Recent Advances in Chemical Composition and Transdermal Delivery Systems for Topical Bio-actives in Skin Cancer

Page: [31 - 43] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Skin cancer, including basal cell carcinoma, melanoma, and squamous cell carcinoma, is conventionally treated by surgery, phototherapy, immunotherapy, and chemotherapy. For decades, surgical removal of malignant cancers has favored patients' therapeutic options. However, multiple aspects, such as the patient's comorbidities, the anatomical location of the lesion, and possible resistance to recurrent excisions, can influence the decision to conduct surgery. Therefore, topical and transdermal therapy may be a more appropriate option, allowing for higher therapeutic levels at the site of action and reducing toxicity than systemic therapy. The most commonly used topical agents for treating skin carcinoma are- 5-fluorouracil, imiquimod, sonidegib, dacarbazine, etc. However, physicochemical drug characteristics and skin physiological barriers limit the anticancer potency of topical as well as transdermal drug delivery. In recent years, unquestionable signs of progress have been demonstrated to circumvent these challenges. In particular, significant studies have been made, including modification of bio-actives, permeability enhancers, incorporation of advanced nano and microcarriers, and physical enhancement devices. This critical review summarizes the advancement in the chemical composition of bioactives used in skin cancer, such as sinecatechins, BIL-010t, patidegib, gingerol, curcumin, remetinostat, epigallocatechin-3-gallate, etc. Furthermore, this review specifically addresses the progress in transdermal delivery systems for melanoma and nonmelanoma cancer therapy, emphasizing advances in physical and chemical penetration enhancement and nanocarrier-assisted transdermal systems.

Keywords: Topical anticancer bioactive, Melanoma, Non-melanoma cancer, Chemical composition, Transdermal therapy, Chemotherapy.

Graphical Abstract

[1]
U.S. Department of Health and Human Services. Cancer Statistics., Available from: https://www.cancer.gov/about-cancer/understan-ding/statistics (Accessed on:Aug 12, 2021).
[2]
Davis, D.S.; Robinson, C.; Callender, V.D. Skin cancer in women of color: Epidemiology, pathogenesis and clinical manifestations. Int. J. Womens Dermatol., 2021, 7(2), 127-134.
[http://dx.doi.org/10.1016/j.ijwd.2021.01.017] [PMID: 33937476]
[3]
Harms, P.W.; Harms, K.L.; Moore, P.S.; DeCaprio, J.A.; Nghiem, P.; Wong, M.K.K.; Brownell, I. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat. Rev. Clin. Oncol., 2018, 15(12), 763-776.
[http://dx.doi.org/10.1038/s41571-018-0103-2]
[4]
Zhao, B.; He, Y.Y. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev. Anticancer Ther., 2010, 10(11), 1797-1809.
[http://dx.doi.org/10.1586/era.10.154] [PMID: 21080805]
[5]
Cullen, J.K.; Simmons, J.L.; Parsons, P.G.; Boyle, G.M. Topical treatments for skin cancer. Adv. Drug Deliv. Rev., 2020, 153, 54-64.
[http://dx.doi.org/10.1016/j.addr.2019.11.002] [PMID: 31705912]
[6]
Quazi, S.J.; Aslam, N.; Saleem, H.; Rahman, J.; Khan, S. Surgical margin of excision in basal cell carcinoma: a systematic review of literature. Cureus, 2020, 12(7), e9211.
[http://dx.doi.org/10.7759/cureus.9211] [PMID: 32821563]
[7]
Nolan, G.S.; Wormald, J.C.R.; Kiely, A.L.; Totty, J.P.; Jain, A. Global incidence of incomplete surgical excision in adult patients with non-melanoma skin cancer: study protocol for a systematic review and meta-analysis of observational studies. Syst. Rev., 2020, 9(1), 83.
[http://dx.doi.org/10.1186/s13643-020-01350-5] [PMID: 32303259]
[8]
Adalsteinsson, J.A.; Stoj, V.J.; Algzlan, H.; Swede, H.; Torbeck, R.L.; Ratner, D. Limitations in the literature regarding Mohs surgery and staged excision for melanoma: A critical review of quality and data reporting. J. Am. Acad. Dermatol., 2021, S0190962221007726. [Epub Ahead of Print].
[http://dx.doi.org/10.1016/j.jaad.2021.02.091] [PMID: 33872715]
[9]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[10]
Guy, R.H. Transdermal Drug Delivery. In: Schäfer-Korting, M., Ed Drug Delivery. Handbook of Experimental Pharmacology Springer Berlin Heidelberg: Berlin, Heidelberg; , 2010; 197, pp. 399-410.
[http://dx.doi.org/10.1007/978-3-642-00477-3_13]
[11]
Gross, K.; Kircik, L.; Kricorian, G. 5% 5-Fluorouracil cream for the treatment of small superficial Basal cell carcinoma: efficacy, tolerability, cosmetic outcome, and patient satisfaction. Dermatol. Surg., 2007, 33(4), 433-440.
[http://dx.doi.org/10.1097/00042728-200704000-00008] [PMID: 17430377]
[12]
Burns, C.A.; Brown, M.D. Imiquimod for the treatment of skin cancer. Dermatol. Clin., 2005, 23(1), 151-164.
[http://dx.doi.org/10.1016/j.det.2004.08.007] [PMID: 15620626]
[13]
Schmitz, L.; Gupta, G.; Segert, M.H.; Kost, R.; Sternberg, J.; Gambichler, T.; Stockfleth, E.; Dirschka, T. Diclofenac sodium 3% in hyaluronic acid 2.5% gel significantly diminishes the actinic keratosis area and severity index. Skin Pharmacol. Physiol., 2018, 31(4), 206-211.
[http://dx.doi.org/10.1159/000488248] [PMID: 29791916]
[14]
Izzi, S.; Sorgi, P.; Piemonte, P.; Carbone, A.; Frascione, P. Successfully treated superficial basal cell carcinomas with ingenol mebutate 0.05% gel: Report of twenty cases. Dermatol. Ther., 2016, 29(6), 470-472.
[http://dx.doi.org/10.1111/dth.12399] [PMID: 27550505]
[15]
Haque, T.; Rahman, K.M.; Thurston, D.E.; Hadgraft, J.; Lane, M.E. Topical therapies for skin cancer and actinic keratosis. Eur. J. Pharm. Sci., 2015, 77, 279-289.
[http://dx.doi.org/10.1016/j.ejps.2015.06.013] [PMID: 26091570]
[16]
Souto, E.B.; Fangueiro, J.F.; Fernandes, A.R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M.L.; Severino, P.; Paganelli, M.O.; Chaud, M.V.; Silva, A.M. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon, 2022, 8(2), e08938.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08938] [PMID: 35198788]
[17]
Hsu, T.; Mitragotri, S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 15816-15821.
[http://dx.doi.org/10.1073/pnas.1016152108] [PMID: 21903933]
[18]
Cunningham, T.J.; Tabacchi, M.; Eliane, J.P.; Tuchayi, S.M.; Manivasagam, S.; Mirzaalian, H.; Turkoz, A.; Kopan, R.; Schaffer, A.; Saavedra, A.P.; Wallendorf, M.; Cornelius, L.A.; Demehri, S. Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy. J. Clin. Invest., 2016, 127(1), 106-116.
[http://dx.doi.org/10.1172/JCI89820] [PMID: 27869649]
[19]
Scott, L.J.; Dunn, C.J.; Goa, K.L. Calcipotriol ointment. Am. J. Clin. Dermatol., 2001, 2(2), 95-120.
[http://dx.doi.org/10.2165/00128071-200102020-00008] [PMID: 11705309]
[20]
Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential therapeutic targets of Epigallocatechin Gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules, 2020, 25(14), 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[21]
Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv., 2016, 23(2), 564-578.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[22]
Yamada, M.; Prow, T.W. Physical drug delivery enhancement for aged skin, UV damaged skin and skin cancer: Translation and commercialization. Adv. Drug Deliv. Rev., 2020, 153, 2-17.
[http://dx.doi.org/10.1016/j.addr.2020.04.008] [PMID: 32339593]
[23]
Petrilli, R.; Lopez, R.F.V. Physical methods for topical skin drug delivery: concepts and applications. Braz. J. Pharm. Sci., 2018, 54(spe), 54.
[http://dx.doi.org/10.1590/s2175-97902018000001008]
[24]
Pan, J.; Ruan, W.; Qin, M.; Long, Y.; Wan, T.; Yu, K.; Zhai, Y.; Wu, C.; Xu, Y. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci. Rep., 2018, 8(1), 1117.
[http://dx.doi.org/10.1038/s41598-018-19463-2] [PMID: 29348670]
[25]
Tian, Z.; Cheng, J.; Liu, J.; Zhu, Y. Dissolving graphene/poly(Acrylic Acid) microneedles for potential transdermal drug delivery and photothermal therapy. J. Nanosci. Nanotechnol., 2019, 19, 2453-2459.
[26]
Parhi, R.; Suresh, P.; Mondal, S.; Mahesh Kumar, P. Novel penetration enhancers for skin applications: a review. Curr. Drug Deliv., 2012, 9(2), 219-230.
[http://dx.doi.org/10.2174/156720112800234585] [PMID: 22023208]
[27]
Orthaber, K.; Pristovnik, M.; Skok, K.; Perić, B.; Maver, U. Skin cancer and its treatment: novel treatment approaches with emphasis on nanotechnology. J. Nanomater., 2017, 2017, 2606271.
[http://dx.doi.org/10.1155/2017/2606271]
[28]
Dorrani, M.; Garbuzenko, O.B.; Minko, T.; Michniak, K.B. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J. Control. Release, 2016, 228, 150-158.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.010] [PMID: 26965957]
[29]
Choi, B.B.; Kim, M.S.; Song, K.W.; Kim, U.K.; Hong, J.W.; Lee, H.J.; Kim, G.C. Targeting NEU protein in melanoma cells with non-thermal atmospheric pressure plasma and gold nanoparticles. J. Biomed. Nanotechnol., 2015, 11, 900-905.
[30]
Rao, Y.; Chen, W.; Liang, X.; Huang, Y.; Miao, J.; Liu, L.; Lou, Y.; Zhang, X.; Wang, B.; Tang, R.; Chen, Z.; Lu, X. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: cancer therapy by circumventing the skin barrier. Small, 2015, 11(2), 239-247.
[http://dx.doi.org/10.1002/smll.201400775] [PMID: 24925046]
[31]
Huang, N.; Wang, H.; Zhao, J.; Lui, H.; Korbelik, M.; Zeng, H. Single-wall carbon nanotubes assisted photothermal cancer therapy: Animal study with a murine model of squamous cell carcinoma. Lasers Surg. Med., 2010, 42(9), 798-808.
[http://dx.doi.org/10.1002/lsm.20968]
[32]
Venuganti, V.V.K.; Saraswathy, M.; Dwivedi, C.; Kaushik, R.S.; Perumal, O.P. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale, 2015, 7(9), 3903-3914.
[http://dx.doi.org/10.1039/C4NR05241B] [PMID: 25436837]
[33]
Patel, G.; Yadav, B.K.N. Formulation, characterization and in vitro cytotoxicity of 5-fluorouracil loaded polymeric electrospun nanofibers for the treatment of skin cancer. Recent Pat. Nanotechnol., 2019, 13(2), 114-128.
[http://dx.doi.org/10.2174/1872210513666190314095643] [PMID: 30868972]
[34]
Nazir, S.; Umar Aslam Khan, M.; Shamsan Al-Arjan, W.; Izwan Abd Razak, S.; Javed, A.; Rafiq Abdul Kadir, M. Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arab. J. Chem., 2021, 14(5), 103120.
[http://dx.doi.org/10.1016/j.arabjc.2021.103120]
[35]
Huber, L.A.; Pereira, T.A.; Ramos, D.N.; Rezende, L.C.D.; Emery, F.S.; Sobral, L.M.; Leopoldino, A.M.; Lopez, R.F.V. Topical skin cancer therapy using doxorubicin-loaded cationic lipid nanoparticles and iontophoresis. J. Biomed. Nanotechnol., 2015, 11, 1975-1988.
[36]
Vannucci, L.; Falvo, E.; Fornara, M.; Micco, P.D.; Benada, O.; Krizan, J.; Svoboda, J.; Hulikova, C.K.; Morea, V.; Boffi, A.; Ceci, P. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles. Int. J. Nanomed., 2012, 7, 1489-509.
[37]
Soni, K.; Mujtaba, A.; Akhter, M.H.; Zafar, A.; Kohli, K. Optimisation of ethosomal nanogel for topical nano-CUR and sulphoraphane delivery in effective skin cancer therapy. J. Microencapsul., 2020, 37(2), 91-108.
[http://dx.doi.org/10.1080/02652048.2019.1701114] [PMID: 31810417]
[38]
Hao, Y.; Chen, Y.; He, X.; Yang, F.; Han, R.; Yang, C.; Li, W.; Qian, Z. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact. Mater., 2020, 5(3), 542-552.
[http://dx.doi.org/10.1016/j.bioactmat.2020.04.002] [PMID: 32346657]
[39]
Naik, A.; Kalia, Y.N.; Guy, R.H. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm. Sci. Technol. Today, 2000, 3(9), 318-326.
[http://dx.doi.org/10.1016/S1461-5347(00)00295-9] [PMID: 10996573]
[40]
Driscoll, P. Gray’s Anatomy, 39th Edition. Emerg. Med. J., 2006, 23, 492-492.
[41]
De Rigal, J.; Escoffier, C.; Querleux, B.; Faivre, B.; Agache, P.; Lévêque, J.L. Assessment of aging of the human skin by in vivo ultrasonic imaging. J. Invest. Dermatol., 1989, 93(5), 621-625.
[http://dx.doi.org/10.1111/1523-1747.ep12319741] [PMID: 2677155]
[42]
Petrofsky, J.S.; Suh, H.J.; Gunda, S.; Prowse, M.; Batt, J. Interrelationships between body fat and skin blood flow and the current required for electrical stimulation of human muscle. Med. Eng. Phys., 2008, 30(7), 931-936.
[http://dx.doi.org/10.1016/j.medengphy.2007.12.007] [PMID: 18243763]
[43]
Y, L.; K, H. Skin thickness of Korean adults. Surg. Radiol. Anat., 2002, 24(3-4), 183-189.
[http://dx.doi.org/10.1007/s00276-002-0034-5] [PMID: 12375070]
[44]
Sahle, F.F.; Gebre-Mariam, T.; Dobner, B.; Wohlrab, J.; Neubert, R.H.H. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol. Physiol., 2015, 28(1), 42-55.
[http://dx.doi.org/10.1159/000360009] [PMID: 25196193]
[45]
Yousef, H.; Alhajj, M.; Sharma, S. Anatomy, skin (Integument), Epidermis; StatPearls Publishing: Treasure Island, FL, 2022.
[46]
Menon, G.K. New insights into skin structure: scratching the surface. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S3-S17.
[http://dx.doi.org/10.1016/S0169-409X(02)00121-7] [PMID: 12460712]
[47]
Brandner, J.M.; Zorn, K.M.; Yoshida, T.; Moll, I.; Beck, L.A.; De Benedetto, A. Epidermal tight junctions in health and disease. Tissue Barriers, 2015, 3(1-2), e974451.
[http://dx.doi.org/10.4161/21688370.2014.974451] [PMID: 25838981]
[48]
Alkilani, A.; McCrudden, M.T.; Donnelly, R. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 2015, 7(4), 438-470.
[http://dx.doi.org/10.3390/pharmaceutics7040438] [PMID: 26506371]
[49]
Lai-Cheong, J.E.; McGrath, J.A. Structure and function of skin, hair and nails. Medicine, 2013, 41(6), 317-320.
[http://dx.doi.org/10.1016/j.mpmed.2013.04.017]
[50]
Vogt, A.; Wischke, C.; Neffe, A.T.; Ma, N.; Alexiev, U.; Lendlein, A. Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges? J. Control. Release, 2016, 242, 3-15.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.027] [PMID: 27449743]
[51]
Venus, M.; Waterman, J.; McNab, I. Basic physiology of the skin. Surgery, 2011, 29(10), 471-474.
[http://dx.doi.org/10.1016/j.mpsur.2011.06.010]
[52]
Yu, Y.Q.; Yang, X.; Wu, X.F.; Fan, Y.B. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol., 2021, 9, 646554.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[53]
Bos, J.D.; Meinardi, M.M.H.M. The 500 dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol., 2000, 9(3), 165-169.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x] [PMID: 10839713]
[54]
Salvioni, L.; Morelli, L.; Ochoa, E.; Labra, M.; Fiandra, L.; Palugan, L.; Prosperi, D.; Colombo, M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci., 2021, 293, 102437.
[http://dx.doi.org/10.1016/j.cis.2021.102437] [PMID: 34023566]
[55]
Jain, S.K.; Verma, A.; Jain, A.; Hurkat, P. Transfollicular drug delivery: current perspectives. Research and Reports. In: Transdermal Drug Delivery RRTD, 2016, p. 1-17.
[56]
Subedi, R.K.; Oh, S.Y.; Chun, M.K.; Choi, H.K. Recent advances in transdermal drug delivery. Arch. Pharm. Res., 2010, 33(3), 339-351.
[http://dx.doi.org/10.1007/s12272-010-0301-7] [PMID: 20361297]
[57]
Neupane, R.; Boddu, S.H.S.; Abou, D.M.S.; Bachu, R.D.; Terrero, D.; Babu, R.J.; Tiwari, A.K. Transdermal delivery of chemotherapeutics: strategies, requirements, and opportunities. Pharmaceutics, 2021, 13(7), 960.
[http://dx.doi.org/10.3390/pharmaceutics13070960] [PMID: 34206728]
[58]
Flynn, G.L.; Stewart, B. Percutaneous drug penetration: Choosing candidates for transdermal development. Drug Dev. Res., 1988, 13(2-3), 169-185.
[http://dx.doi.org/10.1002/ddr.430130209]
[59]
Kilgour, J.M.; Shah, A.; Urman, N.M.; Eichstadt, S.; Do, H.N.; Bailey, I.; Mirza, A.; Li, S.; Oro, A.E.; Aasi, S.Z.; Sarin, K.Y.; Phase, I.I. Phase II open-label, single-arm trial to investigate the efficacy and safety of topical remetinostat gel in patients with basal cell carcinoma. Clin. Cancer Res., 2021, 27(17), 4717-4725.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0560] [PMID: 34362809]
[60]
Sohn, G.K.; Kwon, G.P.; Bailey, H.I.; Mirza, A.; Sarin, K.; Oro, A.; Tang, J.Y. Topical itraconazole for the treatment of basal cell carcinoma in patients with basal cell nevus syndrome or high-frequency basal cell carcinomas. JAMA Dermatol., 2019, 155(9), 1078-1080.
[http://dx.doi.org/10.1001/jamadermatol.2019.1541] [PMID: 31339515]
[61]
Gilbert, S.M.; Gidley Baird, A.; Glazer, S.; Barden, J.A.; Glazer, A.; Teh, L.C.; King, J. A phase I clinical trial demonstrates that nfP2X 7 -targeted antibodies provide a novel, safe and tolerable topical therapy for basal cell carcinoma. Br. J. Dermatol., 2017, 177(1), 117-124.
[http://dx.doi.org/10.1111/bjd.15364] [PMID: 28150889]
[62]
Kessels, J.; Voeten, L.; Nelemans, P.; Cleutjens, J.; Hillen, L.M.; Mosterd, K.; Kelleners-Smeets, N.W.J. Topical sinecatechins, 10%, Ointment for superficial basal cell carcinoma. JAMA Dermatol., 2017, 153(10), 1061-1063.
[http://dx.doi.org/10.1001/jamadermatol.2017.2529] [PMID: 28793140]
[63]
Brancaccio, G.; Pea, F.; Moscarella, E.; Argenziano, G. Sonidegib for the treatment of advanced basal cell carcinoma. Front. Oncol., 2020, 10, 582866.
[http://dx.doi.org/10.3389/fonc.2020.582866] [PMID: 33194718]
[64]
Park, K.K.; Chun, K.S.; Lee, J.M.; Lee, S.S.; Surh, Y.J. Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett., 1998, 129(2), 139-144.
[http://dx.doi.org/10.1016/S0304-3835(98)00081-0] [PMID: 9719454]
[65]
Zhao, G.; Han, X.; Zheng, S.; Li, Z.; Sha, Y.; Ni, J.; Sun, Z.; Qiao, S.; Song, Z. Curcumin induces autophagy, inhibits proliferation and invasion by downregulating AKT/mTOR signaling pathway in human melanoma cells. Oncol. Rep., 2016, 35(2), 1065-1074.
[http://dx.doi.org/10.3892/or.2015.4413] [PMID: 26573768]
[66]
Lu, Y.P.; Lou, Y.R.; Xie, J.G.; Peng, Q.Y.; Liao, J.; Yang, C.S.; Huang, M.T.; Conney, A.H. Topical applications of caffeine or (−)-Epigallocatechin Gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12455-12460.
[http://dx.doi.org/10.1073/pnas.182429899] [PMID: 12205293]
[67]
Huyke, C.; Reuter, J.; Rödig, M.; Kersten, A.; Laszczyk, M.; Scheffler, A.; Nashan, D.; Schempp, C. Treatment of actinic keratoses with a novel betulin-based oleogel. A prospective, randomized, comparative pilot study. J. Dtsch. Dermatol. Ges., 2009, 7(2), 128-133.
[http://dx.doi.org/10.1111/j.1610-0387.2008.06865.x] [PMID: 18808378]
[68]
Zhang, D.; Wang, W.; Hou, T.; Pang, Y.; Wang, C.; Wu, S.; Wang, Q. New delivery route of gambogic acid via skin for topical targeted therapy of cutaneous melanoma and reduction of systemic toxicity. J. Pharm. Sci., 2021, 110(5), 2167-2176.
[http://dx.doi.org/10.1016/j.xphs.2020.12.024] [PMID: 33373608]
[69]
Stockfleth, E.; Meyer, T. Sinecatechins (Polyphenon E) ointment for treatment of external genital warts and possible future indications. Expert Opin. Biol. Ther., 2014, 14(7), 1033-1043.
[http://dx.doi.org/10.1517/14712598.2014.913564] [PMID: 24766274]
[70]
Lee, I.T.; Lin, C.C.; Lee, C.Y.; Hsieh, P.W.; Yang, C.M. Protective effects of (−)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J. Nutr. Biochem., 2013, 24(1), 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.009] [PMID: 22819551]
[71]
Bharadwaj, R.; Haloi, J.; Medhi, S. Topical delivery of methanolic root extract of Annona reticulata against skin cancer. S. Afr. J. Bot., 2019, 124, 484-493.
[http://dx.doi.org/10.1016/j.sajb.2019.06.006]
[72]
Mokoala, K.M.G.; Lawal, I.O.; Vorster, M.; Sathekge, M.M. Radionuclide Therapy of Skin Cancers and Bowen’s Disease Using A Specially Designed Rhenium Cream. In: Reference Module in Biomedical Sciences; Elsevier, 2021; p. B9780128229606000000.
[73]
Parhi, R.; Mandru, A. Enhancement of skin permeability with thermal ablation techniques: concept to commercial products. Drug Deliv. Transl. Res., 2021, 11(3), 817-841.
[http://dx.doi.org/10.1007/s13346-020-00823-3] [PMID: 32696221]
[74]
Halder, J.; Gupta, S.; Kumari, R.; Gupta, G.D.; Rai, V.K. Microneedle array: applications, recent advances, and clinical pertinence in transdermal drug delivery. J. Pharm. Innov., 2021, 16(3), 558-565.
[http://dx.doi.org/10.1007/s12247-020-09460-2] [PMID: 32837607]
[75]
Ruan, W.; Zhai, Y.; Yu, K.; Wu, C.; Xu, Y. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment. Int. J. Pharm., 2018, 553(1-2), 298-309.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.043] [PMID: 30347273]
[76]
Cheng, Z.; Lin, H.; Wang, Z.; Yang, X.; Zhang, M.; Liu, X.; Wang, B.; Wu, Z.; Chen, D. Preparation and characterization of dissolving hyaluronic acid composite microneedles loaded micelles for delivery of curcumin. Drug Deliv. Transl. Res., 2020, 10(5), 1520-1530.
[http://dx.doi.org/10.1007/s13346-020-00735-2] [PMID: 32100266]
[77]
Ahmed, K.S.; Shan, X.; Mao, J.; Qiu, L.; Chen, J. Derma roller® microneedles-mediated transdermal delivery of doxorubicin and celecoxib co-loaded liposomes for enhancing the anticancer effect. Mater. Sci. Eng. C, 2019, 99, 1448-1458.
[http://dx.doi.org/10.1016/j.msec.2019.02.095] [PMID: 30889679]
[78]
Vanbever, R.; Preat, V. Skin electroporation for transdermal and topical drug delivery. In: Transdermal Drug Delivery Systems; Guy, R.; Hadgraft, J., Eds.; CRC Press: Florida, 2002.
[http://dx.doi.org/10.1201/9780203909683.ch6]
[79]
Bhatia, S.; Longino, N.V.; Miller, N.J.; Kulikauskas, R.; Iyer, J.G.; Ibrani, D.; Blom, A.; Byrd, D.R.; Parvathaneni, U.; Twitty, C.G.; Campbell, J.S.; Le, M.H.; Gargosky, S.; Pierce, R.H.; Heller, R.; Daud, A.I.; Nghiem, P. Intratumoral delivery of plasmid il12 via electroporation leads to regression of injected and noninjected tumors in merkel cell carcinoma. Clin. Cancer Res., 2020, 26(3), 598-607.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0972] [PMID: 31582519]
[80]
Feril, L.B., Jr; Yamaguchi, K.; Ikeda-Dantsuji, Y.; Furusawa, Y.; Tabuchi, Y.; Takasaki, I.; Ogawa, R.; Cui, Z.G.; Tachibana, K. Low-intensity ultrasound inhibits melanoma cell proliferation in vitro and tumor growth in vivo. J. Med. Ultrason., 2021, 48(4), 451-461.
[http://dx.doi.org/10.1007/s10396-021-01131-0] [PMID: 34453238]
[81]
Yang, D.; Zhang, Q.; Zhang, Z.; Yuan, Z.; Xu, G.; Wu, J.; Zhang, M.; Guo, X.; Tu, J.; Zhang, D. The influence of ultrasound-induced microbubble cavitation on the viability, migration and cell cycle distribution of melanoma cells. Appl. Acoust., 2021, 179, 108056.
[http://dx.doi.org/10.1016/j.apacoust.2021.108056]
[82]
Khorsandi, K.; Hosseinzadeh, R.; Chamani, E. Molecular interaction and cellular studies on combination photodynamic therapy with rutoside for melanoma A375 cancer cells: an in vitro study. Cancer Cell Int., 2020, 20(1), 525.
[http://dx.doi.org/10.1186/s12935-020-01616-x] [PMID: 33132760]
[83]
Pogue, B.W.; Elliott, J.T.; Kanick, S.C.; Davis, S.C.; Samkoe, K.S.; Maytin, E.V.; Pereira, S.P.; Hasan, T. Revisiting photodynamic therapy dosimetry: reductionist & surrogate approaches to facilitate clinical success. Phys. Med. Biol., 2016, 61(7), R57-R89.
[http://dx.doi.org/10.1088/0031-9155/61/7/R57] [PMID: 26961864]
[84]
Garcia, M.R.; Requena, M.B.; Pratavieira, S.; Moriyama, L.T.; Becker, M.; Bagnato, V.S.; Kurachi, C.; Magalhães, D.V. Development of a system to treat and online monitor photodynamic therapy of skin cancer using PpIX near-infrared fluorescence. Photodiagn. Photodyn. Ther., 2020, 30, 101680.
[http://dx.doi.org/10.1016/j.pdpdt.2020.101680] [PMID: 32006649]
[85]
Reis, T.A.; Jaculi, A.E.; Ramos, K.L.V.; Souza, P.E.N.; Veiga, S.F.H.; Joanitti, G.A.; Azevedo, R.B.; Gratieri, T.; Cunha, F.M.; Gelfuso, G.M. Combination of cyclodextrin complexation and iontophoresis as a promising strategy for the cutaneous delivery of aluminum-chloride phthalocyanine in photodynamic therapy. Eur. J. Pharm. Sci., 2019, 139, 105056.
[http://dx.doi.org/10.1016/j.ejps.2019.105056] [PMID: 31446076]
[86]
Karande, P.; Mitragotri, S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta Biomembr., 2009, 1788(11), 2362-2373.
[http://dx.doi.org/10.1016/j.bbamem.2009.08.015] [PMID: 19733150]
[87]
Angamuthu, M.; Ainampudi, S. Role of physical, chemical percutaneous penetration enhancement methods: A concise review. J. Nanomed. Biotherapeutic Discov., 2017, 07.
[88]
Dante, M.C.L.; Borgheti, C.L.N.; Fantini, M.C.A.; Praça, F.S.G.; Medina, W.S.G.; Pierre, M.B.R.; Lara, M.G. Liquid Crystalline systems based on glyceryl monooleate and penetration enhancers for skin delivery of celecoxib: characterization, in vitro drug release, and in vivo studies. J. Pharm. Sci., 2018, 107(3), 870-878.
[http://dx.doi.org/10.1016/j.xphs.2017.10.039] [PMID: 29108729]
[89]
Tampucci, S.; Guazzelli, L.; Burgalassi, S.; Carpi, S.; Chetoni, P.; Mezzetta, A.; Nieri, P.; Polini, B.; Pomelli, C.S.; Terreni, E.; Monti, D. pH-Responsive nanostructures based on surface active fatty acid-protic ionic liquids for imiquimod delivery in skin cancer topical therapy. Pharmaceutics, 2020, 12(11), 1078.
[http://dx.doi.org/10.3390/pharmaceutics12111078] [PMID: 33187215]
[90]
Nair, A.; Nair, S.C.; Banerji, A.; Biswas, R.; Mony, U. Development and evaluation of plumbagin loaded chitin hydrogel for the treatment of skin cancer. J. Drug Deliv. Sci. Technol., 2021, 66, 102804.
[http://dx.doi.org/10.1016/j.jddst.2021.102804]
[91]
Lalotra, A.S.; Singh, V.; Khurana, B.; Agrawal, S.; Shrestha, S.; Arora, D. A comprehensive review on nanotechnology-based innovations in topical drug delivery for the treatment of skin cancer. Curr. Pharm. Des., 2020, 26(44), 5720-5731.
[http://dx.doi.org/10.2174/1381612826666200819202821] [PMID: 32814523]
[92]
Jain, R.; Sarode, I.; Singhvi, G.; Dubey, S.K. Nanocarrier based topical drug delivery- A promising strategy for treatment of skin cancer. Curr. Pharm. Des., 2020, 26(36), 4615-4623.
[http://dx.doi.org/10.2174/1381612826666200826140448] [PMID: 32851954]
[93]
Nasir, A.; Khan, A.; Li, J.; Naeem, M.; Khalil, A.A.K.; Khan, K.; Qasim, M. Nanotechnology, a tool for diagnostics and treatment of cancer. Curr. Top. Med. Chem., 2021, 21(15), 1360-1376.
[http://dx.doi.org/10.2174/1568026621666210701144124] [PMID: 34218784]
[94]
Safari, J.; Zarnegar, Z. Advanced drug delivery systems: Nanotechnology of health design A review. J. Saudi Chem. Soc., 2014, 18(2), 85-99.
[http://dx.doi.org/10.1016/j.jscs.2012.12.009]
[95]
Gulla, S.; Reddy, V.C.; Araveti, P.B.; Lomada, D.; Srivastava, A.; Reddy, M.C.; Reddy, K.R. Synthesis of Titanium Dioxide Nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. J. Mol. Struct., 2022, 1249, 131556.
[http://dx.doi.org/10.1016/j.molstruc.2021.131556]
[96]
Yadollahpour, A. Nanotechnology in targeted drug delivery in medical theranostics: from lab to bed. Curr. Top. Med. Chem., 2020, 20(30), 2735-2736.
[http://dx.doi.org/10.2174/156802662030201110091740] [PMID: 33292118]
[97]
Abdel, F.D.A.; Kamel, R.; Fadel, M. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: In-vitro/in-vivo studies and histopathological examination. Sci. Rep., 2020, 10(1), 10435.
[http://dx.doi.org/10.1038/s41598-020-67349-z] [PMID: 32591621]
[98]
Lio, D.C.S.; Liu, C.; Oo, M.M.S.; Wiraja, C.; Teo, M.H.Y.; Zheng, M.; Chew, S.W.T.; Wang, X.; Xu, C. Transdermal delivery of small interfering RNAs with topically applied mesoporous silica nanoparticles for facile skin cancer treatment. Nanoscale, 2019, 11(36), 17041-17051.
[http://dx.doi.org/10.1039/C9NR06303J] [PMID: 31506653]
[99]
Lai, X.; Liu, X.L.; Pan, H.; Zhu, M.H.; Long, M.; Yuan, Y.; Zhang, Z.; Dong, X.; Lu, Q.; Sun, P.; Lovell, J.F.; Chen, H.Z.; Fang, C. Light‐triggered efficient sequential drug delivery of biomimetic nanosystem for multimodal chemo‐, antiangiogenic, and anti‐mdsc therapy in melanoma. Adv. Mater., 2022, 34(10), 2106682.
[http://dx.doi.org/10.1002/adma.202106682] [PMID: 34989039]
[100]
Wei, W.; Zarghami, N.; Abasi, M.; Ertas, Y.N.; Pilehvar, Y. Implantable magnetic nanofibers with ON-OFF switchable release of curcumin for possible local hyperthermic chemotherapy of melanoma. J. Biomed. Mater. Res. A, 2022, 110(4), 851-860.
[http://dx.doi.org/10.1002/jbm.a.37333] [PMID: 34786813]
[101]
Preet, S.; Pandey, S.K.; Kaur, K.; Chauhan, S.; Saini, A. Gold nanoparticles assisted co-delivery of nisin and doxorubicin against murine skin cancer. J. Drug Deliv. Sci. Technol., 2019, 53, 101147.
[http://dx.doi.org/10.1016/j.jddst.2019.101147]
[102]
Yoong, W.C.; Loke, C.F.; Juan, J.C.; Yusoff, K.; Mohtarrudin, N.; Tatsuma, T.; Xu, Y.; Lim, T.H. Alginate-enabled green synthesis of S/Ag1.93S nanoparticles, their photothermal property and in-vitro assessment of their anti-skin-cancer effects augmented by a NIR laser. Int. J. Biol. Macromol., 2022, 201, 516-527.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.062] [PMID: 35041888]
[103]
Tham, H.P.; Xu, K.; Lim, W.Q.; Chen, H.; Zheng, M.; Thng, T.G.S.; Venkatraman, S.S.; Xu, C.; Zhao, Y. Microneedle-assisted topical delivery of photodynamically active mesoporous formulation for combination therapy of deep-seated melanoma. ACS Nano, 2018, 12(12), 11936-11948.
[http://dx.doi.org/10.1021/acsnano.8b03007] [PMID: 30444343]
[104]
Song, M.; Xia, W.; Tao, Z.; Zhu, B.; Zhang, W.; Liu, C.; Chen, S. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy. Drug Deliv., 2021, 28(1), 594-606.
[http://dx.doi.org/10.1080/10717544.2021.1898703] [PMID: 33729072]
[105]
Md, S.; Alhakamy, N.A.; Neamatallah, T.; Alshehri, S.; Mujtaba, M.A.; Riadi, Y.; Radhakrishnan, A.K.; Khalilullah, H.; Gupta, M.; Akhter, M.H. Development, characterization, and evaluation of α-mangostin-loaded polymeric nanoparticle gel for topical therapy in skin cancer. Gels, 2021, 7(4), 230.
[http://dx.doi.org/10.3390/gels7040230] [PMID: 34842729]
[106]
Capanema, N.S.V.; Carvalho, I.C.; Mansur, A.A.P.; Carvalho, S.M.; Lage, A.P.; Mansur, H.S. Hybrid hydrogel composed of carboxymethylcellulose-silver nanoparticles-doxorubicin for anticancer and antibacterial therapies against melanoma skin cancer cells. ACS Appl. Nano Mater., 2019, 2(11), 7393-7408.
[http://dx.doi.org/10.1021/acsanm.9b01924]
[107]
Safwat, M.A.; Soliman, G.M.; Sayed, D.; Attia, M.A. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol. Pharm., 2018, 15(6), 2194-2205.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00047] [PMID: 29701979]
[108]
Akhter, K.F.; Mumin, M.A.; Lui, E.M.K.; Charpentier, P.A. Transdermal nanotherapeutics: Panax quinquefolium polysaccharide nanoparticles attenuate UVB-induced skin cancer. Int. J. Biol. Macromol., 2021, 181, 221-231.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.122] [PMID: 33774070]
[109]
Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. Int. J. Pharm., 2020, 587, 119705.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119705] [PMID: 32738456]
[110]
Rengifo, A.F.C.; Stefanes, N.M.; Toigo, J.; Mendes, C.; Argenta, D.F.; Dotto, M.E.R.; Santos da Silva, M.C.; Nunes, R.J.; Caon, T.; Parize, A.L.; Minatti, E. PEO-chitosan nanofibers containing carboxymethyl-hexanoyl chitosan/dodecyl sulfate nanoparticles loaded with pyrazoline for skin cancer treatment. Eur. Polym. J., 2019, 119, 335-343.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.08.001]
[111]
Marwah, M.; Perrie, Y.; Badhan, R.K.S.; Lowry, D. Intracellular uptake of EGCG-loaded deformable controlled release liposomes for skin cancer. J. Liposome Res., 2020, 30(2), 136-149.
[http://dx.doi.org/10.1080/08982104.2019.1604746] [PMID: 31010367]
[112]
Do Reis, S.R.R.; Helal, N.E.; Da Silva De Barros, A.O.; Pinto, S.R.; Portilho, F.L.; De Oliveira, S.L.B.; Alencar, L.M.R.; Dahoumane, S.A.; Alexis, F.; Ricci, J.E.; Santos, O.R. Dual encapsulated dacarbazine and zinc phthalocyanine polymeric nanoparticle for photodynamic therapy of melanoma. Pharm. Res., 2021, 38(2), 335-346.
[http://dx.doi.org/10.1007/s11095-021-02999-w] [PMID: 33604784]
[113]
Priya, P.; Mohan Raj, R.; Vasanthakumar, V.; Raj, V. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arab. J. Chem., 2020, 13(1), 694-708.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.010]