Mini-Reviews in Medicinal Chemistry

Author(s): Lalduhsanga Pachuau* and Ranjita Nath

DOI: 10.2174/1389557522666220829085805

Recent Developments in Shape-Controlled Synthesis of Cellulose Nanocrystals

Page: [1360 - 1375] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Cellulose Nanocrystals (CNCs) have been touted to be among the materials of the 21st century. It is an emerging biocompatible and biodegradable nanomaterial with unique physicochemical properties adaptable to various surface modifications. The characteristics and properties of CNCs are now understood to depend upon the source of the cellulose and the conditions of its isolation. Over the past decade, CNCs with various morphologies, including rod, ribbon, needle shapes, spherical, square, block and rectangular shapes with unique surface properties, have been synthesized. Studies have shown that surface and morphological properties of CNCs have substantial control over the rheology, cytotoxicity and cellular uptake, which ultimately influence its purposive biomedical applications. The objective of the current survey is to analyze the advances made in the shape-controlled synthesis and fabrication of CNCs morphology and review the influence such morphological variations have on its functionality in biomedical fields.

Keywords: Cellulose Nanocrystals, Morphology, Particle size, Rheology;, Drug delivery.

Graphical Abstract

[1]
McNamara, J.T.; Morgan, J.L.W.; Zimmer, J. A molecular description of cellulose biosynthesis. Annu. Rev. Biochem., 2015, 84(1), 895-921.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033930] [PMID: 26034894]
[2]
Curvello, R.; Raghuwanshi, V.S.; Garnier, G. Engineering nanocellulose hydrogels for biomedical applications. Adv. Colloid Interface Sci., 2019, 267, 47-61.
[http://dx.doi.org/10.1016/j.cis.2019.03.002] [PMID: 30884359]
[3]
Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[4]
Vanderfleet, O.M.; Osorio, D.A.; Cranston, E.D. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2018, 376(2112), 20170041.
[http://dx.doi.org/10.1098/rsta.2017.0041] [PMID: 29277739]
[5]
Rånby, B.G.; Banderet, A.; Sillén, L.G. Aqueous colloidal solutions of cellulose micelles. Acta Chem. Scand., 1949, 3, 649-650.
[http://dx.doi.org/10.3891/acta.chem.scand.03-0649]
[6]
George, J.; Sabapathi, S.N. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54.
[http://dx.doi.org/10.2147/NSA.S64386] [PMID: 26604715]
[7]
Plackett, D.; Letchford, K.; Jackson, J.; Burt, H. A review of nanocellulose as a novel vehicle for drug delivery. Nord. Pulp Paper Res. J., 2014, 29(1), 105-118.
[http://dx.doi.org/10.3183/npprj-2014-29-01-p105-118]
[8]
Raghav, N.; Sharma, M.R.; Kennedy, J.F. Nanocellulose: A mini-review on types and use in drug delivery systems. Carbohydr. Polym. Technol. Applic., 2021, 2, 100031.
[http://dx.doi.org/10.1016/j.carpta.2020.100031]
[9]
Rånby, B.G. Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss. Faraday Soc., 1951, 11(0), 158-164.
[http://dx.doi.org/10.1039/DF9511100158]
[10]
Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.L.; Heux, L.; Dubreuil, F.; Rochas, C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 2008, 9(1), 57-65.
[http://dx.doi.org/10.1021/bm700769p] [PMID: 18052127]
[11]
Wegner, T.H.; Ireland, S.; Jones, J.P.E. Cellulosic nanomaterials: Sustainable materials of choice for the 21st century. In: Postek, M.T.; Moon, R.J.; Rudie, A.W.; Bilodeau, M.A., Eds. Production and Applications of Cellulose Nanomaterials; Tappi Press: USA, 2013, pp. 3-8.
[12]
Domingues, R.M.A.; Gomes, M.E.; Reis, R.L. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 2014, 15(7), 2327-2346.
[http://dx.doi.org/10.1021/bm500524s] [PMID: 24914454]
[13]
Sakurada, I.; Nukushina, Y.; Ito, T. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci., 1962, 57(165), 651-660.
[http://dx.doi.org/10.1002/pol.1962.1205716551]
[14]
Zimmermann, T.; Pöhler, E.; Geiger, T. Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater., 2004, 6(9), 754-761.
[http://dx.doi.org/10.1002/adem.200400097]
[15]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[16]
Trache, D.; Tarchoun, A.F.; Derradji, M.; Hamidon, T.S.; Masruchin, N.; Brosse, N.; Hussin, M.H. Nanocellulose: From fundamentals to advanced applications. Front Chem., 2020, 8, 392.
[http://dx.doi.org/10.3389/fchem.2020.00392] [PMID: 32435633]
[17]
Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500.
[http://dx.doi.org/10.1021/cr900339w] [PMID: 20201500]
[18]
Pachuau, L. A mini review on plant-based nanocellulose: Production, sources, modifications and its potential in drug delivery applications. Mini Rev. Med. Chem., 2015, 15(7), 543-552.
[http://dx.doi.org/10.2174/1389557515666150415150327] [PMID: 25877601]
[19]
Huang, C.; Yu, H.; Abdalkarim, S.Y.H.; Li, Y.; Chen, X.; Yang, X.; Zhou, Y.; Zhang, L. A comprehensive investigation on cellulose nanocrystals with different crystal structures from cotton via an efficient route. Carbohydr. Polym., 2022, 276, 118766.
[http://dx.doi.org/10.1016/j.carbpol.2021.118766] [PMID: 34823786]
[20]
Vanzetto, A.B.; Beltrami, L.V.R.; Zattera, A.J. Textile waste as precursors in nanocrystalline cellulose synthesis. Cellulose, 2021, 28(11), 6967-6981.
[http://dx.doi.org/10.1007/s10570-021-03982-9]
[21]
Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in cellulose nanomaterials. Cellulose, 2018, 25(4), 2151-2189.
[http://dx.doi.org/10.1007/s10570-018-1723-5]
[22]
Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J. Polym. Sci., B, Polym. Phys., 2014, 52(12), 791-806.
[http://dx.doi.org/10.1002/polb.23490]
[23]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14(1), 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[24]
Champion, J.A.; Katare, Y.K.; Mitragotri, S. Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release, 2007, 121(1-2), 3-9.
[http://dx.doi.org/10.1016/j.jconrel.2007.03.022] [PMID: 17544538]
[25]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[26]
Nishiyama, N. Nanocarriers shape up for long life. Nat. Nanotechnol., 2007, 2(4), 203-204.
[http://dx.doi.org/10.1038/nnano.2007.88] [PMID: 18654260]
[27]
Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol., 2007, 2(4), 249-255.
[http://dx.doi.org/10.1038/nnano.2007.70] [PMID: 18654271]
[28]
Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64(3), 505-519.
[http://dx.doi.org/10.1124/pr.111.005363] [PMID: 22544864]
[29]
Qiu, Y.; Liu, Y.; Wang, L.; Xu, L.; Bai, R.; Ji, Y.; Wu, X.; Zhao, Y.; Li, Y.; Chen, C. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials, 2010, 31(30), 7606-7619.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.051] [PMID: 20656344]
[30]
Hubbe, M.A.; Tayeb, P.; Joyce, M.; Tyagi, P.; Kehoe, M.; Dimic-Misic, K.; Pal, L. Rheology of nanocellulose-rich aqueous suspensions: A review. BioResources, 2017, 12(4), 9556-9661.
[http://dx.doi.org/10.15376/biores.12.4.Hubbe]
[31]
Trache, D.; Hussin, M.H.; Haafiz, M.K.M.; Thakur, V.K. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale, 2017, 9(5), 1763-1786.
[http://dx.doi.org/10.1039/C6NR09494E] [PMID: 28116390]
[32]
Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.D.; Cranston, E.D.; Eichhorn, S.J.; Fox, D.M.; Hamad, W.Y.; Heux, L.; Jean, B.; Korey, M.; Nieh, W.; Ong, K.J.; Reid, M.S.; Renneckar, S.; Roberts, R.; Shatkin, J.A.; Simonsen, J.; Stinson-Bagby, K.; Wanasekara, N.; Youngblood, J. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev., 2018, 47(8), 2609-2679.
[http://dx.doi.org/10.1039/C6CS00895J] [PMID: 29658545]
[33]
Jonoobi, M.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose, 2015, 22(2), 935-969.
[http://dx.doi.org/10.1007/s10570-015-0551-0]
[34]
Xie, H.; Du, H.; Yang, X.; Si, C. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int. J. Polym. Sci., 2018, 2018, 1-25.
[http://dx.doi.org/10.1155/2018/7923068]
[35]
Lu, P.; Hsieh, Y.L. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network. Carbohydr. Polym., 2010, 82(2), 329-336.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.073]
[36]
Yang, D.; Peng, X.W.; Zhong, L.X.; Cao, X.F.; Chen, W.; Sun, R.C. Effects of pretreatments on crystalline properties and morphology of cellulose nanocrystals. Cellulose, 2013, 20(5), 2427-2437.
[http://dx.doi.org/10.1007/s10570-013-9997-0]
[37]
Zhou, Y.; Saito, T.; Bergström, L.; Isogai, A. Acid-free preparation of Cellulose Nanocrystals by TEMPO Oxidation and subsequent cavitation. Biomacromolecules, 2018, 19(2), 633-639.
[http://dx.doi.org/10.1021/acs.biomac.7b01730] [PMID: 29283555]
[38]
Zheng, D.; Deng, Y.; Xia, Y.; Nan, Y.; Peng, M.; Wang, X.; Yue, J. Fabrication and performance of a spherical cellulose nanocrystal-based hydrophobic drug delivery vehicle using rubber wood. BioResources, 2019, 14(4), 7763-7774.
[http://dx.doi.org/10.15376/biores.14.4.7763-7774]
[39]
Zheng, D.; Zhang, Y.; Guo, Y.; Yue, J. Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans Regia L.) shell agricultural waste. Polymers (Basel), 2019, 11(7), 1130.
[http://dx.doi.org/10.3390/polym11071130] [PMID: 31277229]
[40]
Ranby, B.G.; Ribi, E. Ultrastructure of cellulose. Experientia, 1950, 6(1), 12-14.
[PMID: 15403087]
[41]
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed., 2011, 50(24), 5438-5466.
[http://dx.doi.org/10.1002/anie.201001273] [PMID: 21598362]
[42]
Chen, L.; Wang, Q.; Hirth, K.; Baez, C.; Agarwal, U.P.; Zhu, J.Y. Tailoring the yield and characteristics of wood Cellulose Nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose, 2015, 22(3), 1753-1762.
[http://dx.doi.org/10.1007/s10570-015-0615-1]
[43]
Sun, B.; Zhang, M.; Hou, Q.; Liu, R.; Wu, T.; Si, C. Further characterization of Cellulose Nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose, 2016, 23(1), 439-450.
[http://dx.doi.org/10.1007/s10570-015-0803-z]
[44]
Kusmono, L.; Listyanda, R.F.; Wildan, M.W.; Ilman, M.N. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis. Heliyon, 2020, 6(11), e05486.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05486] [PMID: 33235939]
[45]
Mao, Y.; Liu, K.; Zhan, C.; Geng, L.; Chu, B.; Hsiao, B.S. Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J. Phys. Chem. B, 2017, 121(6), 1340-1351.
[http://dx.doi.org/10.1021/acs.jpcb.6b11425] [PMID: 28150497]
[46]
Li, W.; Wang, R.; Liu, S. Nanocrystalline cellulose prepared from softwood Kraft pulp via ultrasonic-assisted acid hydrolysis. BioResources, 2011, 6, 4271-4281.
[47]
Araki, J.; Wada, M.; Kuga, S.; Okano, T. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf. A Physicochem. Eng. Asp., 1998, 142(1), 75-82.
[http://dx.doi.org/10.1016/S0927-7757(98)00404-X]
[48]
Yu, H.; Qin, Z.; Liang, B.; Liu, N.; Zhou, Z.; Chen, L. Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(12), 3938-3944.
[http://dx.doi.org/10.1039/c3ta01150j]
[49]
Sadeghifar, H.; Filpponen, I.; Clarke, S.P.; Brougham, D.F.; Argyropoulos, D.S. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J. Mater. Sci., 2011, 46(22), 7344-7355.
[http://dx.doi.org/10.1007/s10853-011-5696-0]
[50]
Li, S.; Li, C.; Li, C.; Yan, M.; Wu, Y.; Cao, J.; He, S. Fabrication of nano-crystalline cellulose with phosphoric acid and its full application in a modified polyurethane foam. Polym. Degrad. Stabil., 2013, 98(9), 1940-1944.
[http://dx.doi.org/10.1016/j.polymdegradstab.2013.06.017]
[51]
Zhang, H.; Chen, Y.; Wang, S.; Ma, L.; Yu, Y.; Dai, H.; Zhang, Y. Extraction and comparison of cellulose nanocrystals from lemon (Citrus limon) seeds using sulfuric acid hydrolysis and oxidation methods. Carbohydr. Polym., 2020, 238, 116180.
[http://dx.doi.org/10.1016/j.carbpol.2020.116180] [PMID: 32299561]
[52]
Zhang, J.; Elder, T.J.; Pu, Y.; Ragauskas, A.J. Facile synthesis of spherical cellulose nanoparticles. Carbohydr. Polym., 2007, 69(3), 607-611.
[http://dx.doi.org/10.1016/j.carbpol.2007.01.019]
[53]
Baek, C.; Hanif, Z.; Cho, S.W.; Kim, D.I.; Um, S.H. Shape control of cellulose nanocrystals via compositional acid hydrolysis. J. Biomed. Nanotechnol., 2013, 9(7), 1293-1298.
[http://dx.doi.org/10.1166/jbn.2013.1535] [PMID: 23909145]
[54]
Lu, H.; Gui, Y.; Zheng, L.; Liu, X. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res. Int., 2013, 50(1), 121-128.
[http://dx.doi.org/10.1016/j.foodres.2012.10.013]
[55]
Filson, P.; Dawsonandoh, B. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour. Technol., 2009, 100(7), 2259-2264.
[http://dx.doi.org/10.1016/j.biortech.2008.09.062] [PMID: 19109010]
[56]
Li, X.; Ding, E.; Li, G. A method of preparing spherical nano-crystal cellulose with mixed crystalline forms of cellulose I and II. Chin. J. Polym. Sci., 2001, 19, 291-296.
[57]
Pandi, N.; Sonawane, S.H.; Anand Kishore, K. Synthesis of Cellulose Nanocrystals (CNCs) from cotton using ultrasound-assisted acid hydrolysis. Ultrason. Sonochem., 2021, 70, 105353.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105353] [PMID: 33007536]
[58]
Purkait, B.S.; Ray, D.; Sengupta, S.; Kar, T.; Mohanty, A.; Misra, M. Isolation of cellulose nanoparticles from sesame husk. Ind. Eng. Chem. Res., 2011, 50(2), 871-876.
[http://dx.doi.org/10.1021/ie101797d]
[59]
Xiong, R.; Zhang, X.; Tian, D.; Zhou, Z.; Lu, C. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose, 2012, 19(4), 1189-1198.
[http://dx.doi.org/10.1007/s10570-012-9730-4]
[60]
Wang, N.; Ding, E.; Cheng, R. Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir, 2008, 24(1), 5-8.
[http://dx.doi.org/10.1021/la702923w] [PMID: 18047382]
[61]
Trilokesh, C.; Uppuluri, K.B. Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci. Rep., 2019, 9(1), 16709.
[http://dx.doi.org/10.1038/s41598-019-53412-x] [PMID: 31723189]
[62]
Zianor Azrina, Z.A.; Beg, M.D.H.; Rosli, M.Y.; Ramli, R.; Junadi, N.; Alam, A.K.M.M. Spherical Nanocrystalline Cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydr. Polym., 2017, 162, 115-120.
[http://dx.doi.org/10.1016/j.carbpol.2017.01.035] [PMID: 28224888]
[63]
Fattahi Meyabadi, T.; Dadashian, F.; Mir Mohamad Sadeghi, G.; Ebrahimi Zanjani Asl, H. Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol., 2014, 261, 232-240.
[http://dx.doi.org/10.1016/j.powtec.2014.04.039]
[64]
De Oliveira, S.D. Junior; Asevedo, E.A.; De Araujo, J.S.; Brito, P.B.; Dos Santos Cruz Costa, C.L.; De Macedo, G.R. Enzymatic extract of Aspergillus fumigatus CCT 7873 for hydrolysis of sugarcane bagasse and generation of Cellulose Nanocrystals (CNC); Biomass Conv. Bioref, 2020.
[http://dx.doi.org/10.1007/s13399-020-01020-5]
[65]
Satyamurthy, P.; Vigneshwaran, N. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microb. Technol., 2013, 52(1), 20-25.
[http://dx.doi.org/10.1016/j.enzmictec.2012.09.002] [PMID: 23199734]
[66]
Xu, J.T.; Chen, X.Q.; Shen, W.H.; Li, Z. Spherical vs. rod-like cellulose nanocrystals from enzymolysis: A comparative study as reinforcing agents on polyvinyl alcohol. Carbohydr. Polym., 2021, 256, 117493.
[http://dx.doi.org/10.1016/j.carbpol.2020.117493] [PMID: 33483022]
[67]
Ye, S.; Yu, H.Y.; Wang, D.; Zhu, J.; Gu, J. Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose, 2018, 25(9), 5139-5155.
[http://dx.doi.org/10.1007/s10570-018-1917-x]
[68]
Cheng, M.; Qin, Z.; Liu, Y.; Qin, Y.; Li, T.; Chen, L.; Zhu, M. Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(1), 251-258.
[http://dx.doi.org/10.1039/C3TA13653A]
[69]
Zhang, K.; Sun, P.; Liu, H.; Shang, S.; Song, J.; Wang, D. Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr. Polym., 2016, 138, 237-243.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.038] [PMID: 26794758]
[70]
Maiti, S.; Jayaramudu, J.; Das, K.; Reddy, S.M.; Sadiku, R.; Ray, S.S.; Liu, D. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr. Polym., 2013, 98(1), 562-567.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.029] [PMID: 23987382]
[71]
Brito, B.S.L.; Pereira, F.V.; Putaux, J.L.; Jean, B. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose, 2012, 19(5), 1527-1536.
[http://dx.doi.org/10.1007/s10570-012-9738-9]
[72]
Cudjoe, E.; Hunsen, M.; Xue, Z.; Way, A.E.; Barrios, E.; Olson, R.A.; Hore, M.J.A.; Rowan, S.J. Miscanthus Giganteus: A commercially viable sustainable source of cellulose nanocrystals. Carbohydr. Polym., 2017, 155, 230-241.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.049] [PMID: 27702508]
[73]
Hsieh, Y.L. Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: A source perspective. J. Mater. Sci., 2013, 48(22), 7837-7846.
[http://dx.doi.org/10.1007/s10853-013-7512-5]
[74]
Korolovych, V.F.; Cherpak, V.; Nepal, D.; Ng, A.; Shaikh, N.R.; Grant, A.; Xiong, R.; Bunning, T.J.; Tsukruk, V.V. Cellulose nanocrystals with different morphologies and chiral properties. Polymer (Guildf.), 2018, 145, 334-347.
[http://dx.doi.org/10.1016/j.polymer.2018.04.064]
[75]
Flauzino Neto, W.P.; Putaux, J.L.; Mariano, M.; Ogawa, Y.; Otaguro, H.; Pasquini, D.; Dufresne, A. Comprehensive morphological and structural investigation of cellulose I and II nanocrystals prepared by sulphuric acid hydrolysis. RSC Adv., 2016, 6(79), 76017-76027.
[http://dx.doi.org/10.1039/C6RA16295A]
[76]
Chen, X.Q.; Pang, G.X.; Shen, W.H.; Tong, X.; Jia, M.Y. Preparation and characterization of the ribbon-like cellulose nanocrystals by the cellulase enzymolysis of cotton pulp fibers. Carbohydr. Polym., 2019, 207, 713-719.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.042] [PMID: 30600057]
[77]
Davis, J.M.G.; Addison, J.; Bolton, R.E.; Donaldson, K.; Jones, A.D.; Smith, T. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br. J. Exp. Pathol., 1986, 67(3), 415-430.
[PMID: 2872911]
[78]
Endes, C.; Schmid, O.; Kinnear, C.; Mueller, S.; Camarero-Espinosa, S.; Vanhecke, D.; Foster, E.J.; Petri-Fink, A.; Rothen-Rutishauser, B.; Weder, C.; Clift, M.J.D. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Part. Fibre Toxicol., 2014, 11(1), 40.
[http://dx.doi.org/10.1186/s12989-014-0040-x] [PMID: 25245637]
[79]
Sohaebuddin, S.K.; Thevenot, P.T.; Baker, D.; Eaton, J.W.; Tang, L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol., 2010, 7(1), 22.
[http://dx.doi.org/10.1186/1743-8977-7-22] [PMID: 20727197]
[80]
Yu, T.; Hubbard, D.; Ray, A.; Ghandehari, H. In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. J. Control. Release, 2012, 163(1), 46-54.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.046] [PMID: 22684119]
[81]
Zhao, X.; Ng, S.; Heng, B.C.; Guo, J.; Ma, L.; Tan, T.T.Y.; Ng, K.W.; Loo, S.C.J. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch. Toxicol., 2013, 87(6), 1037-1052.
[http://dx.doi.org/10.1007/s00204-012-0827-1] [PMID: 22415765]
[82]
Jorfi, M.; Foster, E.J. Recent advances in nanocellulose for biomedical applications. J. Appl. Polym. Sci., 2015, 132(14), n/a.
[http://dx.doi.org/10.1002/app.41719]
[83]
Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J., 2014, 59, 302-325.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.07.025]
[84]
Roman, M. Toxicity of cellulose nanocrystals. A review. Ind. Biotechnol. (New Rochelle N.Y.), 2015, 11(1), 25-33.
[http://dx.doi.org/10.1089/ind.2014.0024]
[85]
Hosseinidoust, Z.; Alam, M.N.; Sim, G.; Tufenkji, N.; van de Ven, T.G.M. Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale, 2015, 7(40), 16647-16657.
[http://dx.doi.org/10.1039/C5NR02506K] [PMID: 26154822]
[86]
Harper, B.J.; Clendaniel, A.; Sinche, F.; Way, D.; Hughes, M.; Schardt, J.; Simonsen, J.; Stefaniak, A.B.; Harper, S.L. Impacts of chemical modification on the toxicity of diverse nanocellulose materials to developing zebrafish. Cellulose, 2016, 23(3), 1763-1775.
[http://dx.doi.org/10.1007/s10570-016-0947-5] [PMID: 27468180]
[87]
Hanif, Z.; Ahmed, F.R.; Shin, S.W.; Kim, Y.K.; Um, S.H. Size- and dose-dependent toxicity of Cellulose Nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma. Colloids Surf. B Biointerfaces, 2014, 119, 162-165.
[http://dx.doi.org/10.1016/j.colsurfb.2014.04.018] [PMID: 24856254]
[88]
Yanamala, N.; Farcas, M.T.; Hatfield, M.K.; Kisin, E.R.; Kagan, V.E.; Geraci, C.L.; Shvedova, A.A. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: A renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng., 2014, 2(7), 1691-1698.
[http://dx.doi.org/10.1021/sc500153k] [PMID: 26753107]
[89]
Fan, X.M.; Yu, H.Y.; Wang, D.C.; Yao, J.; Lin, H.; Tang, C.X.; Tam, K.C. Designing highly luminescent cellulose nanocrystals with modulated morphology for multifunctional bioimaging materials. ACS Appl. Mater. Interfaces, 2019, 11(51), 48192-48201.
[http://dx.doi.org/10.1021/acsami.9b13687] [PMID: 31789013]
[90]
Mahmoud, K.A.; Mena, J.A.; Male, K.B.; Hrapovic, S.; Kamen, A.; Luong, J.H.T. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl. Mater. Interfaces, 2010, 2(10), 2924-2932.
[http://dx.doi.org/10.1021/am1006222] [PMID: 20919683]
[91]
Bernier, A.; Tobias, T.; Nguyen, H.; Kumar, S.; Tuga, B.; Imtiaz, Y.; Smith, C.W.; Sunasee, R.; Ckless, K. Vascular and blood compatibility of engineered cationic Cellulose Nanocrystals in cell-based assays. Nanomaterials (Basel), 2021, 11(8), 2072.
[http://dx.doi.org/10.3390/nano11082072] [PMID: 34443903]
[92]
Kamelnia, E.; Divsalar, A.; Darroudi, M.; Yaghmaei, P.; Sadri, K. Production of new cellulose nanocrystals from Ferula gummosa and their use in medical applications via investigation of their biodistribution. Ind. Crops Prod., 2019, 139, 111538.
[http://dx.doi.org/10.1016/j.indcrop.2019.111538]
[93]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[94]
Liebert, T.; Kostag, M.; Wotschadlo, J.; Heinze, T. Stable cellulose nanospheres for cellular uptake. Macromol. Biosci., 2011, 11(10), 1387-1392.
[http://dx.doi.org/10.1002/mabi.201100113] [PMID: 21830298]
[95]
Shazali, N.A.H.; Zaidi, N.E.; Ariffin, H.; Abdullah, L.C.; Ghaemi, F.; Abdullah, J.M.; Takashima, I.; Nik Abd Rahman, N.M.A. Characterization and cellular internalization of spherical Cellulose Nanocrystals (CNC) into normal and cancerous fibroblasts. Materials (Basel), 2019, 12(19), 3251.
[http://dx.doi.org/10.3390/ma12193251] [PMID: 31590332]
[96]
Dong, S.; Hirani, A.A.; Colacino, K.R.; Lee, Y.W.; Roman, M. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano Life, 2012, 2(3), 1241006.
[http://dx.doi.org/10.1142/S1793984412410061]
[97]
Wilson, D.I. What is rheology? Eye (Lond.), 2018, 32(2), 179-183.
[http://dx.doi.org/10.1038/eye.2017.267] [PMID: 29271417]
[98]
Rostami, S.; Garipcan, B. Rheological properties of biological structures, scaffolds and their biomedical applications. Biological, Physical and Technical Basics of Cell Engine., 2018, 119-140.
[http://dx.doi.org/10.1007/978-981-10-7904-7_5]
[99]
Lewis, L.; Derakhshandeh, M.; Hatzikiriakos, S.G.; Hamad, W.Y.; MacLachlan, M.J. Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromolecules, 2016, 17(8), 2747-2754.
[http://dx.doi.org/10.1021/acs.biomac.6b00906] [PMID: 27467200]
[100]
Li, M.C.; Wu, Q.; Moon, R.J.; Hubbe, M.A.; Bortner, M.J. Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications. Adv. Mater., 2021, 33(21), 2006052.
[http://dx.doi.org/10.1002/adma.202006052] [PMID: 33870553]
[101]
Sutliff, B.P.; Das, A.; Youngblood, J.; Bortner, M.J. High shear capillary rheometry of cellulose nanocrystals for industrially relevant processing. Carbohydr. Polym., 2020, 231, 115735.
[http://dx.doi.org/10.1016/j.carbpol.2019.115735] [PMID: 31888852]
[102]
Xu, Y.; Atrens, A.; Stokes, J.R. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour. Adv. Colloid Interface Sci., 2020, 275, 102076.
[http://dx.doi.org/10.1016/j.cis.2019.102076] [PMID: 31780045]
[103]
Agi, A.; Junin, R.; Arsad, A.; Abbas, A.; Gbadamosi, A.; Azli, N.B.; Oseh, J. Synergy of the flow behaviour and disperse phase of cellulose nanoparticles in enhancing oil recovery at reservoir condition. PLoS One, 2019, 14(9), e0220778.
[http://dx.doi.org/10.1371/journal.pone.0220778] [PMID: 31560699]
[104]
Xu, X.; Liu, F.; Jiang, L.; Zhu, J.Y.; Haagenson, D.; Wiesenborn, D.P. Cellulose nanocrystals vs. cellulose nanofibrils: A comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces, 2013, 5(8), 2999-3009.
[http://dx.doi.org/10.1021/am302624t] [PMID: 23521616]
[105]
Li, M.C.; Wu, Q.; Song, K.; Lee, S.; Qing, Y.; Wu, Y. Cellulose nanoparticles: Structure-Morphology-Rheology relationships. ACS Sustain. Chem. Eng., 2015, 3(5), 821-832.
[http://dx.doi.org/10.1021/acssuschemeng.5b00144]
[106]
Boluk, Y.; Lahiji, R.; Zhao, L.; McDermott, M.T. Suspension viscosities and shape parameter of Cellulose Nanocrystals (CNC). Colloids Surf. A Physicochem. Eng. Asp., 2011, 377(1-3), 297-303.
[http://dx.doi.org/10.1016/j.colsurfa.2011.01.003]
[107]
Moberg, T.; Sahlin, K.; Yao, K.; Geng, S.; Westman, G.; Zhou, Q.; Oksman, K.; Rigdahl, M. Rheological properties of nanocellulose suspensions: Effects of fibril/particle dimensions and surface characteristics. Cellulose, 2017, 24(6), 2499-2510.
[http://dx.doi.org/10.1007/s10570-017-1283-0]
[108]
Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose nanomaterials: Size and surface influence on the thermal and rheological behavior. Polímeros, 2018, 28(2), 93-102.
[http://dx.doi.org/10.1590/0104-1428.2413]
[109]
Araki, J.; Wada, M.; Kuga, S.; Okano, T. Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J. Wood Sci., 1999, 45(3), 258-261.
[http://dx.doi.org/10.1007/BF01177736]
[110]
Peng, B.; Tang, J.; Wang, P.; Luo, J.; Xiao, P.; Lin, Y.; Tam, K.C. Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose, 2018, 25(6), 3229-3240.
[http://dx.doi.org/10.1007/s10570-018-1775-6]
[111]
Shafiei-Sabet, S.; Hamad, W.Y.; Hatzikiriakos, S.G. Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir, 2012, 28(49), 17124-17133.
[http://dx.doi.org/10.1021/la303380v] [PMID: 23146090]
[112]
Zhou, L.; He, H.; Li, M.C.; Song, K.; Cheng, H.N.; Wu, Q. Morphological influence of Cellulose Nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohydr. Polym., 2016, 153, 445-454.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.119] [PMID: 27561516]
[113]
Pachuau, L. Application of nanocellulose for controlled drug delivery. In: Jawaid, M.; Mohammad, F., Eds.; Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications; Wiley-VCH: Germany, 2017, pp. 1-19.
[http://dx.doi.org/10.1002/9783527803835.ch1]
[114]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2018, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[115]
Dong, S.; Cho, H.J.; Lee, Y.W.; Roman, M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules, 2014, 15(5), 1560-1567.
[http://dx.doi.org/10.1021/bm401593n] [PMID: 24716601]
[116]
Jackson, J.K.; Letchford, K.; Wasserman, B.Z.; Ye, L.; Hamad, W.Y.; Burt, H.M. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int. J. Nanomed, 2011, 6, 321-330.
[PMID: 21383857]
[117]
Mohanta, V.; Madras, G.; Patil, S. Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(22), 20093-20101.
[http://dx.doi.org/10.1021/am505681e] [PMID: 25338530]
[118]
Wang, H.; Roman, M. Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules, 2011, 12(5), 1585-1593.
[http://dx.doi.org/10.1021/bm101584c] [PMID: 21438518]
[119]
Ndong Ntoutoume, G.M.A.; Granet, R.; Mbakidi, J.P.; Brégier, F.; Léger, D.Y.; Fidanzi-Dugas, C.; Lequart, V.; Joly, N.; Liagre, B.; Chaleix, V.; Sol, V. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg. Med. Chem. Lett., 2016, 26(3), 941-945.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.060] [PMID: 26739777]
[120]
Gülsu, A.; Yüksektepe, E. Preparation of spherical cellulose nanoparticles from recycled waste cotton for anticancer drug delivery. ChemistrySelect, 2021, 6(22), 5419-5425.
[http://dx.doi.org/10.1002/slct.202101683]
[121]
Pachuau, L.; Dutta, R.S.; Roy, P.K.; Kalita, P.; Lalhlenmawia, H. Physicochemical and disintegrant properties of glutinous rice starch of Mizoram, India. Int. J. Biol. Macromol., 2017, 95, 1298-1304.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.029] [PMID: 27840214]
[122]
Kolakovic, R.; Peltonen, L.; Laaksonen, T.; Putkisto, K.; Laukkanen, A.; Hirvonen, J. Spray-dried cellulose nanofibers as novel tablet excipient. AAPS PharmSciTech, 2011, 12(4), 1366-1373.
[http://dx.doi.org/10.1208/s12249-011-9705-z] [PMID: 22005956]
[123]
Wang, C.; Huang, H.; Jia, M.; Jin, S.; Zhao, W.; Cha, R. Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr. Polym., 2015, 130, 275-279.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.007] [PMID: 26076627]
[124]
Huq, T.; Vu, K.D.; Riedl, B.; Bouchard, J.; Han, J.; Lacroix, M. Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients. Cellulose, 2016, 23(3), 1967-1978.
[http://dx.doi.org/10.1007/s10570-016-0905-2]
[125]
Emara, L.H.; El-Ashmawy, A.A.; Taha, N.F.; El-Shaffei, K.A.; Mahdey, E.M.; El-kholly, H.K. Nano-crystalline cellulose as a novel tablet excipient for improving solubility and dissolution of meloxicam. J. Appl. Pharm. Sci., 2016, 6, 32-43.
[http://dx.doi.org/10.7324/JAPS.2016.60205]
[126]
Bai, L.; Xiang, W.; Huan, S.; Rojas, O.J. Formulation and stabilization of concentrated edible oil-in-water emulsions based on electrostatic complexes of a food-grade cationic surfactant (Ethyl lauroyl arginate) and cellulose nanocrystals. Biomacromolecules, 2018, 19(5), 1674-1685.
[http://dx.doi.org/10.1021/acs.biomac.8b00233] [PMID: 29608856]
[127]
Xiao, M.; Xu, A.; Zhang, T.; Hong, L. Tailoring the wettability of colloidal particles for Pickering emulsions via Surface modification and roughness. Front Chem., 2018, 6, 225.
[http://dx.doi.org/10.3389/fchem.2018.00225] [PMID: 29971230]
[128]
Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Liu, Z.; Yuan, W. An overview of Pickering emulsions: Solid-particle materials, classification, morphology, and applications. Front. Pharmacol., 2017, 8, 287.
[http://dx.doi.org/10.3389/fphar.2017.00287] [PMID: 28588490]
[129]
Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Control. Release, 2019, 309, 302-332.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.003] [PMID: 31295541]
[130]
Dugyala, V.R.; Daware, S.V.; Basavaraj, M.G. Shape anisotropic colloids: Synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft Matter, 2013, 9(29), 6711-6725.
[http://dx.doi.org/10.1039/c3sm50404b]
[131]
Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci., 2020, 49, 1-15.
[http://dx.doi.org/10.1016/j.cocis.2020.04.010] [PMID: 32390759]
[132]
Madivala, B.; Vandebril, S.; Fransaer, J.; Vermant, J. Exploiting particle shape in solid stabilized emulsions. Soft Matter, 2009, 5(8), 1717-1727.
[http://dx.doi.org/10.1039/b816680c]
[133]
Capron, I.; Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules, 2013, 14(2), 291-296.
[http://dx.doi.org/10.1021/bm301871k] [PMID: 23289355]
[134]
Kalashnikova, I.; Bizot, H.; Bertoncini, P.; Cathala, B.; Capron, I. Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter, 2013, 9(3), 952-959.
[http://dx.doi.org/10.1039/C2SM26472B]
[135]
He, Y.; Li, K. Novel Janus Cu2(OH)2CO3/CuS microspheres prepared via a Pickering emulsion route. J. Colloid Interface Sci., 2007, 306(2), 296-299.
[http://dx.doi.org/10.1016/j.jcis.2006.10.070] [PMID: 17137588]
[136]
Luu, X.C.; Striolo, A. Ellipsoidal Janus nanoparticles assembled at spherical oil/water interfaces. J. Phys. Chem. B, 2014, 118(47), 13737-13743.
[http://dx.doi.org/10.1021/jp5085422] [PMID: 25358124]
[137]
Erdenedelger, G.; Dao, T.D.; Jeong, H.M. Graphene functionalized with poly(vinyl alcohol) as a Pickering stabilizer for suspension polymerization of poly(methyl methacrylate). J. Colloid Interface Sci., 2016, 476, 47-54.
[http://dx.doi.org/10.1016/j.jcis.2016.05.003] [PMID: 27187559]
[138]
Patra, D.; Malvankar, N.; Chin, E.; Tuominen, M.; Gu, Z.; Rotello, V.M. Fabrication of conductive microcapsules via self-assembly and crosslinking of gold nanowires at liquid-liquid interfaces. Small, 2010, 6(13), 1402-1405.
[http://dx.doi.org/10.1002/smll.200902380] [PMID: 20461726]
[139]
Yan, H.; Zhao, B.; Long, Y.; Zheng, L.; Tung, C.H.; Song, K. New pickering emulsions stabilized by silica nanowires. Colloids Surf. A Physicochem. Eng. Asp., 2015, 482, 639-646.
[http://dx.doi.org/10.1016/j.colsurfa.2015.07.004]
[140]
Capron, I.; Rojas, O.J.; Bordes, R. Behavior of nanocelluloses at interfaces. Curr. Opin. Colloid Interface Sci., 2017, 29, 83-95.
[http://dx.doi.org/10.1016/j.cocis.2017.04.001]
[141]
Costa, A.L.R.; Gomes, A.; Tibolla, H.; Menegalli, F.C.; Cunha, R.L. Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohydr. Polym., 2018, 194, 122-131.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.001] [PMID: 29801819]
[142]
Meirelles, A.A.D.; Costa, A.L.R.; Cunha, R.L. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion. Int. J. Biol. Macromol., 2020, 158, 75-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.185] [PMID: 32344097]
[143]
Asabuwa Ngwabebhoh, F.; Ilkar Erdagi, S.; Yildiz, U. Pickering emulsions stabilized nanocellulosic-based nanoparticles for coumarin and curcumin nanoencapsulations: In vitro release, anticancer and antimicrobial activities. Carbohydr. Polym., 2018, 201, 317-328.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.079] [PMID: 30241825]
[144]
Ngwabebhoh, F.A.; Erdem, A.; Yildiz, U. A design optimization study on synthesized nanocrystalline cellulose, evaluation and surface modification as a potential biomaterial for prospective biomedical applications. Int. J. Biol. Macromol., 2018, 114, 536-546.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.155] [PMID: 29601877]
[145]
Varanasi, S.; Henzel, L.; Mendoza, L.; Prathapan, R.; Batchelor, W.; Tabor, R.; Garnier, G. Pickering emulsions electrostatically stabilized by cellulose nanocrystals. Front Chem., 2018, 6, 409.
[http://dx.doi.org/10.3389/fchem.2018.00409] [PMID: 30283771]
[146]
Fujisawa, S.; Togawa, E.; Kuroda, K. Nanocellulose-stabilized Pickering emulsions and their applications. Sci. Technol. Adv. Mater., 2017, 18(1), 959-971.
[http://dx.doi.org/10.1080/14686996.2017.1401423] [PMID: 29383046]
[147]
Kasiri, N.; Fathi, M. Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int. J. Biol. Macromol., 2018, 106, 1023-1031.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.112] [PMID: 28842201]
[148]
Guo, J.; Du, W.; Gao, Y.; Cao, Y.; Yin, Y. Cellulose nanocrystals as water-in-oil Pickering emulsifiers via intercalative modification. Colloids Surf. A Physicochem. Eng. Asp., 2017, 529, 634-642.
[http://dx.doi.org/10.1016/j.colsurfa.2017.06.056]
[149]
Danov, K.D.; Kralchevsky, P.A.; Naydenov, B.N.; Brenn, G. Interactions between particles with an undulated contact line at a fluid interface: Capillary multipoles of arbitrary order. J. Colloid Interface Sci., 2005, 287(1), 121-134.
[http://dx.doi.org/10.1016/j.jcis.2005.01.079] [PMID: 15914156]
[150]
Golemanov, K.; Tcholakova, S.; Kralchevsky, P.A.; Ananthapadmanabhan, K.P.; Lips, A. Latex-particle-stabilized emulsions of anti-Bancroft type. Langmuir, 2006, 22(11), 4968-4977.
[http://dx.doi.org/10.1021/la0603875] [PMID: 16700582]
[151]
Dong, H.; Ding, Q.; Jiang, Y.; Li, X.; Han, W. Pickering emulsions stabilized by spherical cellulose nanocrystals. Carbohydr. Polym., 2021, 265, 118101.
[http://dx.doi.org/10.1016/j.carbpol.2021.118101] [PMID: 33966852]
[152]
Hickey, R.J.; Pelling, A.E. Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol., 2019, 7, 45.
[http://dx.doi.org/10.3389/fbioe.2019.00045] [PMID: 30968018]
[153]
Shaheen, T.I.; Montaser, A.S.; Li, S. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol., 2019, 121, 814-821.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.081] [PMID: 30342123]
[154]
Wang, K.; Nune, K.C.; Misra, R.D.K. The functional response of alginate-gelatin-nanocrystalline cellulose injectable hydrogels toward delivery of cells and bioactive molecules. Acta Biomater., 2016, 36, 143-151.
[http://dx.doi.org/10.1016/j.actbio.2016.03.016] [PMID: 26971665]
[155]
Huang, W.; Wang, Y.; Huang, Z.; Wang, X.; Chen, L.; Zhang, Y.; Zhang, L. On-demand dissolvable self-healing hydrogels based on carboxymethyl chitosan and cellulose nanocrystals for deep partial thickness burn wound healing. ACS Appl. Mater. Interfaces, 2018, 10(48), 41076-41088.
[http://dx.doi.org/10.1021/acsami.8b14526] [PMID: 30398062]
[156]
Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Nanocellulosic materials as bioinks for 3D bioprinting. Biomater. Sci., 2017, 5(10), 1988-1992.
[http://dx.doi.org/10.1039/C7BM00510E] [PMID: 28829453]
[157]
Xu, C.; Zhang Molino, B.; Wang, X.; Cheng, F.; Xu, W.; Molino, P.; Bacher, M.; Su, D.; Rosenau, T.; Willför, S.; Wallace, G. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(43), 7066-7075.
[http://dx.doi.org/10.1039/C8TB01757C] [PMID: 32254590]
[158]
Leppiniemi, J.; Lahtinen, P.; Paajanen, A.; Mahlberg, R.; Metsä-Kortelainen, S.; Pinomaa, T.; Pajari, H.; Vikholm-Lundin, I.; Pursula, P.; Hytönen, V.P. 3D printable bioactivated nanocellulose-alginate hydrogels. ACS Appl. Mater. Interfaces, 2017, 9(26), 21959-21970.
[http://dx.doi.org/10.1021/acsami.7b02756] [PMID: 28598154]
[159]
Åhlén, M.; Tummala, G.K.; Mihranyan, A. Nanoparticle-loaded hydrogels as a pathway for enzyme-triggered drug release in ophthalmic applications. Int. J. Pharm., 2018, 536(1), 73-81.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.053] [PMID: 29180255]
[160]
Aytac, Z.; Sen, H.S.; Durgun, E.; Uyar, T. Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf. B Biointerfaces, 2015, 128, 331-338.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.019] [PMID: 25769282]
[161]
Arserim-Uçar, D.K.; Korel, F.; Liu, L.; Yam, K.L. Characterization of bacterial cellulose nanocrystals: Effect of acid treatments and neutralization. Food Chem., 2021, 336, 127597.
[http://dx.doi.org/10.1016/j.foodchem.2020.127597] [PMID: 32763732]
[162]
Razavi, M.S.; Golmohammadi, A.; Nematollahzadeh, A.; Fiori, F.; Rovera, C.; Farris, S. Preparation of cinnamon essential oil emulsion by bacterial cellulose nanocrystals and fish gelatin. Food Hydrocoll., 2020, 109, 106111.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106111]
[163]
Razavi, M.S.; Golmohammadi, A.; Nematollahzadeh, A.; Rovera, C.; Farris, S. Cinnamon essential oil encapsulated into a fish gelatin-bacterial cellulose nanocrystals complex and active films thereof. Food Biophys., 2022, 17(1), 38-46.
[http://dx.doi.org/10.1007/s11483-021-09696-6]
[164]
Darpentigny, C.; Molina-Boisseau, S.; Nonglaton, G.; Bras, J.; Jean, B. Ice-templated freeze-dried cryogels from tunicate cellulose nanocrystals with high specific surface area and anisotropic morphological and mechanical properties. Cellulose, 2020, 27(1), 233-247.
[http://dx.doi.org/10.1007/s10570-019-02772-8]
[165]
Jun, S.Y.; Park, J.; Song, H.; Shin, H. Tunicate cellulose nanocrystals as stabilizers for PLGA-based polymeric nanoparticles. Biotechnol. Bioprocess Eng., 2020, 25(2), 206-214.
[http://dx.doi.org/10.1007/s12257-019-0379-9]
[166]
Dunlop, M.J.; Clemons, C.; Reiner, R.; Sabo, R.; Agarwal, U.P.; Bissessur, R.; Sojoudiasli, H.; Carreau, P.J.; Acharya, B. Towards the scalable isolation of cellulose nanocrystals from tunicates. Sci. Rep., 2020, 10(1), 19090.
[http://dx.doi.org/10.1038/s41598-020-76144-9] [PMID: 33154467]
[167]
World Economic Forum. The new plastics economy rethinking the future of plastics. In: World Economic Forum; Geneva, 2016. Available from: http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf