Short Oligo(dA) and Oligo(dC) Mediated Synthesis of Anisotropic Silver Nanoparticles under Blue LED Light Activation

Page: [726 - 735] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Synthesis of spherical silver nanoparticles is mostly reported, but the use of DNA, especially short oligonucleotides, to mediate the production of anisotropic AgNPs is still questioned.

Objective: This work aims to use 30-mer oligo(dA) and oligo(dC) (or A30 and C30) to assist the formation of anisotropic AgNPs under blue LED irradiation.

Methods: We reported a simple synthesis reaction containing AgNO3, A30 (or C30), and sodium borohydride, which were exposed to 460 nm LED light for 24 h. The obtained AgNPs were characterized and assayed for antioxidant and antibacterial activities.

Results: With exposure to 460 nm LED light, A30 and C30 could mediate the transition from spherical to hexagonal shapes of AgNPs with average sizes of 16 − 18 nm. Analyses of X-ray diffraction and selected area electron diffraction indicated the face-centered cubic crystal structure of AgNPs. A30- and C30-AgNPs exhibited similar antioxidant activities; IC50 of 78.68 ± 0.83 and 73.91 ± 0.46 μg mL−1, respectively. They also possessed antibacterial activities against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Scanning electron micrographs revealed surface pores and rupture of bacterial cells in response to AgNPs.

Conclusion: Oligonucleotides of only 30 residues are shown to assist the generation of anisotropic AgNPs under activation of blue LED irradiation, in which the synthesized AgNPs still exhibited antioxidant and antibacterial activities, suggesting a simple method to synthesize non-spherical AgNPs using short-length DNA.

Keywords: Anisotropic nanoparticle, antibacterial activity, green synthesis, light-emitting diode, oligonucleotide, silver nanoparticles.

Graphical Abstract

[1]
Yonathan, K.; Mann, R.; Mahbub, K.R.; Gunawan, C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. Environ. Pollut., 2022, 293, 118506.
[http://dx.doi.org/10.1016/j.envpol.2021.118506] [PMID: 34793904]
[2]
Raj, S.; Trivedi, R.; Soni, V. Biogenic synthesis of silver nanoparticles, characterization and their applications and mdash: A review. Surfaces, 2021, 5(1), 67-90.
[http://dx.doi.org/10.3390/surfaces5010003]
[3]
Ong, W.T.J.; Nyam, K.L. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J. Biol. Sci., 2022, 29(4), 2085-2094.
[http://dx.doi.org/10.1016/j.sjbs.2022.01.035] [PMID: 35531241]
[4]
Geonmonond, R.S.; Silva, A.; Camargo, P.H.C. Controlled synthesis of noble metal nanomaterials: Motivation, principles, and opportunities in nanocatalysis. Acad. Bras. Ciênc., 2018, 90, 719-744.
[5]
Restrepo, C.V.; Villa, C.C. Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environ. Nanotechnol. Monit. Manag., 2021, 15, 100428.
[http://dx.doi.org/10.1016/j.enmm.2021.100428]
[6]
Rivero, P.J.; Goicoechea, J.; Urrutia, A.; Arregui, F.J. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res. Lett., 2013, 8(1), 101-110.
[http://dx.doi.org/10.1186/1556-276X-8-101] [PMID: 23432942]
[7]
Khodashenas, B.; Ghorbani, H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem., 2019, 12(8), 1823-1838.
[http://dx.doi.org/10.1016/j.arabjc.2014.12.014]
[8]
Scardaci, V. Anisotropic silver nanomaterials by photochemical reactions: Synthesis and applications. Nanomaterials, 2021, 11(9), 2226.
[http://dx.doi.org/10.3390/nano11092226] [PMID: 34578542]
[9]
Kapate, N.; Clegg, J.R.; Mitragotri, S. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Adv. Drug Deliv. Rev., 2021, 177, 113807.
[http://dx.doi.org/10.1016/j.addr.2021.05.017] [PMID: 34023331]
[10]
Lee, G.P.; Shi, Y.; Lavoie, E.; Daeneke, T.; Reineck, P.; Cappel, U.B.; Huang, D.M.; Bach, U. Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano, 2013, 7(7), 5911-5921.
[http://dx.doi.org/10.1021/nn4013059] [PMID: 23730850]
[11]
Jha, A.K.; Zamani, S.; Kumar, A. Green synthesis and characterization of silver nanoparticles using Pteris vittata extract and their therapeutic activities. Biotechnol. Appl. Biochem., 2021, 1-10.
[http://dx.doi.org/10.1002/bab.2235]
[12]
Jain, S.; Mehata, M.S. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep., 2017, 7(1), 15867.
[http://dx.doi.org/10.1038/s41598-017-15724-8] [PMID: 29158537]
[13]
Rafique, M.; Sadaf, I.; Rafique, M.S.; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artif. Cells Nanomed. Biotechnol., 2017, 45(7), 1272-1291.
[http://dx.doi.org/10.1080/21691401.2016.1241792] [PMID: 27825269]
[14]
Ceballos, R.L.; Von Bilderling, C.; Guz, L.; Bernal, C.; Famá, L. Effect of greenly synthetized silver nanoparticles on the properties of active starch films obtained by extrusion and compression molding. Carbohydr. Polym., 2021, 261, 117871.
[http://dx.doi.org/10.1016/j.carbpol.2021.117871] [PMID: 33766358]
[15]
Chaisabai, W.; Khamhaengpol, A.; Siri, S. Sericins of mulberry and non-mulberry silkworms for eco-friendly synthesis of silver nanoparticles. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 536-543.
[http://dx.doi.org/10.1080/21691401.2017.1328686] [PMID: 28513221]
[16]
Janthima, R.; Khamhaengpol, A.; Siri, S. Egg extract of apple snail for eco-friendly synthesis of silver nanoparticles and their antibacterial activity. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 361-367.
[http://dx.doi.org/10.1080/21691401.2017.1313264] [PMID: 28399665]
[17]
Khamhaengpol, A.; Siri, S. Green synthesis of silver nanoparticles using tissue extract of weaver ant larvae. Mater. Lett., 2017, 192, 72-75.
[http://dx.doi.org/10.1016/j.matlet.2017.01.076]
[18]
Nithyaja, B.; Misha, H.; Nampoori, V. Synthesis of silver nanoparticles in DNA template and its influence on nonlinear optical properties. Nanosci. Nanotechnol., 2012, 2, 99-103.
[http://dx.doi.org/10.5923/j.nn.20120204.02]
[19]
Chumpol, J.; Siri, S. Light-mediated green synthesis of DNA capped silver nanoparticles and their antibacterial activity. J. Nanosci. Nanotechnol., 2020, 20(3), 1678-1684.
[http://dx.doi.org/10.1166/jnn.2020.16517] [PMID: 31492330]
[20]
Sritong, N.; Chumsook, S.; Siri, S. Light emitting diode irradiation induced shape conversion of DNA-capped silver nanoparticles and their antioxidant and antibacterial activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 955-963.
[http://dx.doi.org/10.1080/21691401.2018.1439841] [PMID: 29457913]
[21]
Farkhari, N.; Abbasian, S.; Moshaii, A.; Nikkhah, M. Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: Investigating some important parameters in bio-sensing applications. Colloids Surf. B Biointerfaces, 2016, 148, 657-664.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.022] [PMID: 27697740]
[22]
Ajayi, E.; Afolayan, A. Green synthesis, characterization and biological activities of silver nanoparticles from alkalinized Cymbopogon citratus Stapf. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2017, 8(1), 015017.
[http://dx.doi.org/10.1088/2043-6254/aa5cf7]
[23]
Chumpol, J.; Siri, S. Simple green production of silver nanoparticles facilitated by bacterial genomic DNA and their antibacterial activity. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), 619-625.
[http://dx.doi.org/10.1080/21691401.2017.1332638] [PMID: 28541828]
[24]
Thammawithan, S.; Siritongsuk, P.; Nasompag, S.; Daduang, S.; Klaynongsruang, S.; Prapasarakul, N.; Patramanon, R. A biological study of anisotropic silver nanoparticles and their antimicrobial application for topical use. Vet. Sci., 2021, 8(9), 177.
[http://dx.doi.org/10.3390/vetsci8090177] [PMID: 34564571]
[25]
Tan, L.H.; Yue, Y.; Satyavolu, N.S.R.; Ali, A.S.; Wang, Z.; Wu, Y.; Lu, Y. Mechanistic insight into DNA-guided control of nanoparticle morphologies. J. Am. Chem. Soc., 2015, 137(45), 14456-14464.
[http://dx.doi.org/10.1021/jacs.5b09567] [PMID: 26492515]
[26]
Umar, A.; Kim, J.; Choi, S.M. One-pot synthesis of monodisperse single-crystalline spherical gold nanoparticles for universal seeds. Cryst. Growth Des., 2021, 21(7), 4133-4140.
[http://dx.doi.org/10.1021/acs.cgd.1c00412]
[27]
Rosa, M.; Corni, S.; Di Felice, R. Interaction of nucleic acid bases with the Au(111) surface. J. Chem. Theory Comput., 2013, 9(10), 4552-4561.
[http://dx.doi.org/10.1021/ct4002416] [PMID: 26589170]
[28]
Skiba, M.I.; Vorobyova, V.I.; Pivovarov, A.; Makarshenko, N.P. Green synthesis of silver nanoparticles in the presence of polysaccharide: Optimization and characterization. J. Nanomater., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/3051308]
[29]
Guo, J.; Li, Y.; Yu, Z.; Chen, L.; Chinnathambi, A.; Almoallim, H.S.; Alharbi, S.A.; Liu, L. Novel green synthesis and characterization of a chemotherapeutic supplement by silver nanoparticles containing Berberis thunbergii leaf for the treatment of human pancreatic cancer. Biotechnol. Appl. Biochem., 2021, 69(2), 887-897.
[http://dx.doi.org/10.1002/bab.2160] [PMID: 33811673]
[30]
Moteriya, P.; Chanda, S. Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1556-1567.
[http://dx.doi.org/10.1080/21691401.2016.1261871] [PMID: 27900878]
[31]
Ahmad, T.; Bustam, M.A.; Irfan, M.; Moniruzzaman, M.; Asghar, H.M.A.; Bhattacharjee, S. Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids. Biotechnol. Appl. Biochem., 2019, 66(4), 698-708.
[http://dx.doi.org/10.1002/bab.1787] [PMID: 31172593]
[32]
Abass Sofi, M.; Sunitha, S.; Ashaq Sofi, M.; Khadheer Pasha, S.K.; Choi, D. An overview of antimicrobial and anticancer potential of silver nanoparticles. J. King Saud Univ. Sci., 2022, 34(2), 101791.
[http://dx.doi.org/10.1016/j.jksus.2021.101791]
[33]
Butler, K.S.; Peeler, D.J.; Casey, B.J.; Dair, B.J.; Elespuru, R.K. Silver nanoparticles: Correlating nanoparticle size and cellular uptake with genotoxicity. Mutagenesis, 2015, 30(4), 577-591.
[http://dx.doi.org/10.1093/mutage/gev020] [PMID: 25964273]
[34]
Gahlawat, G.; Shikha, S.; Chaddha, B.S.; Chaudhuri, S.R.; Mayilraj, S.; Choudhury, A.R. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb. Cell Fact., 2016, 15(1), 25.
[http://dx.doi.org/10.1186/s12934-016-0422-x] [PMID: 26829922]
[35]
Soliman, W.E.; Khan, S.; Rizvi, S.M.D.; Moin, A.; Elsewedy, H.S.; Abulila, A.S.; Shehata, T.M. Therapeutic applications of biostable silver nanoparticles synthesized using peel extract of Benincasa hispida: Antibacterial and anticancer activities. Nanomaterials, 2020, 10(10), 1954.
[http://dx.doi.org/10.3390/nano10101954] [PMID: 33008104]
[36]
McNeilly, O.; Mann, R.; Hamidian, M.; Gunawan, C. Emerging concern for siver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front. Microbiol., 2021, 12, 652863.
[http://dx.doi.org/10.3389/fmicb.2021.652863] [PMID: 33936010]
[37]
Salleh, A.; Naomi, R.; Utami, N.D.; Mohammad, A.W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M.B. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials, 2020, 10(8), 1566.
[http://dx.doi.org/10.3390/nano10081566] [PMID: 32784939]