Computational Study Reveals the Inhibitory Effects of Chemical Constituents from Azadirachta indica (Indian Neem) Against Delta and Omicron Variants of SARS-CoV-2

Article ID: e270822208065 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The newly emerged delta and omicron variants of severe acute respiratory syndrome coronavirus (SARS-CoV-2) have affected millions of individuals globally with increased transmissible and infectivity rates. Although, numerous vaccines are available or under clinical trials to combat the SARS-CoV-2 and its variant, still, a therapeutic agent is awaited.

Objective: The present work is focused on rigorous screening of chemical constituents of Azadirachta indica (A. indica) against delta and omicron variants of SARS-CoV-2 via inhibition of S-glycoprotein.

Methods: Total, 10 compounds of A. indica were subjected to molecular docking and pharmacophore modeling studies against the S-glycoprotein of delta and omicron variants of SARS-CoV-2. Furthermore, homology modeling was performed for omicron S-glycoprotein with the help of SWISS-MODEL and aligned by PyMOL software. Later on, the residues of protein were verified in the allowed region via Ramachandran plot. In addition, our docking results have also been validated by MMGBSA binding free energy calculations.

Results: Our computed study demonstrated that nimbolinin B12-methyl ether and nimbidinin showed promising docking scores (> -6.0) as compared to docking scores (< 6.0) of reference drug ‘camostat’ against S-glycoproteins of both delta and omicron variants. Redocking by using MMGBSA calculation also reveals that both these compounds can effectively bind within the pockets of said protein receptors.

Conclusion: Nimbolinin B12-methyl ether and nimbidinin have potent anti-SARS-CoV activity against delta and omicron variants and thus, A. indica might be a useful source for developing novel anti-SARSCoV- 2 therapeutic agents.

Keywords: Azadirachta indica, nimbolinin B12-methyl ether, nimbidinin, homology modeling, molecular docking, MMGBSA calculation, ramachandran plot.

Graphical Abstract

[1]
Sanchez-Burgos L, Gómez-López G, Al-Shahrour F, Fernandez-Capetillo O. An in silico analysis identifies drugs potentially modulating the cytokine storm triggered by SARS-CoV-2 infection. Sci Rep 2022; 12(1): 1626.
[http://dx.doi.org/10.1038/s41598-022-05597-x] [PMID: 35102208]
[2]
Kumar A, Ansari W, Ahamad T, Saquib M, Khan M. Safe use of Sodium Dodecyl Sulfate (SDS) to deactivate SARS-CoV-2: An evidence-based systematic review. Coronaviruses 2021; 2(9)
[http://dx.doi.org/10.2174/2666796701666210105114804]
[3]
Duong D. Alpha, beta, delta, gamma: What’s important to know about SARS-CoV-2 variants of concern? CMAJ 2021; 193(27): E1059-60.
[http://dx.doi.org/10.1503/cmaj.1095949] [PMID: 34253551]
[4]
Ortega JT, Jastrzebska B, Rangel HR. Omicron SARS-CoV-2 variant spike protein shows an increased affinity to the human ACE2 receptor: An in silico analysis. Pathogens 2021; 11(1): 45.
[http://dx.doi.org/10.3390/pathogens11010045] [PMID: 35055993]
[5]
Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet 2021; 398(10317): 2126-8.
[http://dx.doi.org/10.1016/S0140-6736(21)02758-6] [PMID: 34871545]
[6]
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front Med (Lausanne) 2020; 7: 444.
[http://dx.doi.org/10.3389/fmed.2020.00444] [PMID: 32850918]
[7]
Omrani M, Keshavarz M, Nejad Ebrahimi S, et al. Potential natural products against respiratory viruses: A perspective to develop anti-COVID-19 medicines. Front Pharmacol 2021; 11: 586993.
[http://dx.doi.org/10.3389/fphar.2020.586993] [PMID: 33679384]
[8]
Kumar M, Prakash S, Radha , et al. Beneficial role of antioxidant secondary metabolites from medicinal plants in maintaining oral health. Antioxidants 2021; 10(7): 1061.
[http://dx.doi.org/10.3390/antiox10071061] [PMID: 34209152]
[9]
Subapriya R, Nagini S. Medicinal properties of neem leaves: A review. Curr Med Chem Anticancer Agents 2005; 5(2): 149-6.
[http://dx.doi.org/10.2174/1568011053174828] [PMID: 15777222]
[10]
Mbah AU, Udeinya IJ, Shu EN, et al. Fractionated neem leaf extract is safe and increases CD4+ cell levels in HIV/AIDS patients. Am J Ther 2007; 14(4): 369-74.
[http://dx.doi.org/10.1097/MJT.0b013e3180a72199] [PMID: 17667213]
[11]
Satyanarayana K, Sravanthi K, Shaker IA, Ponnulakshmi R. Molecular approach to identify antidiabetic potential of Azadirachta indica. J Ayurveda Integr Med 2015; 6(3): 165-74.
[http://dx.doi.org/10.4103/0975-9476.157950] [PMID: 26604551]
[12]
Shadrack DM, Vuai SAH, Sahini MG, Onoka I. In silico study of the inhibition of SARS-COV-2 viral cell entry by neem tree extracts. RSC Advances 2021; 11(43): 26524-33.
[http://dx.doi.org/10.1039/D1RA04197E] [PMID: 35480004]
[13]
Pal S, Kumar V, Kundu B, et al. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Comput Struct Biotechnol J 2019; 17: 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006] [PMID: 30867893]
[14]
Román J, Castillo A, Mahn A. Molecular docking of potential inhibitors of broccoli myrosinase. Molecules 2018; 23(6): 1313.
[http://dx.doi.org/10.3390/molecules23061313] [PMID: 29849002]
[15]
Sakkiah S, Guo W, Pan B, et al. Elucidating interactions between SARS-COV-2 trimeric spike protein and ACE2 using homology modeling and molecular dynamics simulations. Front Chem 2021; 8: 622632.
[http://dx.doi.org/10.3389/fchem.2020.622632] [PMID: 33469527]
[16]
Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 2017; 7(1): 10480.
[http://dx.doi.org/10.1038/s41598-017-09654-8] [PMID: 28874689]
[17]
Otero JM, Papadakis MA, Udatha DB, Nielsen J, Panagiotou G. Yeast biological networks unfold the interplay of antioxidants, genome and phenotype, and reveal a novel regulator of the oxidative stress response. PLoS One 2010; 5(10): e13606.
[http://dx.doi.org/10.1371/journal.pone.0013606] [PMID: 21049050]
[18]
Bhowmick S, Saha A, Osman SM, Alasmary FA, Almutairi TM, Islam MA. Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: An exhaustive computational screening approach. Mol Divers 2021; 25(3): 1979-97.
[http://dx.doi.org/10.1007/s11030-021-10214-6] [PMID: 33844135]
[19]
Sharma V, Sharma P, Kumar V. In silico molecular docking analysis of natural pyridoacridines as anticancer agents. Adv Chem 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/5409387]
[20]
Elokely KM, Doerksen RJ. Docking challenge: Protein sampling and molecular docking performance. J Chem Inf Model 2013; 53(8): 1934-45.
[http://dx.doi.org/10.1021/ci400040d] [PMID: 23530568]
[21]
Yoshino R, Yasuo N, Sekijima M. Molecular dynamics simulation reveals the mechanism by which the influenza cap-dependent endonuclease acquires resistance against Baloxavir marboxil. Sci Rep 2019; 9(1): 17464.
[http://dx.doi.org/10.1038/s41598-019-53945-1] [PMID: 31767949]
[22]
Vuorinen A, Engeli R, Meyer A, et al. Ligand-based pharmacophore modeling and virtual screening for the discovery of novel 17β-hydroxysteroid dehydrogenase 2 inhibitors. J Med Chem 2014; 57(14): 5995-6007.
[http://dx.doi.org/10.1021/jm5004914] [PMID: 24960438]
[23]
Chen XR, Wang XT, Hao MQ, et al. Homology modeling and virtual screening to discover potent inhibitors targeting the imidazole glycerophosphate dehydratase protein in Staphylococcus xylosus. Front Chem 2017; 5: 98.
[http://dx.doi.org/10.3389/fchem.2017.00098] [PMID: 29177138]
[24]
Gerçek Z, Ceyhan D, Erçağ E. Synthesis and molecular docking study of novel COVID-19 inhibitors. Turk J Chem 2021; 45(3): 704-18.
[http://dx.doi.org/10.3906/kim-2012-55] [PMID: 34385863]
[25]
Choudhary MI, Shaikh M, Tul-Wahab A, Ur-Rahman A. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLoS One 2020; 15(7): e0235030.
[http://dx.doi.org/10.1371/journal.pone.0235030] [PMID: 32706783]
[26]
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[27]
He X, Hong W, Pan X, Lu G, Wei X. SARS-CoV-2 Omicron variant: Characteristics and prevention. MedComm (Beijing) 2021; 2(4): 838-45.
[http://dx.doi.org/10.1002/mco2.110] [PMID: 34957469]
[28]
Mora Lagares L, Minovski N, Caballero Alfonso AY, et al. Homology modeling of the human P-glycoprotein (ABCB1) and insights into ligand binding through molecular docking studies. Int J Mol Sci 2020; 21(11): 4058.
[http://dx.doi.org/10.3390/ijms21114058] [PMID: 32517082]
[29]
Laskowski R, MacArthur M, Thornton J. PROCHECK: Validation of protein-structure coordinates. International Tables for Crystallography 2012; 21(4): 684-7.
[http://dx.doi.org/10.1107/97809553602060000882]
[30]
Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci 1993; 2(9): 1511-9.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[31]
Lupala CS, Ye Y, Chen H, Su XD, Liu H. Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor. Biochem Biophys Res Commun 2022; 590: 34-41.
[http://dx.doi.org/10.1016/j.bbrc.2021.12.079] [PMID: 34968782]
[32]
Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: Implications for the design of spike-based vaccine immunogens. Front Immunol 2020; 11: 576622.
[http://dx.doi.org/10.3389/fimmu.2020.576622] [PMID: 33117378]
[33]
Borkotoky S, Banerjee M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J Biomol Struct Dyn 2021; 39(11): 4111-21.
[http://dx.doi.org/10.1080/07391102.2020.1774419] [PMID: 32462988]
[34]
Khan M, Khan M, Khan Z, Ahamad T, Ansari W. In-silico study to identify dietary molecules as potential SARS-CoV-2 agents. Lett Drug Des Discov 2021; 18(6): 562-73.
[http://dx.doi.org/10.2174/1570180817999201209204153]
[35]
Ansari W, Ahamad T, Khan M, Khan Z, Khan M. Exploration of luteolin as potential anti-COVID19 agent: Molecular docking, molecular dynamic simulation, ADMET and DFT analysis. Lett Drug Des Discov 2021; 19.
[http://dx.doi.org/10.2174/1570180819666211222151725]
[36]
Halford S, Wan S, Dragoni I, et al. SPIKE-1: A randomised phase II/III trial in a community setting, assessing use of camostat in reducing the clinical progression of COVID-19 by blocking SARS-CoV-2 Spike protein-initiated membrane fusion. Trials 2021; 22(1): 550.
[http://dx.doi.org/10.1186/s13063-021-05461-9] [PMID: 34412682]
[37]
Yañez O, Osorio MI, Uriarte E, et al. In silico study of coumarins and quinolines derivatives as potent inhibitors of SARS-CoV-2 main protease. Front Chem 2021; 8: 595097.
[http://dx.doi.org/10.3389/fchem.2020.595097] [PMID: 33614592]