An Insight to Heat Shock Protein 90: A Remedy for Multiple Problems

Page: [2664 - 2676] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Heat shock protein 90 (Hsp90) is a chaperone protein that prevents many other proteins from aggregating by folding them in a certain way. Hsp90 consists of three structural domains: N-terminal, middle and C-terminal domains. Hsp90 has many activities in numerous proteins and signaling pathways like chimeric fusion proteins, steroid hormone receptors, tumor suppressor genes, and cell cycle regulatory proteins. The role of Hsp90 is not only in cancer but also in other diseases like COVID-19, leishmaniasis, diabetes, flavi virus, systemic sclerosis, grass carp reovirus, psoriasis, malaria, cardiac fibrosis, and alcohol-related liver diseases. This review is a compilation of the pharmacological profile of Hsp90 inhibitors, problems associated with them, and suggested remedies for the same.

Keywords: Hsp90, chaperones, cancer, proteosome, geldanamycin, radicicol.

[1]
Malyshev I. Immunity, Tumors and Aging: The Role of HSP70. Springer Dordrecht Berlin 2013; pp. 1-13.
[http://dx.doi.org/10.1007/978-94-007-5943-5]
[2]
Chen B, Zhong D, Monteiro A. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 2006; 7(1): 156.
[http://dx.doi.org/10.1186/1471-2164-7-156] [PMID: 16780600]
[3]
Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer 2005; 5(10): 761-72.
[http://dx.doi.org/10.1038/nrc1716] [PMID: 16175177]
[4]
Luo W, Sun W, Taldone T, Rodina A, Chiosis G. Heat shock protein 90 in neurodegenerative diseases. Mol Neurodegener 2010; 5(1): 24.
[http://dx.doi.org/10.1186/1750-1326-5-24] [PMID: 20525284]
[5]
Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta Mol Cell Res 2012; 1823(3): 698-706.
[http://dx.doi.org/10.1016/j.bbamcr.2011.11.007] [PMID: 22154817]
[6]
Buchner J, Li J. Structure, function and regulation of the hsp90 machinery. Biomed J 2013; 36(3): 106-17.
[http://dx.doi.org/10.4103/2319-4170.113230] [PMID: 23806880]
[7]
Ali MMU, Roe SM, Vaughan CK, et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 2006; 440(7087): 1013-7.
[http://dx.doi.org/10.1038/nature04716] [PMID: 16625188]
[8]
Obermann WMJ, Sondermann H, Russo AA, Pavletich NP, Hartl FU. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 1998; 143(4): 901-10.
[http://dx.doi.org/10.1083/jcb.143.4.901] [PMID: 9817749]
[9]
Zhang M, Botër M, Li K, et al. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes. EMBO J 2008; 27(20): 2789-98.
[http://dx.doi.org/10.1038/emboj.2008.190] [PMID: 18818696]
[10]
Park SJ, Borin BN, Martinez-Yamout MA, Dyson HJ. The client protein p53 adopts a molten globule-like state in the presence of Hsp90. Nat Struct Mol Biol 2011; 18(5): 537-41.
[http://dx.doi.org/10.1038/nsmb.2045] [PMID: 21460846]
[11]
Meyer P, Prodromou C, Liao C, et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J 2004; 23(3): 511-9.
[http://dx.doi.org/10.1038/sj.emboj.7600060] [PMID: 14739935]
[12]
Vaughan CK, Gohlke U, Sobott F, et al. Structure of an HSP90-cdc37-cdk4 complex. Mol Cell 2006; 23(5): 697-707.
[http://dx.doi.org/10.1016/j.molcel.2006.07.016] [PMID: 16949366]
[13]
Street TO, Lavery LA, Agard DA. Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol Cell 2011; 42(1): 96-105.
[http://dx.doi.org/10.1016/j.molcel.2011.01.029] [PMID: 21474071]
[14]
Young JC, Schneider C, Hartl FU. In vitro evidence that hsp90 contains two independent chaperone sites. FEBS Lett 1997; 418(1-2): 139-43.
[http://dx.doi.org/10.1016/S0014-5793(97)01363-X] [PMID: 9414113]
[15]
Scheibel T, Weikl T, Buchner J. Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc Natl Acad Sci USA 1998; 95(4): 1495-9.
[http://dx.doi.org/10.1073/pnas.95.4.1495] [PMID: 9465043]
[16]
Harris SF, Shiau AK, Agard DA. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 2004; 12(6): 1087-97.
[http://dx.doi.org/10.1016/j.str.2004.03.020] [PMID: 15274928]
[17]
Hagn F, Lagleder S, Retzlaff M, et al. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat Struct Mol Biol 2011; 18(10): 1086-93.
[http://dx.doi.org/10.1038/nsmb.2114] [PMID: 21892170]
[18]
Morra G, Neves MAC, Plescia CJ, et al. Dynamics-based discovery of allosteric inhibitors: Selection of new ligands for the C-terminal domain of HSP90. J Chem Theory Comput 2010; 6(9): 2978-89.
[http://dx.doi.org/10.1021/ct100334n] [PMID: 26616092]
[19]
Garnier C, Lafitte D, Tsvetkov PO, et al. Binding of ATP to heat shock protein 90: Evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 2002; 277(14): 12208-14.
[http://dx.doi.org/10.1074/jbc.M111874200] [PMID: 11805114]
[20]
Frydman J, Höhfeld J. Chaperones get in touch: The hip-hop connection. Trends Biochem Sci 1997; 22(3): 87-92.
[http://dx.doi.org/10.1016/S0968-0004(97)01005-0] [PMID: 9066258]
[21]
Ballinger CA, Connell P, Wu Y, et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 1999; 19(6): 4535-45.
[http://dx.doi.org/10.1128/MCB.19.6.4535] [PMID: 10330192]
[22]
Zhang M, Windheim M, Roe SM, et al. Chaperoned ubiquitylation crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol Cell 2005; 20(4): 525-38.
[http://dx.doi.org/10.1016/j.molcel.2005.09.023] [PMID: 16307917]
[23]
Scheufler C, Brinker A, Bourenkov G, et al. Structure of TPR domain-peptide complexes: Critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 2000; 101(2): 199-210.
[http://dx.doi.org/10.1016/S0092-8674(00)80830-2] [PMID: 10786835]
[24]
Hainzl O, Lapina MC, Buchner J, Richter K. The charged linker region is an important regulator of Hsp90 function. J Biol Chem 2009; 284(34): 22559-67.
[http://dx.doi.org/10.1074/jbc.M109.031658] [PMID: 19553666]
[25]
Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004; 5(10): 781-91.
[http://dx.doi.org/10.1038/nrm1492] [PMID: 15459659]
[26]
Pearl LH, Prodromou C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 2006; 75(1): 271-94.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142738] [PMID: 16756493]
[27]
Graefe SEB, Wiesgigl M, Gaworski I, Macdonald A, Clos J. Inhibition of HSP90 in Trypanosoma cruzi induces a stress response but no stage differentiation. Eukaryot Cell 2002; 1(6): 936-43.
[http://dx.doi.org/10.1128/EC.1.6.936-943.2002] [PMID: 12477794]
[28]
Ratzke C, Mickler M, Hellenkamp B, Buchner J, Hugel T. Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle. Proc Natl Acad Sci USA 2010; 107(37): 16101-6.
[http://dx.doi.org/10.1073/pnas.1000916107] [PMID: 20736353]
[29]
Jacobs DM, Langer T, Elshorst B, et al. NMR backbone assignment of the N-terminal domain of human HSP90. J Biomol NMR 2006; 36(S1): 52.
[http://dx.doi.org/10.1007/s10858-006-9030-0] [PMID: 16821127]
[30]
Dehner A, Furrer J, Richter K, Schuster I, Buchner J, Kessler H. NMR chemical shift perturbation study of the N-terminal domain of Hsp90 upon binding of ADP, AMP-PNP, geldanamycin, and radicicol. ChemBioChem 2003; 4(9): 870-7.
[http://dx.doi.org/10.1002/cbic.200300658] [PMID: 12964162]
[31]
Salek RM, Williams MA, Prodromou C, Pearl LH, Ladbury JE. Backbone resonance assignments of the 25kD N-terminal ATPase do-main from the HSP90 chaperone. J Biomol NMR 2002; 23: 327.
[32]
Martinez-Yamout MA, Venkitakrishnan RP, Preece NE, Kroon G, Wright PE, Dyson HJ. Localization of sites of interaction between p23 and Hsp90 in solution. J Biol Chem 2006; 281(20): 14457-64.
[http://dx.doi.org/10.1074/jbc.M601759200] [PMID: 16565516]
[33]
Dollins DE, Warren JJ, Immormino RM, Gewirth DT. Structures of GRP94-nucleotide complexes reveal mechanistic differences between the hsp90 chaperones. Mol Cell 2007; 28(1): 41-56.
[http://dx.doi.org/10.1016/j.molcel.2007.08.024] [PMID: 17936703]
[34]
Nimmanapalli R, O’Bryan E, Bhalla K. Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 2001; 61(5): 1799-804.
[PMID: 11280726]
[35]
Rahmani M, Reese E, Dai Y, et al. Cotreatment with suberanoylanilide hydroxamic acid and 17-allylamino 17-demethoxygeldanamycin synergistically induces apoptosis in Bcr-Abl+ Cells sensitive and resistant to STI571 (imatinib mesylate) in association with down-regulation of Bcr-Abl, abrogation of signal transducer and activator of transcription 5 activity, and Bax conformational change. Mol Pharmacol 2005; 67(4): 1166-76.
[http://dx.doi.org/10.1124/mol.104.007831] [PMID: 15625278]
[36]
Fliss AE, Benzeno S, Rao J, Caplan AJ. Control of estrogen receptor ligand binding by Hsp90. J Steroid Biochem Mol Biol 2000; 72(5): 223-30.
[http://dx.doi.org/10.1016/S0960-0760(00)00037-6] [PMID: 10822011]
[37]
Martin MB, Franke TF, Stoica GE, et al. A role for Akt in mediating the estrogenic functions of epidermal growth factor and insulin-like growth factor I. Endocrinology 2000; 141(12): 4503-11.
[http://dx.doi.org/10.1210/endo.141.12.7836] [PMID: 11108261]
[38]
Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 1998; 18(3): 1517-24.
[http://dx.doi.org/10.1128/MCB.18.3.1517] [PMID: 9488468]
[39]
Malumbres M, Barbacid M. To cycle or not to cycle: A critical decision in cancer. Nat Rev Cancer 2001; 1(3): 222-31.
[http://dx.doi.org/10.1038/35106065] [PMID: 11902577]
[40]
Srethapakdi M, Liu F, Tavorath R, Rosen N. Inhibition of Hsp90 function by ansamycins causes retinoblastoma gene product-dependent G1 arrest. Cancer Res 2000; 60(14): 3940-6.
[PMID: 10919672]
[41]
Xu W, Neckers L. Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling path-ways of cancer cells. Clin Cancer Res 2007; 13(6): 1625-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2966] [PMID: 17363512]
[42]
Tan SS, Ahmad I, Bennett HL, et al. GRP78 up-regulation is associated with androgen receptor status, Hsp70-Hsp90 client proteins and castrate-resistant prostate cancer. J Pathol 2011; 223(1): 81-7.
[http://dx.doi.org/10.1002/path.2795] [PMID: 21125667]
[43]
Crawford LJ, Walker B, Irvine AE. Proteasome inhibitors in cancer therapy. J Cell Commun Signal 2011; 5(2): 101-10.
[http://dx.doi.org/10.1007/s12079-011-0121-7] [PMID: 21484190]
[44]
Singh P, Godbole M, Rao G, et al. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors. Biochem Biophys Res Commun 2011; 415(1): 181-6.
[http://dx.doi.org/10.1016/j.bbrc.2011.10.054] [PMID: 22027149]
[45]
Yao F, Wang G, Wei W, Tu Y, Tong H, Sun S. An autophagy inhibitor enhances the inhibition of cell proliferation induced by a pro-teasome inhibitor in MCF-7 cells. Mol Med Rep 2012; 5(1): 84-8.
[PMID: 21931937]
[46]
Seruga B, Ocana A, Tannock IF. Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 2011; 8(1): 12-23.
[http://dx.doi.org/10.1038/nrclinonc.2010.136] [PMID: 20859283]
[47]
Vasilevskaya IA, Rakitina TV, O’Dwyer PJ. Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of Cis-platin in human colon adenocarcinoma cells: Differential caspase activation as a basis for interaction. Cancer Res 2003; 63(12): 3241-6.
[PMID: 12810654]
[48]
Hubbard J, Erlichman C, Toft DO, et al. Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Invest New Drugs 2011; 29(3): 473-80.
[http://dx.doi.org/10.1007/s10637-009-9381-y] [PMID: 20082116]
[49]
Liao ZY, Zhang SH, Zhen YS. Synergistic effects of geldanamycin and antitumor drugs. Yao Xue Xue Bao 2001; 36(8): 569-75.
[PMID: 12579931]
[50]
Bagatell R, Beliakoff J, David CL, Marron MT, Whitesell L. Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int J Cancer 2005; 113(2): 179-88.
[http://dx.doi.org/10.1002/ijc.20611] [PMID: 15455381]
[51]
Ki SW, Ishigami K, Kitahara T, Kasahara K, Yoshida M, Horinouchi S. Radicicol binds and inhibits mammalian ATP citrate lyase. J Biol Chem 2000; 275(50): 39231-6.
[http://dx.doi.org/10.1074/jbc.M006192200] [PMID: 11007781]
[52]
Chiosis G, Timaul MN, Lucas B, et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degra-dation and the growth arrest and differentiation of breast cancer cells. Chem Biol 2001; 8(3): 289-99.
[http://dx.doi.org/10.1016/S1074-5521(01)00015-1] [PMID: 11306353]
[53]
Lucas B, Rosen N, Chiosis G. Facile synthesis of a library of 9-alkyl-8-benzyl-9H-purin-6-ylamine derivatives. J Comb Chem 2001; 3(6): 518-20.
[http://dx.doi.org/10.1021/cc010017t] [PMID: 11703144]
[54]
Rinehart K, Shield LS. Chemistry of the ansamycin antibiotics. Fortschr Chem Org Naturst. Prog Chem Org Nat Prod 1976; •••: 231-7.
[55]
Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 1997; 386(6623): 414-7.
[http://dx.doi.org/10.1038/386414a0] [PMID: 9121560]
[56]
Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the prolifer-ation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 2002; 10(11): 3555-64.
[http://dx.doi.org/10.1016/S0968-0896(02)00253-5] [PMID: 12213470]
[57]
Zhang MH, Lee JS, Kim HJ, et al. HSP90 protects apoptotic cleavage of vimentin in geldanamycin-induced apoptosis. Mol Cell Biochem 2006; 281(1-2): 111-21.
[http://dx.doi.org/10.1007/s11010-006-0638-x] [PMID: 16328963]
[58]
Richardson PG, Chanan-Khan AA, Alsina M, et al. Tanespimycin monotherapy in relapsed multiple myeloma: Results of a phase 1 dose-escalation study. Br J Haematol 2010; 150(4): 438-45.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08265.x] [PMID: 20618337]
[59]
Eiseman JL, Lan J, Lagattuta TF, et al. Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]-amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother Pharmacol 2005; 55(1): 21-32.
[http://dx.doi.org/10.1007/s00280-004-0865-3] [PMID: 15338192]
[60]
Suzuki Y, Kondo Y, Hara S, Kimata R, Nishimura T. Effect of the hsp90 inhibitor geldanamycin on androgen response of prostate can-cer under hypoxic conditions. Int J Urol 2010; 17(3): 281-5.
[http://dx.doi.org/10.1111/j.1442-2042.2010.02450.x] [PMID: 20409220]
[61]
Deboer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic. J Antibiot 1970; 23(9): 442-7.
[http://dx.doi.org/10.7164/antibiotics.23.442] [PMID: 5459626]
[62]
Whitesell L, Shifrin SD, Schwab G, Neckers LM. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 1992; 52(7): 1721-8.
[PMID: 1551101]
[63]
Hadden MK, Lubbers DJ, Blagg BS. Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr Top Med Chem 2006; 6(11): 1173-82.
[http://dx.doi.org/10.2174/156802606777812031] [PMID: 16842154]
[64]
Pfeiffer N. Metastatic breast cancer: In phase I study, 17-AAG antibiotic+ trastuzumab shows promise. Oncol Times 2007; 29: 50.
[65]
Pacey S, Gore M, Chao D, et al. A Phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma. Invest New Drugs 2012; 30(1): 341-9.
[http://dx.doi.org/10.1007/s10637-010-9493-4] [PMID: 20683637]
[66]
Wright JJ. Combination therapy of bortezomib with novel targeted agents: An emerging treatment strategy. Clin Cancer Res 2010; 16(16): 4094-104.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2882] [PMID: 20682705]
[67]
Raja SM, Clubb RJ, Bhattacharyya M, et al. A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysoso-mal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells. Cancer Biol Ther 2008; 7(10): 1630-40.
[http://dx.doi.org/10.4161/cbt.7.10.6585] [PMID: 18769124]
[68]
Vaishampayan UN, Burger AM, Sausville EA, et al. Safety, efficacy, pharmacokinetics, and pharmacodynamics of the combination of sorafenib and tanespimycin. Clin Cancer Res 2010; 16(14): 3795-804.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0503] [PMID: 20525756]
[69]
Modi S, Sugarman S, Stopeck A, et al. Phase II trial of the Hsp90 inhibitor tanespimycin (Tan) + trastuzumab (T) in patients (pts) with HER2-positive metastatic breast cancer (MBC). J Clin Oncol 2008; 26(15)(Suppl.): 1027-27.
[http://dx.doi.org/10.1200/jco.2008.26.15_suppl.1027]
[70]
Atrash B, Cooper TS, Sheldrake P, Workman P, McDonald E. Development of synthetic routes to macrocyclic compounds based on the HSP90 inhibitor radicicol. Tetrahedron Lett 2006; 47(13): 2237-40.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.116]
[71]
Soga S, Sharma S, Shiotsu Y, et al. Stereospecific antitumor activity of radicicol oxime derivatives. Cancer Chemother Pharmacol 2001; 48(6): 435-45.
[http://dx.doi.org/10.1007/s002800100373] [PMID: 11800023]
[72]
Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 2003; 425(6956): 407-10.
[http://dx.doi.org/10.1038/nature01913] [PMID: 14508491]
[73]
He H, Zatorska D, Kim J, et al. Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J Med Chem 2006; 49(1): 381-90.
[http://dx.doi.org/10.1021/jm0508078] [PMID: 16392823]
[74]
Ueda T, Tamura T, Hamachi I. Development of a cell-based ligand-screening system for identifying HSP90 inhibitors. Biochemistry 2020; 59(2): 179-82.
[http://dx.doi.org/10.1021/acs.biochem.9b00781] [PMID: 31592648]
[75]
Tamura T, Ueda T, Goto T, et al. Rapid labelling and covalent inhibition of intracellular native proteins using ligand-directed N-acyl-N-alkyl sulfonamide. Nat Commun 2018; 9(1): 1870.
[http://dx.doi.org/10.1038/s41467-018-04343-0] [PMID: 29760386]
[76]
Tamura T, Hamachi I. Chemistry for covalent modification of endogenous/native proteins: From test tubes to complex biological sys-tems. J Am Chem Soc 2019; 141(7): 2782-99.
[http://dx.doi.org/10.1021/jacs.8b11747] [PMID: 30592612]
[77]
Taldone T, Zatorska D, Patel PD, et al. Design, synthesis, and evaluation of small molecule Hsp90 probes. Bioorg Med Chem 2011; 19(8): 2603-14.
[http://dx.doi.org/10.1016/j.bmc.2011.03.013] [PMID: 21459002]
[78]
Niphakis MJ, Cravatt BF. Enzyme inhibitor discovery by activity-based protein profiling. Annu Rev Biochem 2014; 83(1): 341-77.
[http://dx.doi.org/10.1146/annurev-biochem-060713-035708] [PMID: 24905785]
[79]
Taldone T, Patel PD, Patel M, et al. Experimental and structural testing module to analyze paralogue-specificity and affinity in the Hsp90 inhibitors series. J Med Chem 2013; 56(17): 6803-18.
[http://dx.doi.org/10.1021/jm400619b] [PMID: 23965125]
[80]
Patel PD, Yan P, Seidler PM, et al. Paralog-selective Hsp90 inhibitors define tumor-specific regulation of HER2. Nat Chem Biol 2013; 9(11): 677-84.
[http://dx.doi.org/10.1038/nchembio.1335] [PMID: 23995768]
[81]
Uddin SJ, Nahar L, Shilpi JA, et al. Gedunin, a limonoid from Xylocarpus granatum, inhibits the growth of CaCo-2 colon cancer cell line in vitro. Phytother Res 2007; 21(8): 757-61.
[http://dx.doi.org/10.1002/ptr.2159] [PMID: 17450509]
[82]
Brandt GEL, Schmidt MD, Prisinzano TE, Blagg BSJ. Gedunin, a novel hsp90 inhibitor: Semisynthesis of derivatives and preliminary structure-activity relationships. J Med Chem 2008; 51(20): 6495-502.
[http://dx.doi.org/10.1021/jm8007486] [PMID: 18816111]
[83]
Bojkova D, McGreig JE, McLaughlin KM, et al. SARS-CoV-2 and SARS-CoV differ in their cell tropism and drug sensitivity profiles. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.03.024257]
[84]
Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Front Microbiol 2014; 5: 296.
[http://dx.doi.org/10.3389/fmicb.2014.00296] [PMID: 24987391]
[85]
Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015; 485: 330-9.
[http://dx.doi.org/10.1016/j.virol.2015.08.010] [PMID: 26331680]
[86]
Wyler E, Mösbauer K, Franke V, et al. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 2021; 24(3): 102151.
[http://dx.doi.org/10.1016/j.isci.2021.102151] [PMID: 33585804]
[87]
Marcu MG, Doyle M, Bertolotti A, Ron D, Hendershot L, Neckers L. Heat shock protein 90 modulates the unfolded protein response by stabilizing IRE1α. Mol Cell Biol 2002; 22(24): 8506-13.
[http://dx.doi.org/10.1128/MCB.22.24.8506-8513.2002] [PMID: 12446770]
[88]
Sultan I, Howard S, Tbakhi A, et al. Drug repositioning suggests a role for the heat shock protein 90 inhibitor geldanamycin in treating COVID-19 infection. Res Square 2020.
[http://dx.doi.org/10.21203/rs.3.rs-18714/v1]
[89]
Antonov A, Snead C, Gorshkov B, Antonova GN, Verin AD, Catravas JD. Heat shock protein 90 inhibitors protect and restore pulmo-nary endothelial barrier function. Am J Respir Cell Mol Biol 2008; 39(5): 551-9.
[http://dx.doi.org/10.1165/rcmb.2007-0324OC] [PMID: 18474672]
[90]
Seraphim TV, Ramos CH, Borges JC. The molecular chaperones interaction networks in protein folding and degradation. Springer 2014; pp. 445-81.
[http://dx.doi.org/10.1007/978-1-4939-1130-1_17]
[91]
Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 2017; 18(6): 345-60.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[92]
Pallavi R, Roy N, Nageshan RK, et al. Heat shock protein 90 as a drug target against protozoan infections: Biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. J Biol Chem 2010; 285(49): 37964-75.
[http://dx.doi.org/10.1074/jbc.M110.155317] [PMID: 20837488]
[93]
Sõti C, Nagy E, Giricz Z, Vígh L, Csermely P, Ferdinandy P. Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 2005; 146(6): 769-80.
[http://dx.doi.org/10.1038/sj.bjp.0706396] [PMID: 16170327]
[94]
Powers MV, Workman P. Inhibitors of the heat shock response: Biology and pharmacology. FEBS Lett 2007; 581(19): 3758-69.
[http://dx.doi.org/10.1016/j.febslet.2007.05.040] [PMID: 17559840]
[95]
Giannini G, Battistuzzi G. Exploring in vitro and in vivo Hsp90 inhibitors activity against human protozoan parasites. Bioorg Med Chem Lett 2015; 25(3): 462-5.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.048] [PMID: 25547934]
[96]
Sidera K, Patsavoudi E. HSP90 inhibitors: Current development and potential in cancer therapy. Recent Patents Anticancer Drug Discov 2014; 9(1): 1-20.
[http://dx.doi.org/10.2174/15748928113089990031] [PMID: 23312026]
[97]
Brandau S, Dresel A, Clos J. High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. Biochem J 1995; 310(1): 225-32.
[http://dx.doi.org/10.1042/bj3100225] [PMID: 7646449]
[98]
Wiesgigl M, Clos J. Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani. Mol Biol Cell 2001; 12(11): 3307-16.
[http://dx.doi.org/10.1091/mbc.12.11.3307] [PMID: 11694568]
[99]
Wiesgigl M, Clos J. The heat shock protein 90 of Leishmania donovani. Med Microbiol Immunol 2001; 190(1-2): 27-31.
[http://dx.doi.org/10.1007/s004300100074] [PMID: 11770104]
[100]
Shonhai A, Maier AG, Przyborski JM, Blatch GL. Intracellular protozoan parasites of humans: The role of molecular chaperones in de-velopment and pathogenesis. Protein Pept Lett 2011; 18(2): 143-57.
[http://dx.doi.org/10.2174/092986611794475002] [PMID: 20955165]
[101]
Batista FAH, Ramos SL Jr, Tassone G, et al. Discovery of small molecule inhibitors of Leishmania braziliensis Hsp90 chaperone. J Enzyme Inhib Med Chem 2020; 35(1): 639-49.
[http://dx.doi.org/10.1080/14756366.2020.1726342] [PMID: 32048531]
[102]
Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity 2011; 34(5): 680-92.
[http://dx.doi.org/10.1016/j.immuni.2011.05.003] [PMID: 21616437]
[103]
Suthar MS, Ma DY, Thomas S, et al. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog 2010; 6(2): e1000757.
[http://dx.doi.org/10.1371/journal.ppat.1000757] [PMID: 20140199]
[104]
Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14(1): 36-49.
[http://dx.doi.org/10.1038/nri3581] [PMID: 24362405]
[105]
Roby JA, Esser-Nobis K, Dewey-Verstelle EC, et al. Flavivirus nonstructural protein NS5 dysregulates HSP90 to broadly inhibit JAK/STAT signaling. Cells 2020; 9(4): 899.
[http://dx.doi.org/10.3390/cells9040899] [PMID: 32272626]
[106]
Kovanich D, Saisawang C, Sittipaisankul P, et al. Analysis of the Zika and Japanese Encephalitis virus NS5 interactomes. J Proteome Res 2019; 18(8): 3203-18.
[http://dx.doi.org/10.1021/acs.jproteome.9b00318] [PMID: 31199156]
[107]
Lu CY, Chang YC, Hua CH, et al. Tubacin, an HDAC6 selective inhibitor, reduces the replication of the Japanese encephalitis virus via the decrease of viral RNA synthesis. Int J Mol Sci 2017; 18(5): 954.
[http://dx.doi.org/10.3390/ijms18050954] [PMID: 28468311]
[108]
Carpp LN, Rogers RS, Moritz RL, Aitchison JD. Quantitative proteomic analysis of host-virus interactions reveals a role for Golgi bre-feldin A resistance factor 1 (GBF1) in dengue infection. Mol Cell Proteomics 2014; 13(11): 2836-54.
[http://dx.doi.org/10.1074/mcp.M114.038984] [PMID: 24855065]
[109]
Srisutthisamphan K, Jirakanwisal K, Ramphan S, Tongluan N, Kuadkitkan A, Smith DR. Hsp90 interacts with multiple dengue virus 2 proteins. Sci Rep 2018; 8(1): 4308.
[http://dx.doi.org/10.1038/s41598-018-22639-5] [PMID: 29523827]
[110]
Rothan HA, Zhong Y, Sanborn MA, et al. Small molecule grp94 inhibitors with antiviral activity against Dengue and Zika virus. Antiviral Res 2019; 171: 104590.
[http://dx.doi.org/10.1016/j.antiviral.2019.104590] [PMID: 31421166]
[111]
Reverter M, Sarter S, Caruso D, et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun 2020; 11(1): 1870.
[http://dx.doi.org/10.1038/s41467-020-15735-6] [PMID: 32312964]
[112]
Hou G, Liu W, Xiong S, et al. Temperature-dependent IL6-STAT3-HSP90 signaling mediates viral entry. Res Square 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1232310/v1]
[113]
Honjo MN, Emura N, Kawagoe T, et al. Seasonality of interactions between a plant virus and its host during persistent infection in a natural environment. ISME J 2020; 14(2): 506-18.
[http://dx.doi.org/10.1038/s41396-019-0519-4] [PMID: 31664159]
[114]
Štorkánová H, Oreská S, Špiritović M, et al. Plasma Hsp90 levels in patients with systemic sclerosis and relation to lung and skin in-volvement: A cross-sectional and longitudinal study. Sci Rep 2021; 11(1): 1-10.
[http://dx.doi.org/10.1038/s41598-020-79139-8] [PMID: 33414495]
[115]
Wang C, Wu L, Bulek K, et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nat Immunol 2013; 14(1): 72-81.
[http://dx.doi.org/10.1038/ni.2479] [PMID: 23202271]
[116]
Hansen RS, Thuesen KKH, Bregnhøj A, et al. The HSP90 inhibitor RGRN‐305 exhibits strong immunomodulatory effects in human keratinocytes. Exp Dermatol 2021; 30(6): 773-81.
[http://dx.doi.org/10.1111/exd.14302] [PMID: 33583094]
[117]
Wu G, Cheng B, Qian H, Ma S, Chen Q. Identification of HSP90 as a direct target of artemisinin for its anti-inflammatory activity via quantitative chemical proteomics. Org Biomol Chem 2019; 17(28): 6854-9.
[http://dx.doi.org/10.1039/C9OB01264H] [PMID: 31263819]
[118]
Yoshida M, Xia Y. Heat shock protein 90 as an endogenous protein enhancer of inducible nitric-oxide synthase. J Biol Chem 2003; 278(38): 36953-8.
[http://dx.doi.org/10.1074/jbc.M305214200] [PMID: 12855682]
[119]
Ghosh A, Chawla-Sarkar M, Stuehr DJ. Hsp90 interacts with inducible NO synthase client protein in its heme‐free state and then drives heme insertion by an ATP‐dependent process. FASEB J 2011; 25(6): 2049-60.
[http://dx.doi.org/10.1096/fj.10-180554] [PMID: 21357526]
[120]
Zhang X, Zhang Y, Miao Q, et al. Inhibition of HSP90 S‐nitrosylation alleviates cardiac fibrosis via TGFβ/SMAD3 signalling pathway. Br J Pharmacol 2021; 178(23): 4608-25.
[http://dx.doi.org/10.1111/bph.15626] [PMID: 34265086]
[121]
Sørensen KK, Simon-Santamaria J, McCuskey RS, Smedsrød B. Liver sinusoidal endothelial cells. Compr Physiol 2015; 5(4): 1751-74.
[http://dx.doi.org/10.1002/cphy.c140078] [PMID: 26426467]
[122]
McCuskey RS, Bethea NW, Wong J, et al. Ethanol binging exacerbates sinusoidal endothelial and parenchymal injury elicited by aceta-minophen. J Hepatol 2005; 42(3): 371-7.
[http://dx.doi.org/10.1016/j.jhep.2004.11.033] [PMID: 15710220]
[123]
Yang Y, Sangwung P, Kondo R, et al. Alcohol-induced Hsp90 acetylation is a novel driver of liver sinusoidal endothelial dysfunction and alcohol-related liver disease. J Hepatol 2021; 75(2): 377-86.
[http://dx.doi.org/10.1016/j.jhep.2021.02.028] [PMID: 33675874]
[124]
Lei H, Romeo G, Kazlauskas A. Heat shock protein 90α-dependent translocation of annexin II to the surface of endothelial cells modu-lates plasmin activity in the diabetic rat aorta. Circ Res 2004; 94(7): 902-9.
[http://dx.doi.org/10.1161/01.RES.0000124979.46214.E3] [PMID: 15001530]
[125]
Ding X, Meng C, Dong H, et al. Extracellular Hsp90α, which participates in vascular inflammation, is a novel serum predictor of athero-sclerosis in type 2 diabetes. BMJ Open Diabetes Res Care 2022; 10(1): e002579.
[http://dx.doi.org/10.1136/bmjdrc-2021-002579] [PMID: 35091448]