antimicrobial peptide (AMP) is a class of molecules that are active against a variety of microorganisms, from bacterial and cancer cells to fungi. Most AMPs are natural products, as part of an organism's own defense system against harmful microbes. However, the growing prevalence of drug resistance has forced researchers to design more promising engineered antimicrobial agents. Inspired by the amphiphilic detergents, the hydrophobic-hydrophilic alternation pattern was considered to be a simple but effective way to de novo design AMPs. In this model, hydrophobic amino acids (leucine, isoleucine etc.) and hydrophilic amino acids (arginine, lysine etc.) were arranged in an alternating way in the peptide sequence. The majority of this type of peptides have a clear hydrophilic-hydrophobic interface, which allows the molecules to have good solubility in both water and organic solvents. When they come into contact with hydrophobic membranes, many peptides undergo a conformational transformation, facilitating themself to insert into the cellular envelope. Moreover, positive-charged peptide amphiphiles tended to have an affinity with negatively-charged membrane interfaces and further led to envelope damage and cell death. Herein, several typical design patterns have been reviewed. Though varying in amino acid sequence, they all basically follow the rule of alternating arrangement of hydrophilic and hydrophobic residues. Based on that, researchers synthesized some lead compounds with favorable antimicrobial activities and preliminarily investigated their possible mode of action. Besides membrane disruption, these AMPs are proven to kill microbes in multiple mechanisms. These results deepened our understanding of AMPs’ design and provided a theoretical basis for constructing peptide candidates with better biocompatibility and therapeutic potential.

Keywords: Novel antimicrobial agent, functional pattern, engineered peptide, cationic amphiphiles, membrane destroyer, amphiphilic interface, antimicrobial mechanism

[1]
Bromley EHC, Channon K, Moutevelis E, Woolfson DN. Peptide and protein building blocks for synthetic biology: From programming biomolecules to self-organized biomolecular systems. ACS Chem Biol 2008; 3(1): 38-50.
[http://dx.doi.org/10.1021/cb700249v] [PMID: 18205291]
[2]
Shahidi F, Zhong Y. Bioactive peptides. J AOAC Int 2008; 91(4): 914-31.
[http://dx.doi.org/10.1093/jaoac/91.4.914] [PMID: 18727554]
[3]
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int J Mol Sci 2022; 23(3): 1445.
[http://dx.doi.org/10.3390/ijms23031445] [PMID: 35163367]
[4]
Yu L, Li K, Zhang J, et al. Antimicrobial peptides and macromolecules for combating microbial infections: From agents to interfaces. ACS Appl Bio Mater 2022; 5(2): 366-93.
[http://dx.doi.org/10.1021/acsabm.1c01132] [PMID: 35072444]
[5]
Haney EF, Straus SK, Hancock REW. Reassessing the host defense peptide landscape. Front Chem 2019; 7: 43.
[http://dx.doi.org/10.3389/fchem.2019.00043] [PMID: 30778385]
[6]
Nayab S, Aslam MA, Rahman S, et al. A review of antimicrobial peptides: Its function, mode of action and therapeutic potential. Int J Pept Res Ther 2022; 28(1): 46.
[http://dx.doi.org/10.1007/s10989-021-10325-6]
[7]
Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics. Bioorg Med Chem 2018; 26(10): 2759-65.
[http://dx.doi.org/10.1016/j.bmc.2018.01.012] [PMID: 29395804]
[8]
Hamley IW. Lipopeptides: From self-assembly to bioactivity. Chem Commun 2015; 51(41): 8574-83.
[http://dx.doi.org/10.1039/C5CC01535A] [PMID: 25797909]
[9]
Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics: Past, present and future. Curr Opin Chem Biol 2017; 38: 24-9.
[http://dx.doi.org/10.1016/j.cbpa.2017.02.006] [PMID: 28249193]
[10]
Hultmark D, Steiner H, Rasmuson T, Boman HG. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 1980; 106(1): 7-16.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb05991.x] [PMID: 7341234]
[11]
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov 2020; 19(5): 311-32.
[http://dx.doi.org/10.1038/s41573-019-0058-8] [PMID: 32107480]
[12]
Wang G, Li X, Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016; 44(D1): D1087-93.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[13]
Pirtskhalava M, Amstrong AA, Grigolava M, et al. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 2021; 49(D1): D288-97.
[http://dx.doi.org/10.1093/nar/gkaa991] [PMID: 33151284]
[14]
Kang X, Dong F, Shi C, et al. DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 2019; 6(1): 148.
[http://dx.doi.org/10.1038/s41597-019-0154-y] [PMID: 31409791]
[15]
Micsonai A, Wien F, Kernya L, et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci USA 2015; 112(24): E3095-103.
[http://dx.doi.org/10.1073/pnas.1500851112] [PMID: 26038575]
[16]
Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 2016; 44(W1): W449-54.
[http://dx.doi.org/10.1093/nar/gkw329] [PMID: 27131374]
[17]
Nagarajan D, Nagarajan T, Roy N, et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J Biol Chem 2018; 293(10): 3492-509.
[http://dx.doi.org/10.1074/jbc.M117.805499] [PMID: 29259134]
[18]
Kavousi K, Bagheri M, Behrouzi S, et al. IAMPE: NMR-assisted computational prediction of antimicrobial peptides. J Chem Inf Model 2020; 60(10): 4691-701.
[http://dx.doi.org/10.1021/acs.jcim.0c00841] [PMID: 32946226]
[19]
Tucker AT, Leonard SP, DuBois CD, et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide libraries. Cell 2018; 172(3): 618-628.e13.
[http://dx.doi.org/10.1016/j.cell.2017.12.009] [PMID: 29307492]
[20]
Kamech N, Vukičević D, Ladram A, et al. Improving the selectivity of antimicrobial peptides from anuran skin. J Chem Inf Model 2012; 52(12): 3341-51.
[http://dx.doi.org/10.1021/ci300328y] [PMID: 23094651]
[21]
Lau JL, Dunn MK. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg Med Chem 2018; 26(10): 2700-7.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[22]
Behrendt R, White P, Offer J. Advances in Fmoc solid‐phase peptide synthesis. J Pept Sci 2016; 22(1): 4-27.
[http://dx.doi.org/10.1002/psc.2836] [PMID: 26785684]
[23]
Kundu R. Cationic amphiphilic peptides: Synthetic antimicrobial agents inspired by nature. ChemMedChem 2020; 15(20): 1887-96.
[http://dx.doi.org/10.1002/cmdc.202000301] [PMID: 32767819]
[24]
de Breij A, Riool M, Cordfunke RA, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 2018; 10(423): eaan4044.
[http://dx.doi.org/10.1126/scitranslmed.aan4044] [PMID: 29321257]
[25]
Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U. Alanine and lysine scans of the LL-37-derived peptide fragment KR-12 reveal key residues for antimicrobial activity. ChemBioChem 2018; 19(9): 931-9.
[http://dx.doi.org/10.1002/cbic.201700599] [PMID: 29430821]
[26]
Cheung GYC, Kretschmer D, Queck SY, et al. Insight into structure‐function relationship in phenol‐soluble modulins using an alanine screen of the phenol‐soluble modulin (PSM) α3 peptide. FASEB J 2014; 28(1): 153-61.
[http://dx.doi.org/10.1096/fj.13-232041] [PMID: 24008753]
[27]
Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020; 9(1): 24.
[http://dx.doi.org/10.3390/antibiotics9010024] [PMID: 31941022]
[28]
Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Biopolymers 2000; 55(1): 4-30.
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<4:AID-BIP30>3.0.CO;2-M] [PMID: 10931439]
[29]
Arfan G, Ong CYF, Ng SMS, et al. Designing an ultra-short antibacterial peptide with potent activity against Mupirocin-resistant MRSA. Chem Biol Drug Des 2019; 93(1): 4-11.
[http://dx.doi.org/10.1111/cbdd.13377] [PMID: 30103288]
[30]
Shiba K. Exploitation of peptide motif sequences and their use in nanobiotechnology. Curr Opin Biotechnol 2010; 21(4): 412-25.
[http://dx.doi.org/10.1016/j.copbio.2010.07.008] [PMID: 20728339]
[31]
Wu C, Shang Z, Lemetre C, Ternei MA, Brady SF. Cadasides, calcium-dependent acidic lipopeptides from the soil metagenome that are active against multidrug-resistant bacteria. J Am Chem Soc 2019; 141(9): 3910-9.
[http://dx.doi.org/10.1021/jacs.8b12087] [PMID: 30735616]
[32]
Cardoso P, Glossop H, Meikle TG, et al. Molecular engineering of antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities. Biophys Rev 2021; 13(1): 35-69.
[http://dx.doi.org/10.1007/s12551-021-00784-y] [PMID: 33495702]
[33]
Albada B, Metzler-Nolte N. Highly potent antibacterial organometallic peptide conjugates. Acc Chem Res 2017; 50(10): 2510-8.
[http://dx.doi.org/10.1021/acs.accounts.7b00282] [PMID: 28953347]
[34]
Garavito RM, Ferguson-Miller S. Detergents as tools in membrane biochemistry. J Biol Chem 2001; 276(35): 32403-6.
[http://dx.doi.org/10.1074/jbc.R100031200] [PMID: 11432878]
[35]
Herzog IM, Fridman M. Design and synthesis of membrane-targeting antibiotics: From peptides- to aminosugar-based antimicrobial cationic amphiphiles. MedChemComm 2014; 5(8): 1014-26.
[http://dx.doi.org/10.1039/C4MD00012A]
[36]
de la Fuente-Núñez C, Cardoso MH, de Souza Cândido E, Franco OL, Hancock REW. Synthetic antibiofilm peptides. Biochim Biophys Acta Biomembr 2016; 1858(5): 1061-9.
[http://dx.doi.org/10.1016/j.bbamem.2015.12.015] [PMID: 26724202]
[37]
Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit Rev Biotechnol 2020; 40(7): 978-92.
[http://dx.doi.org/10.1080/07388551.2020.1796576] [PMID: 32781848]
[38]
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front Microbiol 2020; 11: 582779.
[http://dx.doi.org/10.3389/fmicb.2020.582779] [PMID: 33178164]
[39]
Ciumac D, Gong H, Hu X, Lu JR. Membrane targeting cationic antimicrobial peptides. J Colloid Interface Sci 2019; 537: 163-85.
[http://dx.doi.org/10.1016/j.jcis.2018.10.103] [PMID: 30439615]
[40]
Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides 2012; 37(2): 207-15.
[http://dx.doi.org/10.1016/j.peptides.2012.07.001] [PMID: 22800692]
[41]
Sengupta D, Leontiadou H, Mark AE, Marrink SJ. Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta Biomembr 2008; 1778(10): 2308-17.
[http://dx.doi.org/10.1016/j.bbamem.2008.06.007] [PMID: 18602889]
[42]
Brogden KA. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3(3): 238-50.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[43]
Ulmschneider JP. Charged antimicrobial peptides can translocate across membranes without forming channel-like pores. Biophys J 2017; 113(1): 73-81.
[http://dx.doi.org/10.1016/j.bpj.2017.04.056] [PMID: 28700927]
[44]
Robinson JA. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in gram-negative bacteria. Front Chem 2019; 7: 45.
[http://dx.doi.org/10.3389/fchem.2019.00045] [PMID: 30788339]
[45]
Mohanram H, Bhattacharjya S. ‘Lollipop’-shaped helical structure of a hybrid antimicrobial peptide of temporin B-lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity. Biochim Biophys Acta, Gen Subj 2016; 1860(6): 1362-72.
[http://dx.doi.org/10.1016/j.bbagen.2016.03.025] [PMID: 27015761]
[46]
Morten B, Strøm BEH, Merete L. Skar, Stensen Wenche, Stiberg Trine, Svendsen John S. The pharmacophore of short cationic antibacterial peptides. J Med Chem 2003; 46: 1567-70.
[47]
Liu Z, Brady A, Young A, et al. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 2007; 51(2): 597-603.
[http://dx.doi.org/10.1128/AAC.00828-06] [PMID: 17145799]
[48]
Albada HB, Prochnow P, Bobersky S, et al. Tuning the activity of a short Arg-Trp antimicrobial peptide by lipidation of a C- or N-terminal lysine side-chain. ACS Med Chem Lett 2012; 3(12): 980-4.
[http://dx.doi.org/10.1021/ml300148v] [PMID: 24900420]
[49]
Chen X, Zhang M, Zhou C, Kallenbach NR, Ren D. Control of bacterial persister cells by Trp/Arg-containing antimicrobial peptides. Appl Environ Microbiol 2011; 77(14): 4878-85.
[http://dx.doi.org/10.1128/AEM.02440-10] [PMID: 21622798]
[50]
Gopal R, Na H, Seo C, Park Y. Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum. Int J Mol Sci 2012; 13(12): 15042-53.
[http://dx.doi.org/10.3390/ijms131115042] [PMID: 23203110]
[51]
Gopal R, Kim YJ, Seo CH, Hahm KS, Park Y. Reversed sequence enhances antimicrobial activity of a synthetic peptide. J Pept Sci 2011; 17(5): 329-34.
[http://dx.doi.org/10.1002/psc.1369] [PMID: 21462284]
[52]
He S, Yang Z, Yu W, et al. Systematically studying the optimal amino acid distribution patterns of the amphiphilic structure by using the ultrashort amphiphiles. Front Microbiol 2020; 11: 569118.
[http://dx.doi.org/10.3389/fmicb.2020.569118] [PMID: 33324358]
[53]
Lau QY, Ng FM, Cheong JWD, et al. Discovery of an ultra-short linear antibacterial tetrapeptide with anti-MRSA activity from a structure–activity relationship study. Eur J Med Chem 2015; 105: 138-44.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.015] [PMID: 26489599]
[54]
Albada HB, Chiriac AI, Wenzel M, et al. Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups. Beilstein J Org Chem 2012; 8: 1753-64.
[http://dx.doi.org/10.3762/bjoc.8.200] [PMID: 23209509]
[55]
Albada HB, Prochnow P, Bobersky S, Langklotz S, Bandow JE, Metzler-Nolte N. Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. ACS Comb Sci 2013; 15(11): 585-92.
[http://dx.doi.org/10.1021/co400072q] [PMID: 24147906]
[56]
Vo TD, Spahn C, Heilemann M, Bode HB. Microbial cationic peptides as a natural defense mechanism against insect antimicrobial peptides. ACS Chem Biol 2021; 16(3): 447-51.
[http://dx.doi.org/10.1021/acschembio.0c00794] [PMID: 33596038]
[57]
Zeng P, Xu C, Liu C, et al. De novo designed hexadecapeptides synergize glycopeptide antibiotics vancomycin and teicoplanin against pathogenic Klebsiella pneumoniae via disruption of cell permeability and potential. ACS Appl Bio Mater 2020; 3(3): 1738-52.
[http://dx.doi.org/10.1021/acsabm.0c00044] [PMID: 35021663]
[58]
Zeng P, Yi L, Cheng Q, et al. An ornithine-rich dodecapeptide with improved proteolytic stability selectively kills gram-negative food-borne pathogens and its action mode on Escherichia coli O157:H7. Int J Food Microbiol 2021; 352: 109281.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109281] [PMID: 34126526]
[59]
Zhong C, Zhang F, Yao J, et al. New antimicrobial peptides with repeating unit against multidrug-resistant bacteria. ACS Infect Dis 2021; 7(6): 1619-37.
[http://dx.doi.org/10.1021/acsinfecdis.0c00797] [PMID: 33829758]
[60]
Liu X, Cao R, Wang S, Jia J, Fei H. Amphipathicity determines different cytotoxic mechanisms of lysine- or arginine-rich cationic hydrophobic peptides in cancer cells. J Med Chem 2016; 59(11): 5238-47.
[http://dx.doi.org/10.1021/acs.jmedchem.5b02016] [PMID: 27195657]
[61]
Loose C, Jensen K, Rigoutsos I, Stephanopoulos G. A linguistic model for the rational design of antimicrobial peptides. Nature 2006; 443(7113): 867-9.
[http://dx.doi.org/10.1038/nature05233] [PMID: 17051220]
[62]
Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell 2020; 180(4): 688-702.e13.
[http://dx.doi.org/10.1016/j.cell.2020.01.021] [PMID: 32084340]
[63]
Wiradharma N, Khoe U, Hauser CAE, Seow SV, Zhang S, Yang YY. Synthetic cationic amphiphilic α-helical peptides as antimicrobial agents. Biomaterials 2011; 32(8): 2204-12.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.054] [PMID: 21168911]
[64]
Chen C, Chen Y, Yang C, et al. High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl Mater Interfaces 2015; 7(31): 17346-55.
[http://dx.doi.org/10.1021/acsami.5b04547] [PMID: 26204061]
[65]
Chen C, Hu J, Zeng P, et al. Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials 2014; 35(5): 1552-61.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.082] [PMID: 24246647]
[66]
Chen C, Hu J, Zeng P, Chen Y, Xu H, Lu JR. High cell selectivity and low-level antibacterial resistance of designed amphiphilic peptide G(IIKK)(3)I-NH(2). ACS Appl Mater Interfaces 2014; 6(19): 16529-36.
[http://dx.doi.org/10.1021/am504973d] [PMID: 25210781]
[67]
Zhang J, Chen C, Chen J, et al. Dual mode of anti-biofilm action of G3 against Streptococcus mutans. ACS Appl Mater Interfaces 2020; 12(25): 27866-75.
[http://dx.doi.org/10.1021/acsami.0c00771] [PMID: 32484655]
[68]
Chen C, Hu J, Yang C, et al. Amino acid side chains affect the bioactivity of designed short peptide amphiphiles. J Mater Chem B Mater Biol Med 2016; 4(13): 2359-68.
[http://dx.doi.org/10.1039/C6TB00155F] [PMID: 32263231]
[69]
Gong H, Zhang J, Hu X, et al. Hydrophobic control of the bioactivity and cytotoxicity of de novo-designed antimicrobial peptides. ACS Appl Mater Interfaces 2019; 11(38): 34609-20.
[http://dx.doi.org/10.1021/acsami.9b10028] [PMID: 31448889]
[70]
Deslouches B, Steckbeck JD, Craigo JK, Doi Y, Mietzner TA, Montelaro RC. Rational design of engineered cationic antimicrobial peptides consisting exclusively of arginine and tryptophan, and their activity against multidrug-resistant pathogens. Antimicrob Agents Chemother 2013; 57(6): 2511-21.
[http://dx.doi.org/10.1128/AAC.02218-12] [PMID: 23507278]
[71]
Yi L, Zeng P, Wong KY, Chan KF, Chen S. Controlling Listeria monocytogenes in ready-to-eat leafy greens by amphipathic α-helix peptide zp80 and its antimicrobial mechanisms. Lebensm Wiss Technol 2021; 152: 112412.
[http://dx.doi.org/10.1016/j.lwt.2021.112412]
[72]
Li X, Wang W, Liu S, et al. Effects of the peptide H-OOWW-NH2 and its derived lipopeptide C12-OOWW-NH2 on controlling of citrus postharvest green mold. Postharvest Biol Technol 2019; 158: 110979.
[http://dx.doi.org/10.1016/j.postharvbio.2019.110979]
[73]
Gong H, Liao M, Hu X, et al. Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Appl Mater Interfaces 2020; 12(40): 44420-32.
[http://dx.doi.org/10.1021/acsami.0c09931] [PMID: 32909733]
[74]
Khara JS, Obuobi S, Wang Y, et al. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity. Acta Biomater 2017; 57: 103-14.
[http://dx.doi.org/10.1016/j.actbio.2017.04.032] [PMID: 28457962]
[75]
Zeng P, Yi L, Xu J, et al. Investigation of antibiofilm activity, antibacterial activity, and mechanistic studies of an amphiphilic peptide against Acinetobacter baumannii. Biochim Biophys Acta Biomembr 2021; 1863(6): 183600.
[http://dx.doi.org/10.1016/j.bbamem.2021.183600] [PMID: 33675719]
[76]
Silveira GGOS, Torres MDT, Ribeiro CFA, et al. Antibiofilm peptides: Relevant preclinical animal infection models and translational potential. ACS Pharmacol Transl Sci 2021; 4(1): 55-73.
[http://dx.doi.org/10.1021/acsptsci.0c00191] [PMID: 33615161]
[77]
Papo N, Oren Z, Pag U, Sahl HG, Shai Y. The consequence of sequence alteration of an amphipathic alpha-helical antimicrobial peptide and its diastereomers. J Biol Chem 2002; 277(37): 33913-21.
[http://dx.doi.org/10.1074/jbc.M204928200] [PMID: 12110678]
[78]
Braunstein A, Papo N, Shai Y. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob Agents Chemother 2004; 48(8): 3127-9.
[http://dx.doi.org/10.1128/AAC.48.8.3127-3129.2004] [PMID: 15273131]
[79]
Wani NA, Ben Hur D, Kapach G, Stolovicki E, Rotem E, Shai Y. Switching bond: Generation of new antimicrobial peptides via the incorporation of an intramolecular isopeptide bond. ACS Infect Dis 2021; 7(6): 1702-12.
[http://dx.doi.org/10.1021/acsinfecdis.1c00037] [PMID: 34043312]
[80]
Wani NA, Stolovicki E, Hur DB, Shai Y. Site-specific isopeptide bond formation: A powerful tool for the generation of potent and nontoxic antimicrobial peptides. J Med Chem 2022; 65(6): 5085-94.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00061] [PMID: 35290038]
[81]
Chen X, Ji S, Li A, Liu H, Fei H. Toggling preassembly with single-site mutation switches the cytotoxic mechanism of cationic amphipathic peptides. J Med Chem 2020; 63(3): 1132-41.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01458] [PMID: 31927997]
[82]
Song YM, Park Y, Lim SS, et al. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 2005; 44(36): 12094-106.
[http://dx.doi.org/10.1021/bi050765p] [PMID: 16142907]
[83]
Hyun S, Choi Y, Jo D, et al. Proline hinged amphipathic α-helical peptide sensitizes gram-negative bacteria to various gram-positive antibiotics. J Med Chem 2020; 63(23): 14937-50.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01506] [PMID: 33205989]
[84]
Müller AT, Posselt G, Gabernet G, et al. Morphing of amphipathic helices to explore the activity and selectivity of membranolytic antimicrobial peptides. Biochemistry 2020; 59(39): 3772-81.
[http://dx.doi.org/10.1021/acs.biochem.0c00565] [PMID: 32936629]
[85]
Wang Y, Fan Y, Zhou Z, et al. De novo synthetic short antimicrobial peptides against cariogenic bacteria. Arch Oral Biol 2017; 80: 41-50.
[http://dx.doi.org/10.1016/j.archoralbio.2017.03.017] [PMID: 28366785]
[86]
Zhong G, Cheng J, Liang ZC, et al. Short synthetic β-sheet antimicrobial peptides for the treatment of multidrug-resistant Pseudomonas aeruginosa burn wound infections. Adv Healthc Mater 2017; 6(7): 1601134.
[http://dx.doi.org/10.1002/adhm.201601134] [PMID: 28135045]
[87]
Ong ZY, Cheng J, Huang Y, et al. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles. Biomaterials 2014; 35(4): 1315-25.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.053] [PMID: 24211081]
[88]
Lombardi L, Falanga A, Del Genio V, Galdiero S. A new hope: Self-assembling peptides with antimicrobial activity. Pharmaceutics 2019; 11(4): 166.
[http://dx.doi.org/10.3390/pharmaceutics11040166] [PMID: 30987353]
[89]
Hadianamrei R, Tomeh MA, Brown S, Wang J, Zhao X. Correlation between the secondary structure and surface activity of β-sheet forming cationic amphiphilic peptides and their anticancer activity. Colloids Surf B Biointerfaces 2022; 209(Pt 2): 112165.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112165] [PMID: 34715505]
[90]
Lyu Y, Chen T, Shang L, et al. Design of Trp-rich dodecapeptides with broad-spectrum antimicrobial potency and membrane-disruptive mechanism. J Med Chem 2019; 62(15): 6941-57.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00288] [PMID: 31276398]
[91]
Wang J, Song J, Yang Z, et al. Antimicrobial peptides with high proteolytic resistance for combating gram-negative bacteria. J Med Chem 2019; 62(5): 2286-304.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01348] [PMID: 30742437]
[92]
Portelinha J, Heilemann K, Jin J, Angeles-Boza AM. Unraveling the implications of multiple histidine residues in the potent antimicrobial peptide Gaduscidin-1. J Inorg Biochem 2021; 219: 111391.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111391] [PMID: 33770667]
[93]
Das R, Gayakvad B, Shinde SD, Rani J, Jain A, Sahu B. Ultrashort peptides—a glimpse into the structural modifications and their applications as biomaterials. ACS Appl Bio Mater 2020; 3(9): 5474-99.
[http://dx.doi.org/10.1021/acsabm.0c00544] [PMID: 35021786]
[94]
Zhang L, Xu J, Wang F, et al. Histidine-rich cell-penetrating peptide for cancer drug delivery and its uptake mechanism. Langmuir 2019; 35(9): 3513-23.
[http://dx.doi.org/10.1021/acs.langmuir.8b03175] [PMID: 30673275]
[95]
Zhang L, Sheng Y, Zehtab Yazdi A, et al. Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets. Nanoscale 2019; 11(6): 2999-3012.
[http://dx.doi.org/10.1039/C8NR08397E] [PMID: 30698183]
[96]
Mason AJ, Gasnier C, Kichler A, et al. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH. Antimicrob Agents Chemother 2006; 50(10): 3305-11.
[http://dx.doi.org/10.1128/AAC.00490-06] [PMID: 17005809]
[97]
Lai Z, Tan P, Zhu Y, Shao C, Shan A, Li L. Highly stabilized α-helical coiled coils kill gram-negative bacteria by multicomplementary mechanisms under acidic condition. ACS Appl Mater Interfaces 2019; 11(25): 22113-28.
[http://dx.doi.org/10.1021/acsami.9b04654] [PMID: 31199117]
[98]
Zhong C, Zhang F, Yao J, et al. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochem Pharmacol 2021; 186: 114470.
[http://dx.doi.org/10.1016/j.bcp.2021.114470] [PMID: 33610592]
[99]
Zhu Y, Shao C, Li G, et al. Rational avoidance of protease cleavage sites and symmetrical end-tagging significantly enhances the stability and therapeutic potential of antimicrobial peptides. J Med Chem 2020; 63(17): 9421-35.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00583] [PMID: 32706256]
[100]
Tan P, Lai Z, Jian Q, et al. Design of heptad repeat amphiphiles based on database filtering and structure–function relationships to combat drug-resistant fungi and biofilms. ACS Appl Mater Interfaces 2020; 12(2): 2129-44.
[http://dx.doi.org/10.1021/acsami.9b19927] [PMID: 31887002]
[101]
Li B, Ouyang X, Ba Z, et al. Novel β-hairpin antimicrobial peptides containing the β-turn sequence of -RRRF- having high cell selectivity and low incidence of drug resistance. J Med Chem 2022; 65(7): 5625-41.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02140] [PMID: 35311294]
[102]
Li C, Zhu C, Ren B, et al. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur J Med Chem 2019; 183: 111686.
[http://dx.doi.org/10.1016/j.ejmech.2019.111686] [PMID: 31520928]
[103]
Pandit G, Chowdhury N, Abdul Mohid S, Bidkar AP, Bhunia A, Chatterjee S. Effect of secondary structure and side chain length of hydrophobic amino acid residues on the antimicrobial activity and toxicity of 14‐residue‐long de novo AMPs. ChemMedChem 2021; 16(2): 355-67.
[http://dx.doi.org/10.1002/cmdc.202000550] [PMID: 33026188]
[104]
Epand RM, Epand RF. Bacterial membrane lipids in the action of antimicrobial agents. J Pept Sci 2011; 17(5): 298-305.
[http://dx.doi.org/10.1002/psc.1319] [PMID: 21480436]
[105]
Zeng P, Cheng Q, Xu J, et al. Membrane-disruptive engineered peptide amphiphiles restrain the proliferation of penicillins and cephalosporins resistant Vibrio alginolyticus and Vibrio parahaemolyticus in instant jellyfish. Food Control 2022; 135: 108827.
[http://dx.doi.org/10.1016/j.foodcont.2022.108827]
[106]
Zeng P, Yi L, Wong M, Chen S, Chan KF, Wong KY. Synthetic hexadecapeptide prevents postharvest pectobacterium carotovorum (subsp. brasiliensis BC1) infection via destabilizing cell envelope and suppressing biosynthesis of arginine and peptidoglycan. ACS Food Science Technol 2021; 1(4): 614-24.
[http://dx.doi.org/10.1021/acsfoodscitech.1c00037]