Aptamer-based Biosensors: Promising Sensing Technology for Diabetes Diagnosis in Biological Fluids

Page: [3441 - 3471] Pages: 31

  • * (Excluding Mailing and Handling)

Abstract

Diabetes is a chronic disease state in which the pancreas fails to secrete sufficient insulin, resulting in an elevation of blood glucose levels. As one of the most prevalent diseases worldwide, diabetes is recognized as a global health concern that, if undiagnosed or untreated, can lead to serious and life-threatening complications, such as kidney failure, cardiovascular disease and diabetic retinopathy. Despite progress in the diagnosis of diabetes, limitations still exist with current analytical techniques, and, therefore, the development of precise sensing devices for on-site, real-time detection of diabetes is needed. Biosensors have contributed significantly to the field of diabetes healthcare, due to their cost-effectiveness, portability, ease of use, and rapid assay time. Recently, there has been a preference for the utilization of aptamers over antibodies in designing biosensors. Aptasensors, biosensors made with aptamers, offer potential in the diagnosis of diabetes. Aptamers, due to having lower molecular weight, low price, and stability over a wide temperature range and pH range, their in vitro synthesis, and the ability to refold after being removed from denaturing conditions compared to antibodies, have some distinctive characteristics as well as diverse types, such as optical FNA-based biosensors, colorimetric biosensors, fluorescent biosensors and electrochemical FNA-based biosensors. With this in mind, we highlight the recent developments and novel perspectives in the field of aptasensor design to quantitatively monitor diabetes biomarkers. Finally, some results are highlighted to offer a basis for the future design of aptasensor kits for diabetes diagnosis.

Keywords: Aptamer, Diabetes, Biosensor, Biomarker, Nanoparticle, Aptasensor

[1]
Liu, Z.; Kariya, M.J.; Chute, C.D.; Pribadi, A.K.; Leinwand, S.G.; Tong, A.; Curran, K.P.; Bose, N.; Schroeder, F.C.; Srinivasan, J.; Chalasani, S.H. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat. Commun., 2018, 9(1), 1128.
[http://dx.doi.org/10.1038/s41467-018-03333-6] [PMID: 29555902]
[2]
Muhammad, S.; Xu, G.; Wei, F.; Cen, Y.; Younis, M.R.; Xu, X.; Shi, M.; Cheng, X.; Chai, Y.; Hu, Q. Simultaneous determination of insulin and glucose in human serum based on dual emissive fluorescent nano-aptasensor of carbon dots and CdTe/CdS/ZnS quantum dots. Sens. Actuators B Chem., 2019, 292, 321-330.
[http://dx.doi.org/10.1016/j.snb.2019.04.119]
[3]
Vaishya, S.; Sarwade, R.D.; Seshadri, V.; Micro, R.N.A. proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications. Front. Endocrinol. (Lausanne), 2018, 9, 180.
[http://dx.doi.org/10.3389/fendo.2018.00180] [PMID: 29740397]
[4]
Lupsa, B.C.; Inzucchi, S.E. Diabetes medications and cardiovascular disease. Curr. Opin. Endocrinol. Diabetes Obes., 2018, 25(2), 87-93.
[http://dx.doi.org/10.1097/MED.0000000000000400] [PMID: 29369916]
[5]
Asad, A.; Hameed, M.A.; Khan, U.A.; Butt, M.U.; Ahmed, N.; Nadeem, A. Comparison of nerve conduction studies with diabetic neuropathy symptom score and diabetic neuropathy examination score in type-2 diabetics for detection of sensorimotor polyneuropathy. J. Pak. Med. Assoc., 2009, 59(9), 594-598.
[PMID: 19750851]
[6]
Saltiel, A.R. Insulin signaling in health and disease. J. Clin. Invest., 2021, 131(1), e142241.
[http://dx.doi.org/10.1172/JCI142241] [PMID: 33393497]
[7]
Heyduk, E.; Moxley, M.M.; Salvatori, A.; Corbett, J.A.; Heyduk, T. Homogeneous insulin and C-Peptide sensors for rapid assessment of insulin and C-peptide secretion by the islets. Diabetes, 2010, 59(10), 2360-2365.
[http://dx.doi.org/10.2337/db10-0088] [PMID: 20622164]
[8]
Assmann, T.S.; Recamonde-Mendoza, M.; De Souza, B.M.; Crispim, D. MicroRNA expression profiles and type 1 diabetes mellitus: Systematic review and bioinformatic analysis. Endocr. Connect., 2017, 6(8), 773-790.
[http://dx.doi.org/10.1530/EC-17-0248] [PMID: 28986402]
[9]
Taiema, D.A.; Saleh, R.G.; Deraz, E.M. Effect of ozone on submandibular salivary gland of alloxan-induced diabetic rats: Histological and ultrastructural study. Life Sci. J., 2019, 16(10)
[10]
Li, J.; Chang, K.W.; Wang, C.H.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens. Bioelectron., 2016, 79, 887-893.
[http://dx.doi.org/10.1016/j.bios.2016.01.029] [PMID: 26797251]
[11]
Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract., 2022, 183, 109118.
[http://dx.doi.org/10.1016/j.diabres.2021.109118] [PMID: 34883189]
[12]
Pinchevsky, Y.; Butkow, N.; Raal, F.J.; Chirwa, T.; Rothberg, A. Demographic and clinical factors associated with development of type 2 diabetes: A review of the literature. Int. J. Gen. Med., 2020, 13, 121-129.
[http://dx.doi.org/10.2147/IJGM.S226010] [PMID: 32280262]
[13]
Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron., 2015, 70, 122-129.
[http://dx.doi.org/10.1016/j.bios.2015.03.028] [PMID: 25797851]
[14]
Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronic. Young Sci., 2011, 2(1), 21.
[15]
Najjar, A.; Alawi, M.; AbuHeshmeh, N.; Sallam, A. A rapid, isocratic HPLC method for determination of insulin and its degradation product. Adv. Pharmaceut., 2014, 2014, 749823.
[http://dx.doi.org/10.1155/2014/749823]
[16]
Kaur, A.; Verma, N. Electrochemical biosensor for monitoring insulin in normal individuals and diabetic mellitus patients. Eur. J. Exp. Biol., 2012, 2(2), 389-395.
[17]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Nameghi, M.A.; Gerayelou, G.; Abnous, K. A novel electrochemical aptasensor for ochratoxin a sensing in spiked food using strand-displacement polymerase reaction. Talanta, 2021, 223(Pt 1), 121705.
[http://dx.doi.org/10.1016/j.talanta.2020.121705] [PMID: 33303155]
[18]
Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Abnous, K. A DNA triangular prism-based fluorescent aptasensor for ultrasensitive detection of prostate-specific antigen. Anal. Chim. Acta, 2020, 1120, 36-42.
[http://dx.doi.org/10.1016/j.aca.2020.04.071] [PMID: 32475389]
[19]
Abnous, K.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Lavaee, P.; Taghdisi, S.M. An ultrasensitive electrochemical sensing method for detection of microcystin-LR based on infinity-shaped DNA structure using double aptamer and terminal deoxynucleotidyl transferase. Biosens. Bioelectron., 2019, 144, 111674.
[http://dx.doi.org/10.1016/j.bios.2019.111674] [PMID: 31518788]
[20]
Khoshbin, Z.; Verdian, A.; Housaindokht, M.R.; Izadyar, M.; Rouhbakhsh, Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens. Bioelectron., 2018, 122, 263-283.
[http://dx.doi.org/10.1016/j.bios.2018.09.060] [PMID: 30268964]
[21]
Khoshbin, Z.; Housaindokht, M.R.; Verdian, A.; Bozorgmehr, M.R. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens. Bioelectron., 2018, 116, 130-147.
[http://dx.doi.org/10.1016/j.bios.2018.05.051] [PMID: 29879539]
[22]
Sullivan, L.A.; Brekken, R.A. The VEGF family in cancer and antibody-based strategies for their inhibition, MAbs; Taylor Francis, 2010, pp. 165-175.
[23]
Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev., 2015, 44(3), 729-741.
[http://dx.doi.org/10.1039/C4CS00228H] [PMID: 25223761]
[24]
Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 1999, 13(1), 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[25]
Yang, Z.P.; Ci, L.; Bur, J.A.; Lin, S.Y.; Ajayan, P.M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett., 2008, 8(2), 446-451.
[http://dx.doi.org/10.1021/nl072369t] [PMID: 18181658]
[26]
Salven, P.; Orpana, A.; Joensuu, H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin. Cancer Res., 1999, 5(3), 487-491.
[PMID: 10100697]
[27]
Xu, H.; Kou, F.; Ye, H.; Wang, Z.; Huang, S.; Liu, X.; Zhu, X.; Lin, Z.; Chen, G. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talanta, 2017, 175, 177-182.
[http://dx.doi.org/10.1016/j.talanta.2017.04.073] [PMID: 28841975]
[28]
Yang, H.W.; Ju, S.P.; Cheng, C.H.; Chen, Y.T.; Lin, Y.S.; Pang, S.T. Aptasensor designed via the stochastic tunneling-basin hopping method for biosensing of vascular endothelial growth factor. Biosens. Bioelectron., 2018, 119, 25-33.
[http://dx.doi.org/10.1016/j.bios.2018.07.073] [PMID: 30098463]
[29]
Dong, J.; He, L.; Wang, Y.; Yu, F.; Yu, S.; Liu, L.; Wang, J.; Tian, Y.; Qu, L.; Han, R.; Wang, Z.; Wu, Y. A highly sensitive colorimetric aptasensor for the detection of the vascular endothelial growth factor in human serum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117622.
[http://dx.doi.org/10.1016/j.saa.2019.117622] [PMID: 31606672]
[30]
Li, X.; Ding, X.; Fan, J. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst (Lond.), 2015, 140(23), 7918-7925.
[http://dx.doi.org/10.1039/C5AN01759A] [PMID: 26502364]
[31]
Li, J.; Sun, K.; Chen, Z.; Shi, J.; Zhou, D.; Xie, G. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. Biosens. Bioelectron., 2017, 89(Pt 2), 964-969.
[http://dx.doi.org/10.1016/j.bios.2016.09.078] [PMID: 27816590]
[32]
Lan, J.; Li, L.; Liu, Y.; Yan, L.; Li, C.; Chen, J.; Chen, X. Upconversion luminescence assay for the detection of the vascular endothelial growth factor, a biomarker for breast cancer. Mikrochim. Acta, 2016, 183(12), 3201-3208.
[http://dx.doi.org/10.1007/s00604-016-1965-6]
[33]
Wang, H.; Ma, Y.; Guo, C.; Yang, Y.; Peng, Z.; Liu, Z.; Zhang, Z. Templated seed-mediated derived Au nanoarchitectures embedded with nanochitosan: Sensitive electrochemical aptasensor for vascular endothelial growth factor and living MCF-7 cell detection. Appl. Surf. Sci., 2019, 481, 505-514.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.148]
[34]
Cheng, J-l.; Liu, X-P.; Chen, J-S.; Mao, C-j.; Jin, B-K. Highly sensitive electrochemiluminescence biosensor for VEGF 165 detection based on a gC 3 N 4/PDDA/CdSe nanocomposite. Anal. Bioanal. Chem., 2020, 412(13), 3073-3081.
[35]
Wang, J.Y.; Xiao, L.; Wang, J.Y. Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. Wiley Interdiscip. Rev. RNA, 2017, 8(2), e1399.
[http://dx.doi.org/10.1002/wrna.1399] [PMID: 27704722]
[36]
Guay, C.; Roggli, E.; Nesca, V.; Jacovetti, C.; Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl. Res., 2011, 157(4), 253-264.
[http://dx.doi.org/10.1016/j.trsl.2011.01.009] [PMID: 21420036]
[37]
Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[38]
Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[39]
Zheng, Y.; Wang, Z.; Tu, Y.; Shen, H.; Dai, Z.; Lin, J.; Zhou, Z. miR-101a and miR-30b contribute to inflammatory cytokine-mediated β-cell dysfunction. Lab. Invest., 2015, 95(12), 1387-1397.
[http://dx.doi.org/10.1038/labinvest.2015.112] [PMID: 26367486]
[40]
Sebastiani, G.; Grieco, F.A.; Spagnuolo, I.; Galleri, L.; Cataldo, D.; Dotta, F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab. Res. Rev., 2011, 27(8), 862-866.
[http://dx.doi.org/10.1002/dmrr.1262] [PMID: 22069274]
[41]
Nielsen, L.B.; Wang, C.; Sørensen, K.; Bang-Berthelsen, C.H.; Hansen, L.; Andersen, M.L.M.; Hougaard, P.; Juul, A.; Zhang, C.Y.; Pociot, F.; Mortensen, H.B. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: Evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp. Diabetes Res., 2012, 2012, 896362.
[http://dx.doi.org/10.1155/2012/896362] [PMID: 22829805]
[42]
Takahashi, P.; Xavier, D.J.; Evangelista, A.F.; Manoel-Caetano, F.S.; Macedo, C.; Collares, C.V.A.; Foss-Freitas, M.C.; Foss, M.C.; Rassi, D.M.; Donadi, E.A.; Passos, G.A.; Sakamoto-Hojo, E.T. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene, 2014, 539(2), 213-223.
[http://dx.doi.org/10.1016/j.gene.2014.01.075] [PMID: 24530307]
[43]
Cai, S.; Ye, J.; AL-maskri, A.A.A.; Sun, L.; Zeng, S. A conformational switch-based aptasensor for the chemiluminescence detection of microRNA. Luminescence, 2019, 34(8), 823-829.
[http://dx.doi.org/10.1002/bio.3677] [PMID: 31290225]
[44]
Liu, C.; Zhao, L.; Liang, D.; Zhang, X.; Song, W. An CuInS2 photocathode for the sensitive photoelectrochemical determination of microRNA-21 based on DNA–protein interaction and exonuclease III assisted target recycling amplification. Mikrochim. Acta, 2019, 186(11), 692.
[http://dx.doi.org/10.1007/s00604-019-3804-z] [PMID: 31605242]
[45]
Ferrannini, E.; Mari, A. Beta cell function and its relation to insulin action in humans: A critical appraisal. Diabetologia, 2004, 47(5), 943-956.
[http://dx.doi.org/10.1007/s00125-004-1381-z] [PMID: 15105990]
[46]
Pagliuca, F.W.; Millman, J.R.; Gürtler, M.; Segel, M.; Van Dervort, A.; Ryu, J.H.; Peterson, Q.P.; Greiner, D.; Melton, D.A. Generation of functional human pancreatic β cells in vitro. Cell, 2014, 159(2), 428-439.
[http://dx.doi.org/10.1016/j.cell.2014.09.040] [PMID: 25303535]
[47]
Iwase, H.; Kobayashi, M.; Nakajima, M.; Takatori, T. The ratio of insulin to C-peptide can be used to make a forensic diagnosis of exogenous insulin overdosage. Forensic Sci. Int., 2001, 115(1-2), 123-127.
[http://dx.doi.org/10.1016/S0379-0738(00)00298-X] [PMID: 11056282]
[48]
Verdian-Doghaei, A.; Housaindokht, M.R. Spectroscopic study of the interaction of insulin and its aptamer – sensitive optical detection of insulin. J. Lumin., 2015, 159, 1-8.
[http://dx.doi.org/10.1016/j.jlumin.2014.10.025]
[49]
Liu, C.; Han, J.; Zhang, J.; Du, J. Novel detection platform for insulin based on dual-cycle signal amplification by Exonuclease III. Talanta, 2019, 199, 596-602.
[http://dx.doi.org/10.1016/j.talanta.2019.03.013] [PMID: 30952303]
[50]
Li, T.; Liu, Z.; Wang, L.; Guo, Y. Gold nanoparticles/Orange II functionalized graphene nanohybrid based electrochemical aptasensor for label-free determination of insulin. RSC Advances, 2016, 6(36), 30732-30738.
[http://dx.doi.org/10.1039/C6RA00329J]
[51]
Abazar, F.; Noorbakhsh, A.; Chemical, A.B. Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sens. Actuators B Chem., 2020, 304, 127281.
[http://dx.doi.org/10.1016/j.snb.2019.127281]
[52]
Amouzadeh Tabrizi, M.; Shamsipur, M.; Saber, R.; Sarkar, S.; Besharati, M. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Mikrochim. Acta, 2018, 185(1), 59.
[http://dx.doi.org/10.1007/s00604-017-2570-z] [PMID: 29594593]
[53]
Wang, Y.; Sha, H.; Ke, H.; Xiong, X.; Jia, N. A sandwich-type electrochemiluminescence aptasensor for insulin detection based on the nano-C60/BSA@luminol nanocomposite and ferrocene derivative. Electrochim. Acta, 2018, 290, 90-97.
[http://dx.doi.org/10.1016/j.electacta.2018.08.080]
[54]
Zhao, Y.; Xu, Y.; Zhang, M.; Xiang, J.; Deng, C.; Wu, H. An electrochemical dual-signaling aptasensor for the ultrasensitive detection of insulin. Anal. Biochem., 2019, 573, 30-36.
[http://dx.doi.org/10.1016/j.ab.2019.02.032] [PMID: 30862445]
[55]
Gu, C.; Liu, Y.; Hu, B.; Liu, Y.; Zhou, N.; Xia, L.; Zhang, Z. Multicomponent nanohybrids of nickel/ferric oxides and nickel cobaltate spinel derived from the MOF-on-MOF nanostructure as efficient scaffolds for sensitively determining insulin. Anal. Chim. Acta, 2020, 1110, 44-55.
[http://dx.doi.org/10.1016/j.aca.2020.03.019] [PMID: 32278399]
[56]
Taghdisi, S.M.; Danesh, N.M.; Lavaee, P.; Sarreshtehdar Emrani, A.; Ramezani, M.; Abnous, K. Aptamer biosensor for selective and rapid determination of insulin. Anal. Lett., 2015, 48(4), 672-681.
[http://dx.doi.org/10.1080/00032719.2014.956216]
[57]
Tillett, W.S.; Francis, T., Jr. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J. Exp. Med., 1930, 52(4), 561-571.
[http://dx.doi.org/10.1084/jem.52.4.561] [PMID: 19869788]
[58]
Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Invest., 2003, 111(12), 1805-1812.
[http://dx.doi.org/10.1172/JCI200318921] [PMID: 12813013]
[59]
Du Clos, T.W.; Mold, C. C-reactive protein: An activator of innate immunity and a modulator of adaptive immunity. Immunol. Res., 2004, 30(3), 261-278.
[http://dx.doi.org/10.1385/IR:30:3:261] [PMID: 15531769]
[60]
António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta, 2020, 214, 120868.
[http://dx.doi.org/10.1016/j.talanta.2020.120868] [PMID: 32278414]
[61]
Bernard, E.D.; Nguyen, K.C.; DeRosa, M.C.; Tayabali, A.F.; Aranda-Rodriguez, R. Development of a bead-based aptamer/antibody detection system for C-reactive protein. Anal. Biochem., 2015, 472, 67-74.
[http://dx.doi.org/10.1016/j.ab.2014.11.017] [PMID: 25481739]
[62]
Wang, J.; Guo, J.; Zhang, J.; Zhang, W.; Zhang, Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens. Bioelectron., 2017, 95, 100-105.
[http://dx.doi.org/10.1016/j.bios.2017.04.014] [PMID: 28431362]
[63]
Zhang, J.; Zhang, W.; Guo, J.; Wang, J.; Zhang, Y. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal. Anal. Biochem., 2017, 539, 1-7.
[http://dx.doi.org/10.1016/j.ab.2017.09.017] [PMID: 28965840]
[64]
Jarczewska, M.; Rębiś, J.; Górski, Ł.; Malinowska, E. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta, 2018, 189, 45-54.
[http://dx.doi.org/10.1016/j.talanta.2018.06.035] [PMID: 30086945]
[65]
Martins, G.V.; Tavares, A.P.M.; Fortunato, E.; Sales, M.G.F. Paper-based sensing device for electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in point-of-care. Sci. Rep., 2017, 7(1), 14558.
[http://dx.doi.org/10.1038/s41598-017-14878-9] [PMID: 29109407]
[66]
Fan, R.; Wang, D.; Mao, C.; Ou, S.; Lian, Z.; Huang, S.; Lin, Q.; Ding, R.; She, J. Preliminary study of children’s exposure to PAHs and its association with 8-hydroxy-2′-deoxyguanosine in Guangzhou, China. Environ. Int., 2012, 42, 53-58.
[http://dx.doi.org/10.1016/j.envint.2011.03.021] [PMID: 21511339]
[67]
Wang, Y.; Ye, S.; Hu, Y.; Zhao, L.; Zheng, M. The effect of hydrochloride pioglitazone on urinary 8-hydroxy -deoxyguanosine excretion in type 2 diabetics. J. Diabetes Complicat., 2013, 27(1), 75-77.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.08.004] [PMID: 23021797]
[68]
Ma, H.; Zheng, L.; Li, Y.; Pan, S.; Hu, J.; Yu, Z.; Zhang, G.; Sheng, G.; Fu, J.J.C. Triclosan reduces the levels of global DNA methylation in HepG2 cells. Chemosphere, 2013, 90(3), 1023-1029.
[69]
Hinokio, Y.; Suzuki, S.; Hirai, M.; Suzuki, C.; Suzuki, M.; Toyota, T. Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia, 2002, 45(6), 877-882.
[http://dx.doi.org/10.1007/s00125-002-0831-8] [PMID: 12107732]
[70]
Poulsen, H.E.; Nadal, L.L.; Broedbaek, K.; Nielsen, P.E.; Weimann, A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim. Biophys. Acta, 2014, 1840(2), 801-808.
[71]
Ahn, M.; Aoki, S.; Bhang, H.; Boyd, S.; Casper, D.; Choi, J.; Fukuda, S.; Fukuda, Y.; Gajewski, W.; Hara, T.J.P.R.L. Indications of neutrino oscillation in a 250 km long-baseline experiment. Phys. Rev. Lett., 2003, 90(4), 041801.
[72]
Wu, L.L.; Chiou, C.C.; Chang, P.Y.; Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta, 2004, 339(1-2), 1-9.
[http://dx.doi.org/10.1016/j.cccn.2003.09.010] [PMID: 14687888]
[73]
Broedbaek, K.; Weimann, A.; Stovgaard, E.S.; Poulsen, H.E. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic. Biol. Med., 2011, 51(8), 1473-1479.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.007] [PMID: 21820047]
[74]
Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 2014, 16(1), 193-217.
[http://dx.doi.org/10.3390/ijms16010193] [PMID: 25547488]
[75]
Zhang, P.; Chen, J.H.; Dong, X.; Tang, M.T.; Gao, L.Y.; Zhao, G.S.; Yu, L.G.; Guo, X.L. 6r, a novel oxadiazole analogue of ethacrynic acid, exhibits antitumor activity both in vitro and in vivo by induction of cell apoptosis and S-phase arrest. Biomed. Pharmacother., 2013, 67(1), 58-65.
[http://dx.doi.org/10.1016/j.biopha.2012.10.011] [PMID: 23201007]
[76]
Yang, J.K.; Lin, S.S.; Ji, X.J.; Guo, L.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol., 2010, 47(3), 193-199.
[http://dx.doi.org/10.1007/s00592-009-0109-4] [PMID: 19333547]
[77]
Kuo, H.W.; Chou, S.Y.; Hu, T.W.; Wu, F.Y.; Chen, D.J. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) and genetic polymorphisms in breast cancer patients. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2007, 631(1), 62-68.
[http://dx.doi.org/10.1016/j.mrgentox.2007.04.009] [PMID: 17512776]
[78]
Li, J.; O, W.; Li, W.; Jiang, Z.G.; Ghanbari, H. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci., 2013, 14(12), 24438-24475.
[http://dx.doi.org/10.3390/ijms141224438] [PMID: 24351827]
[79]
Chen, C.M.; Liu, J.L.; Wu, Y.R.; Chen, Y.C.; Cheng, H.S.; Cheng, M.L.; Chiu, D.T. Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol. Dis., 2009, 33(3), 429-435.
[http://dx.doi.org/10.1016/j.nbd.2008.11.011] [PMID: 19110057]
[80]
Shimoda, R.; Nagashima, M.; Sakamoto, M.; Yamaguchi, N.; Hirohashi, S.; Yokota, J.; Kasai, H. Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res., 1994, 54(12), 3171-3172.
[PMID: 8205535]
[81]
Pinlaor, S.; Ma, N.; Hiraku, Y.; Yongvanit, P.; Semba, R.; Oikawa, S.; Murata, M.; Sripa, B.; Sithithaworn, P.; Kawanishi, S. Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase. Carcinogenesis, 2004, 25(8), 1535-1542.
[http://dx.doi.org/10.1093/carcin/bgh157] [PMID: 15059927]
[82]
Saichua, P.; Yakovleva, A.; Kamamia, C.; Jariwala, A.R.; Sithithaworn, J.; Sripa, B.; Brindley, P.J.; Laha, T.; Mairiang, E.; Pairojkul, C.; Khuntikeo, N.; Mulvenna, J.; Sithithaworn, P.; Bethony, J.M. Levels of 8-OxodG predict hepatobiliary pathology in Opisthorchis viverrini endemic settings in Thailand. PLoS Negl. Trop. Dis., 2015, 9(7), e0003949.
[http://dx.doi.org/10.1371/journal.pntd.0003949] [PMID: 26230769]
[83]
Bialkowski, K.; Kowara, R.; Windorbska, W.; Olinski, R. 8-Oxo-2′-deoxyguanosine level in lymphocytes DNA of cancer patients undergoing radiotherapy. Cancer Lett., 1996, 99(1), 93-97.
[http://dx.doi.org/10.1016/0304-3835(95)04042-0] [PMID: 8564935]
[84]
Joergensen, A.; Broedbaek, K.; Weimann, A.; Semba, R.D.; Ferrucci, L.; Joergensen, M.B.; Poulsen, H.E. Association between urinary excretion of cortisol and markers of oxidatively damaged DNA and RNA in humans. PLoS One, 2011, 6(6), e20795.
[http://dx.doi.org/10.1371/journal.pone.0020795] [PMID: 21687734]
[85]
Liu, H.; Wang, Y.S.; Wang, J.C.; Xue, J.H.; Zhou, B.; Zhao, H.; Liu, S.D.; Tang, X.; Chen, S.H.; Li, M.H.; Cao, J.X. A colorimetric aptasensor for the highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on G-quadruplex–hemin DNAzyme. Anal. Biochem., 2014, 458, 4-10.
[http://dx.doi.org/10.1016/j.ab.2014.04.031] [PMID: 24811738]
[86]
Liu, H.; Wang, Y.S.; Tang, X.; Yang, H.X.; Chen, S.H.; Zhao, H.; Liu, S.D.; Zhu, Y.F.; Wang, X.F.; Huang, Y.Q. A novel fluorescence aptasensor for 8-hydroxy-2′-deoxyguanosine based on the conformational switching of K + -stabilized G-quadruplex. J. Pharm. Biomed. Anal., 2016, 118, 177-182.
[http://dx.doi.org/10.1016/j.jpba.2015.10.035] [PMID: 26551536]
[87]
Fan, J.; Liu, Y.; Xu, E.; Zhang, Y.; Wei, W.; Yin, L.; Pu, Y.; Liu, S. A label-free ultrasensitive assay of 8-hydroxy-2′-deoxyguanosine in human serum and urine samples via polyaniline deposition and tetrahedral DNA nanostructure. Anal. Chim. Acta, 2016, 946, 48-55.
[http://dx.doi.org/10.1016/j.aca.2016.10.022] [PMID: 27823668]
[88]
Tao, L.; Yue, Q.; Hou, Y.; Wang, Y.; Chen, C.; Li, C.Z. Resonance light scattering aptasensor for urinary 8-hydroxy-2′-deoxyguanosine based on magnetic nanoparticles: A preliminary study of oxidative stress association with air pollution. Mikrochim. Acta, 2018, 185(9), 419.
[http://dx.doi.org/10.1007/s00604-018-2937-9] [PMID: 30121832]
[89]
Jabbari, S.; Hedayati, M.; Yaghmaei, P.; Parivar, K. Medullary thyroid carcinoma - circulating status of vaspin and retinol binding protein-4 in Iranian patients. Asian Pac. J. Cancer Prev., 2015, 16(15), 6507-6512.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6507] [PMID: 26434866]
[90]
Chang, H.M.; Park, H.S.; Park, C.Y.; Song, Y.S.; Jang, Y.J. Association between serum vaspin concentrations and visceral adipose tissue in Korean subjects. Metabolism, 2010, 59(9), 1276-1281.
[http://dx.doi.org/10.1016/j.metabol.2009.11.021] [PMID: 20060144]
[91]
Kotnik, P.; Fischer-Posovszky, P.; Wabitsch, M. RBP4: A controversial adipokine. Eur. J. Endocrinol., 2011, 165(5), 703-711.
[http://dx.doi.org/10.1530/EJE-11-0431] [PMID: 21835764]
[92]
Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005, 436(7049), 356-362.
[http://dx.doi.org/10.1038/nature03711] [PMID: 16034410]
[93]
Polonsky, K.S. Retinol-binding protein 4, insulin resistance, and type 2 diabetes. N. Engl. J. Med., 2006, 354(24), 2596-2598.
[http://dx.doi.org/10.1056/NEJMe068091] [PMID: 16775241]
[94]
Liu, J.; Gao, J.; Zhang, J.; Li, P.; Liu, J.; Liu, J.; Xie, X. Evaluation of the association between retinal binding protein 4 polymorphisms and type 2 diabetes in Chinese by DHPLC. Endocrine, 2008, 34(1-3), 23-28.
[http://dx.doi.org/10.1007/s12020-008-9097-3] [PMID: 18937078]
[95]
Abel, E.D.; Peroni, O.; Kim, J.K.; Kim, Y.B.; Boss, O.; Hadro, E.; Minnemann, T.; Shulman, G.I.; Kahn, B.B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature, 2001, 409(6821), 729-733.
[http://dx.doi.org/10.1038/35055575] [PMID: 11217863]
[96]
Rocha, M.; Bañuls, C.; Bellod, L.; Rovira-Llopis, S.; Morillas, C.; Solá, E.; Víctor, V.M.; Hernández-Mijares, A. Association of serum retinol binding protein 4 with atherogenic dyslipidemia in morbid obese patients. PLoS One, 2013, 8(11), e78670.
[http://dx.doi.org/10.1371/journal.pone.0078670] [PMID: 24223837]
[97]
Lee, S.J.; Youn, B.S.; Park, J.W.; Niazi, J.H.; Kim, Y.S.; Gu, M.B. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal. Chem., 2008, 80(8), 2867-2873.
[http://dx.doi.org/10.1021/ac800050a] [PMID: 18324839]
[98]
Torabi, R.; Ghourchian, H. Ultrasensitive nano-aptasensor for monitoring retinol binding protein 4 as a biomarker for diabetes prognosis at early stages. Sci. Rep., 2020, 10(1), 594.
[http://dx.doi.org/10.1038/s41598-019-57396-6] [PMID: 31953481]
[99]
Kharroubi, A.T.; Darwish, H.M.; Abu Al-Halaweh, A.I.; Khammash, U.M. Evaluation of glycated hemoglobin (HbA1c) for diagnosing type 2 diabetes and prediabetes among Palestinian Arab population. PLoS One, 2014, 9(2), e88123.
[http://dx.doi.org/10.1371/journal.pone.0088123] [PMID: 24505401]
[100]
Liu, J.T.; Chen, L.Y.; Shih, M.C.; Chang, Y.; Chen, W.Y. The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Anal. Biochem., 2008, 375(1), 90-96.
[http://dx.doi.org/10.1016/j.ab.2008.01.004] [PMID: 18242160]
[101]
Goldstein, D.E.; Little, R.R.; Lorenz, R.A.; Malone, J.I.; Nathan, D.; Peterson, C.M.; Sacks, D.B. Tests of glycemia in diabetes. Diabetes Care, 2004, 27(7), 1761-1773.
[http://dx.doi.org/10.2337/diacare.27.7.1761] [PMID: 15220264]
[102]
Ahmed, N.; Babaei-Jadidi, R.; Howell, S.K.; Thornalley, P.J.; Beisswenger, P.J. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care, 2005, 28(10), 2465-2471.
[http://dx.doi.org/10.2337/diacare.28.10.2465] [PMID: 16186281]
[103]
Sacks, D.B.; Bruns, D.E.; Goldstein, D.E.; Maclaren, N.K.; McDonald, J.M.; Parrott, M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem., 2002, 48(3), 436-472.
[http://dx.doi.org/10.1093/clinchem/48.3.436] [PMID: 11861436]
[104]
Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[105]
U.P.D.S. Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998, 352(9131), 837-853.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[106]
Ciemins, E.L.; Coon, P.J.; Fowles, J.B.; Min, S.J. Beyond health information technology: Critical factors necessary for effective diabetes disease management. J. Diabetes Sci. Technol., 2009, 3(3), 452-460.
[http://dx.doi.org/10.1177/193229680900300308] [PMID: 20144282]
[107]
Petersen, J.R.; Omoruyi, F.O.; Mohammad, A.A.; Shea, T.J.; Okorodudu, A.O.; Ju, H. Hemoglobin A1c: Assessment of three POC analyzers relative to a central laboratory method. Clin. Chim. Acta, 2010, 411(23-24), 2062-2066.
[http://dx.doi.org/10.1016/j.cca.2010.09.004] [PMID: 20832393]
[108]
Hoelzel, W.; Miedema, K. Development of a reference system for the international standardization of HbA1c/glycohemoglobin determinations. J. Int. Fed. Clin. Chem., 1996, 8(2), 62-4.
[109]
Sharma, P.; Panchal, A.; Yadav, N.; Narang, J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int. J. Biol. Macromol., 2020, 155, 685-696.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.205] [PMID: 32229211]
[110]
Almusharraf, A.Y.; Eissa, S.; Zourob, M. Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Mikrochim. Acta, 2018, 185(5), 256.
[http://dx.doi.org/10.1007/s00604-018-2789-3] [PMID: 29675559]
[111]
Singh, V.; Nerimetla, R.; Yang, M.; Krishnan, S. Magnetite-quantum dot immunoarray for plasmon-coupled-fluorescence imaging of blood insulin and glycated hemoglobin. ACS Sens., 2017, 2(7), 909-915.
[http://dx.doi.org/10.1021/acssensors.7b00124] [PMID: 28750536]
[112]
Hehlgans, T.; Pfeffer, K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: Players, rules and the games. Immunology, 2005, 115(1), 1-20.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02143.x] [PMID: 15819693]
[113]
Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol., 2015, 16(4), 343-353.
[http://dx.doi.org/10.1038/ni.3123] [PMID: 25789684]
[114]
Collnot, E.M.; Ali, H.; Lehr, C.M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Release, 2012, 161(2), 235-246.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.028] [PMID: 22306429]
[115]
Cavadini, G.; Petrzilka, S.; Kohler, P.; Jud, C.; Tobler, I.; Birchler, T.; Fontana, A. TNF-α suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12843-12848.
[http://dx.doi.org/10.1073/pnas.0701466104] [PMID: 17646651]
[116]
Asiedu, M.K.; Ingle, J.N.; Behrens, M.D.; Radisky, D.C.; Knutson, K.L. TGFbeta/TNF(α)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res., 2011, 71(13), 4707-4719.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4554] [PMID: 21555371]
[117]
Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science, 1996, 271(5249), 665-670.
[http://dx.doi.org/10.1126/science.271.5249.665] [PMID: 8571133]
[118]
Ghosh, S.; Datta, D.; Chaudhry, S.; Dutta, M.; Stroscio, M.A. Rapid detection of Tumor Necrosis Factor-Alpha using Quantum Dot-Based Optical aptasensor. IEEE Trans. Nanobiosci., 2018, 17(4), 417-423.
[http://dx.doi.org/10.1109/TNB.2018.2852261] [PMID: 29994717]
[119]
Miao, P.; Yang, D.; Chen, X.; Guo, Z.; Tang, Y. Voltammetric determination of tumor necrosis factor-α based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles. Mikrochim. Acta, 2017, 184(10), 3901-3907.
[http://dx.doi.org/10.1007/s00604-017-2419-5]
[120]
Ghalehno, M.H.; Mirzaei, M.; Torkzadeh-Mahani, M. Electrochemical aptasensor for tumor necrosis factor α using aptamer–antibody sandwich structure and cobalt hexacyanoferrate for signal amplification. J. Indian Chem. Soc., 2019, 16(8), 1783-1791.
[121]
Kouzuma, T.; Usami, T.; Yamakoshi, M.; Takahashi, M.; Imamura, S. An enzymatic method for the measurement of glycated albumin in biological samples. Clin. Chim. Acta, 2002, 324(1-2), 61-71.
[http://dx.doi.org/10.1016/S0009-8981(02)00207-3] [PMID: 12204426]
[122]
Koga, M. Glycated albumin; clinical usefulness. Clin. Chim. Acta, 2014, 433, 96-104.
[http://dx.doi.org/10.1016/j.cca.2014.03.001] [PMID: 24631132]
[123]
Koga, M.; Kasayama, S. Clinical impact of glycated albumin as another glycemic control marker. Endocr. J., 2010, 57(9), 751-762.
[http://dx.doi.org/10.1507/endocrj.K10E-138] [PMID: 20724796]
[124]
Takahashi, S.; Uchino, H.; Shimizu, T.; Kanazawa, A.; Tamura, Y.; Sakai, K.; Watada, H.; Hirose, T.; Kawamori, R.; Tanaka, Y. Comparison of glycated albumin (GA) and glycated hemoglobin (HbA1c) in type 2 diabetic patients: Usefulness of GA for evaluation of short-term changes in glycemic control. Endocr. J., 2007, 54(1), 139-144.
[http://dx.doi.org/10.1507/endocrj.K06-103] [PMID: 17159300]
[125]
Gallagher, E.J.; Le Roith, D.; Bloomgarden, Z. Review of hemoglobin A1c in the management of diabetes. J. Diabetes, 2009, 1(1), 9-17.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00009.x] [PMID: 20923515]
[126]
Ghosh, S.; Datta, D.; Cheema, M.; Dutta, M.; Stroscio, M.A. Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis. Nanotechnology, 2017, 28(43), 435505.
[http://dx.doi.org/10.1088/1361-6528/aa893a] [PMID: 28853715]
[127]
Farzadfard, A.; Shayeh, J.S.; Habibi-Rezaei, M.; Omidi, M. Modification of reduced graphene/Au-aptamer to develop an electrochemical based aptasensor for measurement of glycated albumin. Talanta, 2020, 211, 120722.
[http://dx.doi.org/10.1016/j.talanta.2020.120722] [PMID: 32070572]
[128]
Tertis, M.; Leva, P.I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens. Bioelectron., 2019, 137, 123-132.
[http://dx.doi.org/10.1016/j.bios.2019.05.012] [PMID: 31085401]
[129]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[130]
Messina, G.A.; Panini, N.V.; Martinez, N.A.; Raba, J. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples. Anal. Biochem., 2008, 380(2), 262-267.
[http://dx.doi.org/10.1016/j.ab.2008.05.055] [PMID: 18577366]
[131]
Wang, Y.; Sun, J.; Hou, Y.; Zhang, C.; Li, D.; Li, H.; Yang, M.; Fan, C.; Sun, B. RETRACTED: A SERS-based lateral flow assay biosensor for quantitative and ultrasensitive detection of interleukin-6 in unprocessed whole blood. Biosens. Bioelectron., 2019, 141, 111432.
[http://dx.doi.org/10.1016/j.bios.2019.111432] [PMID: 31299628]
[132]
Tertiş, M.; Ciui, B.; Suciu, M.; Săndulescu, R.; Cristea, C. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim. Acta, 2017, 258, 1208-1218.
[http://dx.doi.org/10.1016/j.electacta.2017.11.176]
[133]
Klöting, N.; Graham, T.E.; Berndt, J.; Kralisch, S.; Kovacs, P.; Wason, C.J.; Fasshauer, M.; Schön, M.R.; Stumvoll, M.; Blüher, M.; Kahn, B.B. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab., 2007, 6(1), 79-87.
[http://dx.doi.org/10.1016/j.cmet.2007.06.002] [PMID: 17618858]
[134]
Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[135]
Lee, S.J.; Park, J.W.; Kim, I.A.; Youn, B.S.; Gu, M.B. Sensitive detection of adipokines for early diagnosis of type 2 diabetes using enzyme-linked antibody-aptamer sandwich (ELAAS) assays. Sens. Actuators B Chem., 2012, 168, 243-248.
[http://dx.doi.org/10.1016/j.snb.2012.04.016]
[136]
Kim, S.H.; Nam, O.; Jin, E.; Gu, M.B. A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens. Bioelectron., 2019, 123, 160-166.
[http://dx.doi.org/10.1016/j.bios.2018.08.021] [PMID: 30139622]
[137]
Ali, M.; Sajid, M.; Khalid, M.A.U.; Kim, S.W.; Lim, J.H.; Huh, D.; Choi, K.H. A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117610.
[http://dx.doi.org/10.1016/j.saa.2019.117610] [PMID: 31606675]
[138]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[139]
Jones, J.I.; Nguyen, T.T.; Peng, Z.; Chang, M. Targeting MMP-9 in diabetic foot ulcers. Pharmaceuticals (Basel), 2019, 12(2), 79.
[http://dx.doi.org/10.3390/ph12020079] [PMID: 31121851]
[140]
Woessner, J.; Nagase, H. Protein substrates of the MMPs, Matrix metalloproteinases. TIMPs, 2000, 92(8), 87-97.
[141]
Kadoglou, N.P.; Daskalopoulou, S.S.; Perrea, D.; Liapis, C.D. Matrix metalloproteinases and diabetic vascular complications. Angiology, 2005, 56(2), 173-189.
[http://dx.doi.org/10.1177/000331970505600208] [PMID: 15793607]
[142]
Thrailkill, K.M.; Bunn, R.C.; Moreau, C.S.; Cockrell, G.E.; Simpson, P.M.; Coleman, H.N.; Frindik, J.P.; Kemp, S.F.; Fowlkes, J.L. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care, 2007, 30(9), 2321-2326.
[http://dx.doi.org/10.2337/dc07-0162] [PMID: 17563344]
[143]
Toni, M.; Hermida, J.; Goñi, M.J.; Fernández, P.; Parks, W.C.; Toledo, E.; Montes, R.; Díez, N. Matrix metalloproteinase-10 plays an active role in microvascular complications in type 1 diabetic patients. Diabetologia, 2013, 56(12), 2743-2752.
[http://dx.doi.org/10.1007/s00125-013-3052-4] [PMID: 24078057]
[144]
Gharagozlian, S.; Svennevig, K.; Bangstad, H.J.; Winberg, J.O.; Kolset, S.O. Matrix metalloproteinases in subjects with type 1 diabetes. BMC Clin. Pathol., 2009, 9(1), 7.
[http://dx.doi.org/10.1186/1472-6890-9-7] [PMID: 19758433]
[145]
Giebel, S.J.; Menicucci, G.; McGuire, P.G.; Das, A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood–retinal barrier. Lab. Invest., 2005, 85(5), 597-607.
[http://dx.doi.org/10.1038/labinvest.3700251] [PMID: 15711567]
[146]
Scarano, S.; Dausse, E.; Crispo, F.; Toulmé, J.J.; Minunni, M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal. Chim. Acta, 2015, 897, 1-9.
[http://dx.doi.org/10.1016/j.aca.2015.07.009] [PMID: 26514999]
[147]
Sethi, J.K. Is PBEF/visfatin/Nampt an authentic adipokine relevant to the metabolic syndrome? Curr. Hypertens. Rep., 2007, 9(1), 33-38.
[http://dx.doi.org/10.1007/s11906-007-0007-5] [PMID: 17362669]
[148]
Romacho, T.; Sánchez-Ferrer, C.F.; Peiró, C. Visfatin/Nampt: An adipokine with cardiovascular impact. Mediators Inflamm., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/946427] [PMID: 23843684]
[149]
Revollo, J.R.; Grimm, A.A.; Imai, S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr. Opin. Gastroenterol., 2007, 23(2), 164-170.
[http://dx.doi.org/10.1097/MOG.0b013e32801b3c8f] [PMID: 17268245]
[150]
Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol., 2015, 11(9), 535-546.
[http://dx.doi.org/10.1038/nrendo.2015.117] [PMID: 26215259]
[151]
Kover, K.; Tong, P.Y.; Watkins, D.; Clements, M.; Stehno-Bittel, L.; Novikova, L.; Bittel, D.; Kibiryeva, N.; Stuhlsatz, J.; Yan, Y.; Ye, S.Q.; Moore, W.V. Expression and regulation of nampt in human islets. PLoS One, 2013, 8(3), e58767.
[http://dx.doi.org/10.1371/journal.pone.0058767] [PMID: 23536823]
[152]
Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R.; Milbrandt, J.; Kiess, W.; Imai, S. Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab., 2007, 6(5), 363-375.
[http://dx.doi.org/10.1016/j.cmet.2007.09.003] [PMID: 17983582]
[153]
Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med., 2016, 48(3), e219-e219.
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[154]
Kang, Y.S.; Cha, D.R. The role of visfatin in diabetic nephropathy. Chonnam Med. J., 2011, 47(3), 139-143.
[http://dx.doi.org/10.4068/cmj.2011.47.3.139] [PMID: 22247912]
[155]
Vu, V.; Kim, W.; Fang, X.; Liu, Y.T.; Xu, A.; Sweeney, G. Coculture with primary visceral rat adipocytes from control but not streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin. Endocrinology, 2007, 148(9), 4411-4419.
[http://dx.doi.org/10.1210/en.2007-0020] [PMID: 17569760]
[156]
Brema, I. The relationship between plasma visfatin/nampt and type 2 diabetes, obesity, insulin resistance, and cardiovascular disease. Endocrinol. Metab. Int. J, 2016, 3(6), 00068.
[157]
Belo, V.A.; Luizon, M.R.; Lacchini, R.; Miranda, J.A.; Lanna, C.M.M.; Souza-Costa, D.C.; Tanus-Santos, J.E. The effects of NAMPT haplotypes and metabolic risk factors on circulating visfatin/NAMPT levels in childhood obesity. Int. J. Obes., 2015, 39(1), 130-135.
[http://dx.doi.org/10.1038/ijo.2013.173] [PMID: 24100423]
[158]
Wang, P.; van Greevenbroek, M.M.J.; Bouwman, F.G.; Brouwers, M.C.G.J.; van der Kallen, C.J.H.; Smit, E.; Keijer, J.; Mariman, E.C.M. The circulating PBEF/NAMPT/visfatin level is associated with a beneficial blood lipid profile. Pflugers Arch., 2007, 454(6), 971-976.
[http://dx.doi.org/10.1007/s00424-007-0262-y] [PMID: 17429683]
[159]
Berndt, J.; Klöting, N.; Kralisch, S.; Kovacs, P.; Fasshauer, M.; Schön, M.R.; Stumvoll, M.; Blüher, M. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes, 2005, 54(10), 2911-2916.
[http://dx.doi.org/10.2337/diabetes.54.10.2911] [PMID: 16186392]
[160]
Rezvan, N.; Hosseinzadeh-Attar, M.J.; Masoudkabir, F.; Moini, A.; Janani, L.; Mazaherioun, M. Serum visfatin concentrations in gestational diabetes mellitus and normal pregnancy. Arch. Gynecol. Obstet., 2012, 285(5), 1257-1262.
[http://dx.doi.org/10.1007/s00404-011-2156-7] [PMID: 22167446]
[161]
Park, J.W.; Saravan Kallempudi, S.; Niazi, J.H.; Gurbuz, Y.; Youn, B.S.; Gu, M.B. Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor. Biosens. Bioelectron., 2012, 38(1), 233-238.
[http://dx.doi.org/10.1016/j.bios.2012.05.036] [PMID: 22704839]
[162]
Moshal, K.S.; Sen, U.; Tyagi, N.; Henderson, B.; Steed, M.; Ovechkin, A.V.; Tyagi, S.C. Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. Am. J. Physiol. Cell Physiol., 2006, 290(3), C883-C891.
[http://dx.doi.org/10.1152/ajpcell.00359.2005] [PMID: 16251475]
[163]
Weber, G.J.; Pushpakumar, S.; Tyagi, S.C.; Sen, U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol. Res., 2016, 113(Pt A), 300-312.
[http://dx.doi.org/10.1016/j.phrs.2016.09.002] [PMID: 27602985]
[164]
Pérez-Sepúlveda, A.; España-Perrot, P.P.; Fernández B, X.; Ahumada, V.; Bustos, V.; Arraztoa, J.A.; Dobierzewska, A.; Figueroa-Diesel, H.; Rice, G.E.; Illanes, S.E. Levels of key enzymes of methionine-homocysteine metabolism in preeclampsia. BioMed Res. Int., 2013, 2013, 731962.
[http://dx.doi.org/10.1155/2013/731962] [PMID: 24024209]
[165]
Kamat, P.K.; Mallonee, C.J.; George, A.K.; Tyagi, S.C.; Tyagi, N. Homocysteine, alcoholism, and its potential epigenetic mechanism. Alcohol. Clin. Exp. Res., 2016, 40(12), 2474-2481.
[http://dx.doi.org/10.1111/acer.13234] [PMID: 27805256]
[166]
Jelodar, G.; Mohammadi, M.; Akbari, A.; Nazifi, S. Cyclohexane extract of walnut leaves improves indices of oxidative stress, total homocysteine and lipids profiles in streptozotocin-induced diabetic rats. Physiol. Rep., 2020, 8(1), e14348.
[http://dx.doi.org/10.14814/phy2.14348] [PMID: 31960621]
[167]
Tyagi, S.C.; Rodriguez, W.; Patel, A.M.; Roberts, A.M.; Falcone, J.C.; Passmore, J.C.; Fleming, J.T.; Joshua, I.G. Hyperhomocysteinemic diabetic cardiomyopathy: Oxidative stress, remodeling, and endothelial-myocyte uncoupling. J. Cardiovasc. Pharmacol. Ther., 2005, 10(1), 1-10.
[http://dx.doi.org/10.1177/107424840501000101] [PMID: 15821833]
[168]
Mao, S.; Xiang, W.; Huang, S.; Zhang, A. Association between homocysteine status and the risk of nephropathy in type 2 diabetes mellitus. Clin. Chim. Acta, 2014, 431, 206-210.
[http://dx.doi.org/10.1016/j.cca.2014.02.007] [PMID: 24534450]
[169]
Kundi, H.; Kiziltunc, E.; Ates, I.; Cetin, M.; Barca, A.N.; Ozkayar, N.; Ornek, E. Association between plasma homocysteine levels and end-organ damage in newly diagnosed type 2 diabetes mellitus patients. Endocr. Res., 2017, 42(1), 36-41.
[http://dx.doi.org/10.3109/07435800.2016.1171235] [PMID: 27111290]
[170]
McKeague, M.; Foster, A.; Miguel, Y.; Giamberardino, A.; Verdin, C.; Chan, J.Y.S.; DeRosa, M.C. Development of a DNA aptamer for direct and selective homocysteine detection in human serum. RSC Advances, 2013, 3(46), 24415-24422.
[http://dx.doi.org/10.1039/c3ra43893g]
[171]
Saeed, J.; Mirzaei, M.; Torkzadeh-Mahani, M. A selective and regenerable voltammetric aptasensor for determination of homocysteine. Mikrochim. Acta, 2016, 183(7), 2205-2210.
[http://dx.doi.org/10.1007/s00604-016-1852-1]
[172]
Lau, K.S.; Partridge, E.A.; Grigorian, A.; Silvescu, C.I.; Reinhold, V.N.; Demetriou, M.; Dennis, J.W. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 2007, 129(1), 123-134.
[http://dx.doi.org/10.1016/j.cell.2007.01.049] [PMID: 17418791]
[173]
Ziyadeh, F.N. Mediators of diabetic renal disease: The case for tgf-β as the major mediator. J. Am. Soc. Nephrol., 2004, 15(90010)(Suppl. 1), 55S-57.
[http://dx.doi.org/10.1097/01.ASN.0000093460.24823.5B] [PMID: 14684674]
[174]
Zhang, M.Z.; Wang, Y.; Paueksakon, P.; Harris, R.C. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes, 2014, 63(6), 2063-2072.
[http://dx.doi.org/10.2337/db13-1279] [PMID: 24705402]
[175]
Tomana, M.; Schrohenloher, R.E.; Koopman, W.J.; Alarcän, G.S.; Paul, W.A. Abnormal glycosylation of serum igg from patients with chronic inflammatory diseases. Arthritis Rheum., 1988, 31(3), 333-338.
[http://dx.doi.org/10.1002/art.1780310304] [PMID: 3358797]
[176]
Anthony, R.M.; Nimmerjahn, F.; Ashline, D.J.; Reinhold, V.N.; Paulson, J.C.; Ravetch, J.V. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science, 2008, 320(5874), 373-376.
[http://dx.doi.org/10.1126/science.1154315] [PMID: 18420934]
[177]
Karsten, C.M.; Pandey, M.K.; Figge, J.; Kilchenstein, R.; Taylor, P.R.; Rosas, M.; McDonald, J.U.; Orr, S.J.; Berger, M.; Petzold, D.; Blanchard, V.; Winkler, A.; Hess, C.; Reid, D.M.; Majoul, I.V.; Strait, R.T.; Harris, N.L.; Köhl, G.; Wex, E.; Ludwig, R.; Zillikens, D.; Nimmerjahn, F.; Finkelman, F.D.; Brown, G.D.; Ehlers, M.; Köhl, J. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat. Med., 2012, 18(9), 1401-1406.
[http://dx.doi.org/10.1038/nm.2862] [PMID: 22922409]
[178]
Barrios, C.; Zierer, J.; Gudelj, I.; Štambuk, J.; Ugrina, I.; Rodríguez, E.; Soler, M.J.; Pavić, T.; Šimurina, M.; Keser, T.; Pučić-Baković, M.; Mangino, M.; Pascual, J.; Spector, T.D.; Lauc, G.; Menni, C. Glycosylation profile of IgG in moderate kidney dysfunction. J. Am. Soc. Nephrol., 2016, 27(3), 933-941.
[http://dx.doi.org/10.1681/ASN.2015010109] [PMID: 26185202]
[179]
Chen, X.; Wang, Y.; Zhang, Y.; Chen, Z.; Liu, Y.; Li, Z.; Li, J. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal. Chem., 2014, 86(9), 4278-4286.
[http://dx.doi.org/10.1021/ac404070m] [PMID: 24684138]
[180]
Murphy-Ullrich, J.E.; Poczatek, M.J.C. Activation of latent TGF-β by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev., 2000, 11, 1-2, 59-.
[181]
Chen, H.; Sottile, J.; Strickland, D.K.; Mosher, D.F. Binding and degradation of thrombospondin-1 mediated through heparan sulphate proteoglycans and low-density-lipoprotein receptor-related protein: Localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem. J., 1996, 318(3), 959-963.
[http://dx.doi.org/10.1042/bj3180959] [PMID: 8836144]
[182]
Bornstein, P. Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J. Cell Biol., 1995, 130(3), 503-506.
[http://dx.doi.org/10.1083/jcb.130.3.503] [PMID: 7542656]
[183]
Tan, K.; Lawler, J. The interaction of Thrombospondins with extracellular matrix proteins. J. Cell Commun. Signal., 2009, 3(3-4), 177-187.
[http://dx.doi.org/10.1007/s12079-009-0074-2] [PMID: 19830595]
[184]
Ritz, E.; Rychlík, I.; Locatelli, F.; Halimi, S. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am. J. Kidney Dis., 1999, 34(5), 795-808.
[http://dx.doi.org/10.1016/S0272-6386(99)70035-1] [PMID: 10561134]
[185]
Fu, X.; He, J.; Zhang, C.; Chen, J.; Wen, Y.; li, J.; Mao, W.; Zhong, H.; Wu, J.; Ji, X.; Yu, C. Trimetallic signal amplification aptasensor for TSP-1 detection based on Ce-MOF@Au and AuPtRu nanocomposites. Biosens. Bioelectron., 2019, 132, 302-309.
[http://dx.doi.org/10.1016/j.bios.2019.02.054] [PMID: 30884317]
[186]
Jauker, M.; Griesser, H.; Richert, C. Spontaneous formation of RNA strands, peptidyl RNA, and cofactors. Angew. Chem. Int. Ed., 2015, 54(48), 14564-14569.
[http://dx.doi.org/10.1002/anie.201506593] [PMID: 26435376]
[187]
Willett, W.C. Dietary fat plays a major role in obesity: No. Obes. Rev., 2002, 3(2), 59-68.
[http://dx.doi.org/10.1046/j.1467-789X.2002.00060.x] [PMID: 12120421]
[188]
Dzeja, P.; Terzic, A. Adenylate kinase and AMP signaling networks: Metabolic monitoring, signal communication and body energy sensing. Int. J. Mol. Sci., 2009, 10(4), 1729-1772.
[http://dx.doi.org/10.3390/ijms10041729] [PMID: 19468337]
[189]
Kim, Y.; Park, C.W. Adenosine monophosphate–activated protein kinase in diabetic nephropathy. Kidney Res. Clin. Pract., 2016, 35(2), 69-77.
[http://dx.doi.org/10.1016/j.krcp.2016.02.004] [PMID: 27366660]
[190]
Song, Y.; Zhao, C.; Ren, J.; Qu, X. Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chem. Commun. (Camb.), 2009, (15), 1975-1977.
[http://dx.doi.org/10.1039/b818415a] [PMID: 19333462]
[191]
Tanaka, S.; Kuroda, A.; Kato, J.; Ikeda, T.; Takiguchi, N.; Ohtake, H. A sensitive method for detecting AMP by utilizing polyphosphate-dependent ATP regeneration and bioluminescence reactions. Biochem. Eng. J., 2001, 9(3), 193-197.
[http://dx.doi.org/10.1016/S1369-703X(01)00144-9]
[192]
Sallacan, N.; Zayats, M.; Bourenko, T.; Kharitonov, A.B.; Willner, I. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers. Anal. Chem., 2002, 74(3), 702-712.
[http://dx.doi.org/10.1021/ac0109873] [PMID: 11838699]
[193]
Loukovaara, S.; Sahanne, S.; Jalkanen, S.; Yegutkin, G.G. Increased intravitreal adenosine 5′-triphosphate, adenosine 5′-diphosphate and adenosine 5′-monophosphate levels in patients with proliferative diabetic retinopathy. Acta Ophthalmol., 2015, 93(1), 67-73.
[http://dx.doi.org/10.1111/aos.12507] [PMID: 25079888]
[194]
Drexler, J.; Liu, A.C.; Foti, A.G. Fasting plasma cyclic AMP levels in an adult diabetic and non-diabetic group. Acta Diabetol. Lat., 1977, 14(3-4), 112-118.
[http://dx.doi.org/10.1007/BF02581398] [PMID: 204138]
[195]
Shen, L.; Chen, Z.; Li, Y.; Jing, P.; Xie, S.; He, S.; He, P.; Shao, Y. A chronocoulometric aptamer sensor for adenosine monophosphate. Chem. Commun. (Camb.), 2007, (21), 2169-2171.
[http://dx.doi.org/10.1039/b618909a] [PMID: 17520125]
[196]
Datta, D.; Meshik, X.; Mukherjee, S.; Sarkar, K.; Choi, M.S.; Mazouchi, M.; Farid, S.; Wang, Y.Y.; Burke, P.J.; Dutta, M.; Stroscio, M.A. Submillimolar detection of adenosine monophosphate using graphene-based electrochemical aptasensor. IEEE Trans. Nanotechnol., 2017, 16(2), 196-202.
[http://dx.doi.org/10.1109/TNANO.2016.2647715]
[197]
Chantry, D.; Turner, M.; Abney, E.; Feldmann, M. Modulation of cytokine production by transforming growth factor-beta. J. Immunol., 1989, 142(12), 4295-4300.
[PMID: 2542408]
[198]
Cameron, N.; Cotter, M. Pro-inflammatory mechanisms in diabetic neuropathy: Focus on the nuclear factor kappa B pathway. Curr. Drug Targets, 2008, 9(1), 60-67.
[http://dx.doi.org/10.2174/138945008783431718] [PMID: 18220713]
[199]
Horiguchi, M.; Ota, M.; Rifkin, D.B. Matrix control of transforming growth factor- function. J. Biochem., 2012, 152(4), 321-329.
[http://dx.doi.org/10.1093/jb/mvs089] [PMID: 22923731]
[200]
Fukumoto, H.; Naito, Z.; Asano, G.; Aramaki, T. Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J. Atheroscler. Thromb., 1998, 5(1), 29-35.
[http://dx.doi.org/10.5551/jat1994.5.29] [PMID: 10077455]
[201]
Boulton, A.J.M.; Malik, R.A.; Arezzo, J.C.; Sosenko, J.M. Diabetic somatic neuropathies. Diabetes Care, 2004, 27(6), 1458-1486.
[http://dx.doi.org/10.2337/diacare.27.6.1458] [PMID: 15161806]
[202]
Tavakoli, M.; Quattrini, C.; Abbott, C.; Kallinikos, P.; Marshall, A.; Finnigan, J.; Morgan, P.; Efron, N.; Boulton, A.J.M.; Malik, R.A. Corneal confocal microscopy: A novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care, 2010, 33(8), 1792-1797.
[http://dx.doi.org/10.2337/dc10-0253] [PMID: 20435796]
[203]
Boulton, A.J.M.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet, 2005, 366(9498), 1719-1724.
[http://dx.doi.org/10.1016/S0140-6736(05)67698-2] [PMID: 16291066]
[204]
Matharu, Z.; Patel, D.; Gao, Y.; Haque, A.; Zhou, Q.; Revzin, A. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem., 2014, 86(17), 8865-8872.
[http://dx.doi.org/10.1021/ac502383e] [PMID: 25105888]
[205]
Osaki, S.; Johnson, D.A.; Frieden, E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem., 1966, 241(12), 2746-2751.
[http://dx.doi.org/10.1016/S0021-9258(18)96527-0] [PMID: 5912351]
[206]
Wirth, P.L.; Linder, M.C. Distribution of copper among components of human serum. J. Natl. Cancer Inst., 1985, 75(2), 277-284.
[PMID: 3860683]
[207]
Ojeda, I.; Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical magnetic immunosensors for the determination of ceruloplasmin. Electroanalysis, 2013, 25(9), 2166-2174.
[http://dx.doi.org/10.1002/elan.201300269]
[208]
Haghshenas, E.; Madrakian, T.; Afkhami, A.; Saify Nabiabad, H. An electrochemical ceruloplasmin aptasensor using a glassy carbon electrode modified by diazonium-functionalized multiwalled carbon nanotubes. J. Indian Chem. Soc., 2019, 16(3), 593-602.
[209]
Chateauvieux, S.; Grigorakaki, C.; Morceau, F.; Dicato, M.; Diederich, M. Erythropoietin, erythropoiesis and beyond. Biochem. Pharmacol., 2011, 82(10), 1291-1303.
[http://dx.doi.org/10.1016/j.bcp.2011.06.045] [PMID: 21782802]
[210]
Zhang, Y.; Wang, L.; Dey, S.; Alnaeeli, M.; Suresh, S.; Rogers, H.; Teng, R.; Noguchi, C. Erythropoietin action in stress response, tissue maintenance and metabolism. Int. J. Mol. Sci., 2014, 15(6), 10296-10333.
[http://dx.doi.org/10.3390/ijms150610296] [PMID: 24918289]
[211]
Choi, D.; Retnakaran, R.; Woo, M. The extra-hematopoietic role of erythropoietin in diabetes mellitus. Curr. Diabetes Rev., 2011, 7(4), 284-290.
[http://dx.doi.org/10.2174/157339911796397820] [PMID: 21644916]
[212]
Christensen, B.; Nellemann, B.; Larsen, M.S.; Thams, L.; Sieljacks, P.; Vestergaard, P.F.; Bibby, B.M.; Vissing, K.; Stødkilde-Jørgensen, H.; Pedersen, S.B.; Møller, N.; Nielsen, S.; Jessen, N.; Jørgensen, J.O.L. Whole body metabolic effects of prolonged endurance training in combination with erythropoietin treatment in humans: A randomized placebo controlled trial. Am. J. Physiol. Endocrinol. Metab., 2013, 305(7), E879-E889.
[http://dx.doi.org/10.1152/ajpendo.00269.2013] [PMID: 23921143]
[213]
Kristensen, P.L.; Høi-Hansen, T.; Olsen, N.V.; Pedersen-Bjergaard, U.; Thorsteinsson, B. Erythropoietin during hypoglycaemia in type 1 diabetes: Relation to basal renin-angiotensin system activity and cognitive function. Diabetes Res. Clin. Pract., 2009, 85(1), 75-84.
[http://dx.doi.org/10.1016/j.diabres.2009.01.008] [PMID: 19211168]
[214]
Abellan, R.; Ventura, R.; Pichini, S.; Remacha, A.F.; Pascual, J.A.; Pacifici, R.; Di Giovannandrea, R.; Zuccaro, P.; Segura, J. Evaluation of immunoassays for the measurement of erythropoietin (EPO) as an indirect biomarker of recombinant human EPO misuse in sport. J. Pharm. Biomed. Anal., 2004, 35(5), 1169-1177.
[http://dx.doi.org/10.1016/j.jpba.2004.02.001] [PMID: 15336362]
[215]
Stoyanoff, T.R.; Todaro, J.S.; Aguirre, M.V.; Zimmermann, M.C.; Brandan, N.C. Amelioration of lipopolysaccharide-induced acute kidney injury by erythropoietin: Involvement of mitochondria-regulated apoptosis. Toxicology, 2014, 318, 13-21.
[http://dx.doi.org/10.1016/j.tox.2014.01.011] [PMID: 24561306]
[216]
Dimitrijevic, Z.M.; Cvetkovic, T.P.; Djordjevic, V.M.; Pavlovic, D.D.; Stefanovic, N.Z.; Stojanovic, I.R.; Paunovic, G.J.; Velickovic-Radovanovic, R.M. How the duration period of erythropoietin treatment influences the oxidative status of hemodialysis patients. Int. J. Med. Sci., 2012, 9(9), 808-815.
[http://dx.doi.org/10.7150/ijms.4910] [PMID: 23136545]
[217]
Nairz, M.; Sonnweber, T.; Schroll, A.; Theurl, I.; Weiss, G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect., 2012, 14(3), 238-246.
[http://dx.doi.org/10.1016/j.micinf.2011.10.005] [PMID: 22094132]
[218]
Chen, S.; Li, J.; Peng, H.; Zhou, J.; Fang, H. Administration of erythropoietin exerts protective effects against glucocorticoid-induced osteonecrosis of the femoral head in rats. Int. J. Mol. Med., 2014, 33(4), 840-848.
[http://dx.doi.org/10.3892/ijmm.2014.1644] [PMID: 24503957]
[219]
Chen, L.N.; Sun, Q.; Liu, S.Q.; Hu, H.; Lv, J.; Ji, W.J.; Wang, M.; Chen, M.X.; Zhou, J. Erythropoietin improves glucose metabolism and pancreatic β-cell damage in experimental diabetic rats. Mol. Med. Rep., 2015, 12(4), 5391-5398.
[http://dx.doi.org/10.3892/mmr.2015.4006] [PMID: 26126591]
[220]
Fenjves, E.S.; Ochoa, M.S.; Cabrera, O.; Mendez, A.J.; Kenyon, N.S.; Inverardi, L.; Ricordi, C. Human, nonhuman primate, and rat pancreatic islets express erythropoietin receptors1. Transplantation, 2003, 75(8), 1356-1360.
[http://dx.doi.org/10.1097/01.TP.0000062862.88375.BD] [PMID: 12717230]
[221]
Chen, Z.; Li, H.; Zhao, Y.; Xu, M.; Xu, D. Magnetic nanoparticles and polydopamine amplified FP aptasensor for the highly sensitive detection of rHuEPO-α. Talanta, 2018, 189, 143-149.
[http://dx.doi.org/10.1016/j.talanta.2018.05.061] [PMID: 30086898]
[222]
Liu, S.; Shen, Z.; Deng, L.; Liu, G. Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes. Biosens. Bioelectron., 2022, 209, 114251.
[http://dx.doi.org/10.1016/j.bios.2022.114251] [PMID: 35405503]
[223]
Kohler, N.; Lipton, A. Platelets as a source of fibroblast growth-promoting activity. Exp. Cell Res., 1974, 87(2), 297-301.
[http://dx.doi.org/10.1016/0014-4827(74)90484-4] [PMID: 4370268]
[224]
Zhang, H.; Li, X.F.; Le, X.C. Differentiation and detection of PDGF isomers and their receptors by tunable aptamer capillary electrophoresis. Anal. Chem., 2009, 81(18), 7795-7800.
[http://dx.doi.org/10.1021/ac901471w] [PMID: 19691297]
[225]
Pierce, G.F.; Tarpley, J.E.; Tseng, J.; Bready, J.; Chang, D.; Kenney, W.C.; Rudolph, R.; Robson, M.C.; Vande Berg, J.; Reid, P. Detection of platelet-derived growth factor (PDGF)-AA in actively healing human wounds treated with recombinant PDGF-BB and absence of PDGF in chronic nonhealing wounds. J. Clin. Invest., 1995, 96(3), 1336-1350.
[http://dx.doi.org/10.1172/JCI118169] [PMID: 7657809]
[226]
Yang, X.H.; Sun, S.; Liu, P.; Wang, K.M.; Wang, Q.; Liu, J.B.; Huang, J.; He, L.L. A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles. Chin. Chem. Lett., 2014, 25(1), 9-14.
[http://dx.doi.org/10.1016/j.cclet.2013.10.032]
[227]
Zhang, J.J.; Cao, J.T.; Shi, G.F.; Huang, K.J.; Liu, Y.M.; Ren, S.W. A luminol electrochemiluminescence aptasensor based on glucose oxidase modified gold nanoparticles for measurement of platelet-derived growth factor BB. Talanta, 2015, 132, 65-71.
[http://dx.doi.org/10.1016/j.talanta.2014.08.058] [PMID: 25476280]
[228]
Menon, S.; Mathew, M.R.; Sam, S.; Keerthi, K.; Kumar, K.G. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J. Electroanal. Chem. (Lausanne), 2020, 878, 114596.
[http://dx.doi.org/10.1016/j.jelechem.2020.114596] [PMID: 32863810]
[229]
Anik, Ü. Electrochemical medical biosensors for POC applications, Medical biosensors for point of care (POC) applications; Elsevier, 2017, pp. 275-292.
[http://dx.doi.org/10.1016/B978-0-08-100072-4.00012-5]
[230]
Zhang, C.G.; Chang, S.J.; Settu, K.; Jung Chen, C.; Liu, J.T. High-sensitivity glycated hemoglobin (HbA1c) aptasensor in rapid-prototyping surface plasmon resonance. Sens. Actuators B Chem., 2019, 279, 267-273.
[http://dx.doi.org/10.1016/j.snb.2018.09.077]