GC-MS Screening of Adiantum lunulatum Burm. F Phytochemicals and Interaction with COX-2, TRPV1, and TRPC3 Proteins-bioinformatics Approach

Article ID: e010922208408 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: The Adiantum lunulatum is a medicinally important pteridophyte used to treat inflammatory related diseases. The phytochemical profile of this plant is poorly investigated.

Objective: Here, we screened the nonpolar phytochemicals and their interactions with cyclooxygenase 2 (COX-2) enzyme (inflammation), transient receptor potential cation channel V member 1 (TRPV1), and transient receptor potential channel 3 (TRPC3) receptors (pain).

Methods: The identification and molecular docking analysis used gas chromatography-mass spectrometry (GC-MS), AutoDock Vina, and BIOVIA discovery studio visualizer 2020. The online computer tools Swiss ADME and admetSAR predicted these compounds bioavailability and toxicity.

Results: GC-MS analysis detected the 12 different compounds. Five compounds with high similarity to mass spectrum were selected for molecular docking. This includes 2, 4 di-tert-butylphenol; n-hexadecanoic acid (palmitic acid); 2 pentadecanone, 6, 10, 14-trimethyl-; Quinoline 1, 2 dihydro 2, 2, 4 trimethyl and 3, 7, 11, 15-tetramethyl hexadec 2-en-1-yl acetate. These compounds showed interaction with the binding pocket of COX-2, TRPV1, and TRPC3 proteins. This interaction with enzyme and receptor activity causes a reduction in inflammatory pathogenesis.

Conclusion: This study enhances our fundamental knowledge of biologically important volatile phytochemicals in Adiantum lunulatum dichloromethane extract and its possible effects in reducing inflammatory responses.

Keywords: Adiantum, COX-2, inflammation, pain, phytochemicals, docking, prediction, palmitic acid

Graphical Abstract

[1]
Srivastava, T.N.; Rajasekharan, S.; Badola, D.P.; Shah, D.C. An index of the available medicinal plants, used in Indian system of medicine from jammu and Kashmir state. Anc. Sci. Life, 1986, 6(1), 49-63.
[PMID: 22557549]
[2]
Jain, A.; Katewa, S.S.; Galav, P.K.; Sharma, P. Medicinal plant diversity of sitamata wildlife sanctuary, Rajasthan, India. J. Ethnopharmacol., 2005, 102(2), 143-157.
[http://dx.doi.org/10.1016/j.jep.2005.05.047] [PMID: 16154303]
[3]
Kamble, M.Y.; Mane, S.S.; Murugan, C.; Jaisankar, I. Diversity of ethnomedicinal plants of tropical islands - with special reference to Andaman and Nicobar islands.Biodiversity and Climate Change Adaptation in Tropical Islands; Sivaperuman, C.; Velmurugan, A.; Singh, A.K; Jaisankar, I., Ed.; Elsevier. Inc: Academic Press, 2018, pp. 55-103.
[http://dx.doi.org/10.1016/B978-0-12-813064-3.00003-X]
[4]
Zheng, X.; Xing, F. Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. J. Ethnopharmacol., 2009, 124(2), 197-210.
[http://dx.doi.org/10.1016/j.jep.2009.04.042] [PMID: 19409476]
[5]
Zheng, X.; Wei, J.; Sun, W.; Li, R.; Liu, S.; Dai, H. Ethnobotanical study on medicinal plants around Limu Mountains of Hainan Island, China. J. Ethnopharmacol., 2013, 148(3), 964-974.
[http://dx.doi.org/10.1016/j.jep.2013.05.051] [PMID: 23751393]
[6]
Singh, H.; Husain, T.; Agnihotri, P.; Pande, P.C.; Khatoon, S. An ethnobotanical study of medicinal plants used in sacred groves of Kumaon Himalaya, Uttarakhand, India. J. Ethnopharmacol., 2014, 154(1), 98-108.
[http://dx.doi.org/10.1016/j.jep.2014.03.026] [PMID: 24685588]
[7]
Stefanucci, A.; Zengin, G.; Locatelli, M.; Macedonio, G.; Wang, C.K.; Novellino, E.; Mahomoodally, M.F.; Mollica, A. Impact of different geographical locations on varying profile of bioactives and associated functionalities of caper (Capparis spinosa L.). Food Chem. Toxicol., 2018, 118, 181-189.
[http://dx.doi.org/10.1016/j.fct.2018.05.003] [PMID: 29751072]
[8]
Seca, A.M.L.; Pinto, D.C.G.A. Biological potential and medical use of secondary metabolites. Medicines, 2019, 6(2), 66.
[http://dx.doi.org/10.3390/medicines6020066] [PMID: 31212776]
[9]
Mollica, A.; Scioli, G.; Della, V. A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Castillo-López, R.; Ak, G.; Zengin, G.; Pieretti, S.; Stefanucci, A. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants, 2021, 10(11), 1704.
[http://dx.doi.org/10.3390/antiox10111704] [PMID: 34829574]
[10]
Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; Miller, A.H.; Mantovani, A.; Weyand, C.M.; Barzilai, N.; Goronzy, J.J.; Rando, T.A.; Effros, R.B.; Lucia, A.; Kleinstreuer, N.; Slavich, G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med., 2019, 25(12), 1822-1832.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[11]
Chen, C. COX-2's new role in inflammation. Nat. Chem. Biol., 2010, 6(6), 401-402.
[http://dx.doi.org/10.1038/nchembio.375] [PMID: 20479749]
[12]
Simon, L.S. Role and regulation of cyclooxygenase-2 during inflammation. Am. J. Med., 1999, 106(5), 37S-42S.
[http://dx.doi.org/10.1016/S0002-9343(99)00115-1] [PMID: 10390126]
[13]
Takahashi, K.; Araki, K.; Miyamoto, H.; Shirakawa, R.; Yoshida, T.; Wakamori, M. Capsaicin and proton differently modulate activation kinetics of mouse transient receptor potential vanilloid-1 channel induced by depolarization. Front. Pharmacol., 2021, 12672157
[http://dx.doi.org/10.3389/fphar.2021.672157] [PMID: 34093200]
[14]
Li, T.; Wang, G.; Hui, V.C.C.; Saad, D.; de Sousa Valente, J.; La Montanara, P.; Nagy, I. TRPV1 feed-forward sensitization depends on COX2 upregulation in primary sensory neurons. Sci. Rep., 2021, 11(1), 1-11.
[PMID: 33414495]
[15]
Fan, C.; Choi, W.; Sun, W.; Du, J.; Lü, W. Structure of the human lipid-gated cation channel TRPC3. eLife, 2018, 7e36852
[http://dx.doi.org/10.7554/eLife.36852] [PMID: 29726814]
[16]
Harada, M.; Luo, X.; Qi, X.Y.; Tadevosyan, A.; Maguy, A.; Ordog, B.; Ledoux, J.; Kato, T.; Naud, P.; Voigt, N.; Shi, Y.; Kamiya, K.; Murohara, T.; Kodama, I.; Tardif, J.C.; Schotten, U.; Van Wagoner, D.R.; Dobrev, D.; Nattel, S. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation, 2012, 126(17), 2051-2064.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.121830] [PMID: 22992321]
[17]
Oda, K.; Umemura, M.; Nakakaji, R.; Tanaka, R.; Sato, I.; Nagasako, A.; Oyamada, C.; Baljinnyam, E.; Katsumata, M.; Xie, L.H.; Narikawa, M.; Yamaguchi, Y.; Akimoto, T.; Ohtake, M.; Fujita, T.; Yokoyama, U.; Iwatsubo, K.; Aihara, M.; Ishikawa, Y. Transient receptor potential cation 3 channel regulates melanoma proliferation and migration. J. Physiol. Sci., 2017, 67(4), 497-505.
[http://dx.doi.org/10.1007/s12576-016-0480-1] [PMID: 27613608]
[18]
Yang, S.L.; Cao, Q.; Zhou, K.C.; Feng, Y.J.; Wang, Y.Z. Transient receptor potential channel C3 contributes to the progression of human ovarian cancer. Oncogene, 2009, 28(10), 1320-1328.
[http://dx.doi.org/10.1038/onc.2008.475] [PMID: 19151765]
[19]
Alkhani, H.; Ase, A.R.; Grant, R.; O’Donnell, D.; Groschner, K.; Séguéla, P. Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol. Pain,, 2014, 10(1) 1744-8069-10-43.
[http://dx.doi.org/10.1186/1744-8069-10-43] [PMID: 24965271]
[20]
Mahomoodally, M.F.; Mollica, A.; Stefanucci, A. Zakariyyah, Aumeeruddy, M.; Poorneeka, R.; Zengin, G. Volatile components, pharmacological profile, and computational studies of essential oil from Aegle marmelos (Bael) leaves: A functional approach. Ind. Crops Prod., 2018, 126, 13-21.
[http://dx.doi.org/10.1016/j.indcrop.2018.09.054]
[21]
Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat. Protoc., 2006, 1(1), 387-396.
[http://dx.doi.org/10.1038/nprot.2006.59] [PMID: 17406261]
[22]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[23]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[24]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[25]
Lucido, M.J.; Orlando, B.J.; Vecchio, A.J.; Malkowski, M.G. Crystal structure of aspirin-acetylated human cyclooxygenase-2: Insight into the formation of products with reversed stereochemistry. Biochemistry, 2016, 55(8), 1226-1238.
[http://dx.doi.org/10.1021/acs.biochem.5b01378] [PMID: 26859324]
[26]
Kwon, D.H.; Zhang, F.; Suo, Y.; Bouvette, J.; Borgnia, M.J.; Lee, S.Y. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol., 2021, 28(7), 554-563.
[http://dx.doi.org/10.1038/s41594-021-00616-3] [PMID: 34239123]
[27]
Tang, Q.; Guo, W.; Zheng, L.; Wu, J.X.; Liu, M.; Zhou, X.; Zhang, X.; Chen, L. Structure of the receptor-activated human TRPC6 and TRPC3 ion channels. Cell Res., 2018, 28(7), 746-755.
[http://dx.doi.org/10.1038/s41422-018-0038-2] [PMID: 29700422]
[28]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[29]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[30]
Vennekens, R.; Vriens, J.; Nilius, B. Herbal compounds and toxins modulating TRP channels. Curr. Neuropharmacol., 2008, 6(1), 79-96.
[http://dx.doi.org/10.2174/157015908783769644] [PMID: 19305789]
[31]
Socała, K.; Nieoczym, D.; Pieróg, M.; Wlaź, P. α-Spinasterol, a TRPV1 receptor antagonist, elevates the seizure threshold in three acute seizure tests in mice. J. Neural Transm., 2015, 122(9), 1239-1247.
[http://dx.doi.org/10.1007/s00702-015-1391-7] [PMID: 25764210]
[32]
Zhao, F.; Wang, P.; Lucardi, R.; Su, Z.; Li, S. Natural sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins, 2020, 12(1), 35.
[http://dx.doi.org/10.3390/toxins12010035] [PMID: 31935944]
[33]
Hamid, J.; Ahmed, D.; Waheed, A. Evaluation of anti-oxidative, antimicrobial and anti-diabetic potential of Adiantum venustum and identification of its phytochemicals through GC-MS. Pak. J. Pharm. Sci., 2017, 30(3), 705-712.
[PMID: 28653913]
[34]
Nair, R.V.R.; Jayasree, D.V.; Biju, P.G.; Baby, S. Anti-inflammatory and anticancer activities of erythrodiol-3-acetate and 2,4-di-tert-butylphenol isolated from Humboldtia unijuga. Nat. Prod. Res., 2020, 34(16), 2319-2322.
[http://dx.doi.org/10.1080/14786419.2018.1531406] [PMID: 30475646]
[35]
Alam, M.M.; Emon, N.U.; Alam, S.; Rudra, S.; Akhter, N.; Mamun, M.M.R.; Ganguly, A. Assessment of pharmacological activities of Lygodium microphyllum Cav. leaves in the management of pain, inflammation, pyrexia, diarrhea, and helminths: In vivo, in vitro and in silico approaches. Biomed. Pharmacother., 2021, 139111644
[http://dx.doi.org/10.1016/j.biopha.2021.111644] [PMID: 33945914]
[36]
Goel, A.; Boland, C.R.; Chauhan, D.P. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett., 2001, 172(2), 111-118.
[http://dx.doi.org/10.1016/S0304-3835(01)00655-3] [PMID: 11566484]
[37]
Yood, M.U.; Watkins, E.; Wells, K.; Kucera, G.; Johnson, C.C. Eva Lydick, The impact of NSAID or COX-2 inhibitor use on the initiation of antihypertensive therapy. Pharmacoepidemiol. Drug Saf., 2006, 15(12), 852-860.
[http://dx.doi.org/10.1002/pds.1327] [PMID: 17024689]
[38]
Klose, C.; Straub, I.; Riehle, M.; Ranta, F.; Krautwurst, D.; Ullrich, S.; Meyerhof, W.; Harteneck, C. Fenamates as TRP channel blockers: Mefenamic acid selectively blocks TRPM3. Br. J. Pharmacol., 2011, 162(8), 1757-1769.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01186.x] [PMID: 21198543]
[39]
Lu, M.; Fang, X.; Shi, D.; Liu, R.; Ding, Y.; Zhang, Q.; Wang, H.; Tang, J.; He, X. A selective TRPC3 inhibitor Pyr3 attenuates myocardial ischemia/reperfusion injury in mice. Curr. Med. Sci., 2020, 40(6), 1107-1113.
[http://dx.doi.org/10.1007/s11596-020-2293-y] [PMID: 33428139]
[40]
Kim, M.S.; Lee, K.P.; Yang, D.; Shin, D.M.; Abramowitz, J.; Kiyonaka, S.; Birnbaumer, L.; Mori, Y.; Muallem, S. Genetic and pharmacological inhibition of the Ca2+ influx channel TRPC3 protects secretory epithelia from Ca2+ - dependent toxicity. Bone, 2011, 140(7), 2107-2115.
[PMID: 21354153]