Investigation of the Correlation between Geometrical Relationship and the Anomeric effect on Conformational Reactivities and Analyze the 1, 4-elimination

Page: [97 - 107] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Ab initio molecular orbital hybrid density functional theory (B3LYP/6-311++G**) based methods and natural bond orbital (NBO) interpretation were used to investigate the 1, 4-eliminations and the correlations between the global hardness, global electronegativity, anomeric effect, thermodynamic parameters of 3-chloro-8-methyl-8-azabicyclo[3.2.1]octane (1), 3-chloro-8-methyl-8-phosphabicyclo- [3.2.1]octane (2) and 3-chloro-8-methyl-8-arsabicyclo [3.2.1]octane (3). The calculated global electronegativity (χ) differences between the axial- and equatorial-stereoisomers (Δ [χ (eq) - χ (ax)]) decreased from compound 1 to compound 3. This fact justifies that with the increase of the Lewis acid from the equatorial-stereoisomers of compound 1 to compound 3, the energy difference between the axial- and equatorial-stereoisomers decreases. NBO results showed that the anomeric effect benefits the equatorial stereoisomers. The reactions shown in this work are illustrative of the power of the anomeric effect and the geometrical relationship of the participating bonds. If the rC-Cl bond is axial, the 1, 4-elimination is avoided altogether. Whereas, if the rC-Cl bond is equatorial, the 1, 4-elimination is performed. These eliminations are rendered possible by the antiperiplanar relationship of the breaking central rC-C bond with the electron pair orbital on the heteroatom and the rC-X bond, X being a leaving group such as a halogen.

Keywords: anomeric effect, ab initio, electronegativity, conformational, elimination

Graphical Abstract

[1]
Pearson, R.G. J. Chem. Educ., 1987, 64(7), 561-567.
[http://dx.doi.org/10.1021/ed064p561]
[2]
Pearson, R.G.; Palke, W.E. J. Phys. Chem., 1992, 96(8), 3283-3285.
[http://dx.doi.org/10.1021/j100187a020]
[3]
Pal, S.; Vaval, N.; Roy, R. J. Phys. Chem., 1993, 97(17), 4404-4406.
[http://dx.doi.org/10.1021/j100119a025]
[4]
Chattaraj, P.K.; Fuentealba, P.; Jaque, P.; Toro-Labbé, A. J. Phys. Chem. A, 1999, 103(46), 9307-9312.
[http://dx.doi.org/10.1021/jp9918656]
[5]
Makov, G. J. Phys. Chem., 1995, 99(23), 9337-9339.
[http://dx.doi.org/10.1021/j100023a006]
[6]
Kar, T.; Scheiner, S. J. Phys. Chem., 1995, 99(20), 8121-8124.
[http://dx.doi.org/10.1021/j100020a039]
[7]
Jaque, P.; Toro-Labbé, A. J. Phys. Chem. A, 2000, 104(5), 995-1003.
[http://dx.doi.org/10.1021/jp993016o]
[8]
Ghanty, T.K.; Ghosh, S.K. J. Phys. Chem., 1996, 100(30), 12295-12298.
[http://dx.doi.org/10.1021/jp960276m]
[9]
Toro-Labbé, A. J. Phys. Chem. A, 1999, 103(22), 4398-4403.
[http://dx.doi.org/10.1021/jp984187g]
[10]
Hohm, U. J. Phys. Chem. A, 2000, 104(36), 8418-8423.
[http://dx.doi.org/10.1021/jp0014061]
[11]
Uchimaru, T.; Chandra, A.K.; Kawahara, S.; Matsumura, K.; Tsuzuki, S.; Mikami, M. J. Phys. Chem. A, 2001, 105(8), 1343-1353.
[http://dx.doi.org/10.1021/jp003257s]
[12]
Cadet, J.; Grand, A.; Morell, C.; Letelier, J.R.; Moncada, J.L.; Toro-Labbé, A. J. Phys. Chem. A, 2003, 107(27), 5334-5341.
[http://dx.doi.org/10.1021/jp021976w]
[13]
Ghanty, T.K.; Ghosh, S.K. J. Phys. Chem. A, 2002, 106(16), 4200-4204.
[http://dx.doi.org/10.1021/jp014215m]
[14]
Chandra, A.K.; Nguyen, M.T. J. Phys. Chem. A, 1998, 102(30), 6181-6185.
[http://dx.doi.org/10.1021/jp980949w]
[15]
Sebastian, K.L. Chem. Phys. Lett., 1994, 231(1), 40-42.
[http://dx.doi.org/10.1016/0009-2614(94)01210-5]
[16]
Pan, S.; Solà, M.; Chattaraj, P.K. J. Phys. Chem. A, 2013, 117(8), 1843-1852.
[http://dx.doi.org/10.1021/jp312750n] [PMID: 23373511]
[17]
Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. J. Chem. Phys., 1978, 68(8), 3801-3807.
[http://dx.doi.org/10.1063/1.436185]
[18]
Deslongchamps, P. Stereoelectronic effects in organic chemistry; Pergamon Press: New York, 1983.
[19]
Juaristi, E. Synthesis, 1995, 1995(2), 212-214.
[http://dx.doi.org/10.1055/s-1995-3862]
[20]
Epiotis, N.D.; Yates, R.L.; Larson, J.R.; Kirmaier, C.R.; Bernardi, F. J. Am. Chem. Soc., 1977, 99(26), 8379-8388.
[http://dx.doi.org/10.1021/ja00468a001]
[21]
Praly, J.P.; Lemieux, R.U. Can. J. Chem., 1987, 65(1), 213-223.
[http://dx.doi.org/10.1139/v87-034]
[22]
Cramer, C.J. J. Org. Chem., 1992, 57(26), 7034-7043.
[http://dx.doi.org/10.1021/jo00052a012]
[23]
Juaristi, E.; Cuevas, G. Tetrahedron, 1992, 48(24), 5019-5087.
[http://dx.doi.org/10.1016/S0040-4020(01)90118-8]
[24]
Kirby, A.J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer Berlin Heidelberg: Berlin, 2012.
[25]
Thatcher, G.R.J. The anomeric effect and associated stereoelectronic effects; American Chemical Society: Washington, DC, 1993.
[http://dx.doi.org/10.1021/bk-1993-0539]
[26]
Eliel, E.L.; Wilen, S.H. Stereochemistry of organic compounds; John Wiley & Sons: New York, 1994.
[27]
Cramer, C.J.; Truhlar, D.G.; French, A.D. Carbohydr. Res., 1997, 298(1-2), 1-14.
[http://dx.doi.org/10.1016/S0008-6215(96)00297-2]
[28]
Alabugin, I.V., IV J. Org. Chem., 2000, 65(13), 3910-3919.
[http://dx.doi.org/10.1021/jo991622 ] [PMID: 10866607]
[29]
Vila, A.; Mosquera, R.A. J. Comput. Chem., 2007, 28(9), 1516-1530.
[http://dx.doi.org/10.1002/jcc.20585 ] [PMID: 17330885]
[30]
Nori-Shargh, D.; Yahyaei, H.; Boggs, J.E. J. Mol. Graph. Model., 2010, 28(8), 807-813.
[http://dx.doi.org/10.1016/j.jmgm.2010.02.006 ] [PMID: 20207563]
[31]
Lesarri, A.; Vega-Toribio, A.; Suenram, R.D.; Brugh, D.J.; Nori, S.D.; Boggs, J.E.; Grabow, J.U. Phys. Chem. Chem. Phys., 2011, 13(14), 6610-6618.
[http://dx.doi.org/10.1039/c0cp02465a ] [PMID: 21384026]
[32]
Planje, M.C.; Toneman, L.H.; Dallinga, G. Recl. Trav. Chim. Pays Bas, 1965, 84(2), 232-240.
[http://dx.doi.org/10.1002/recl.19650840210]
[33]
Ikeda, T.; Curl, R.F., Jr; Karlsson, H. J. Mol. Spectrosc., 1974, 53(1), 101-119.
[http://dx.doi.org/10.1016/0022-2852(74)90264-1]
[34]
Hayashi, M.; Kuwada, K.; Imaishi, H. Chem. Lett., 1974, 3(8), 913-918.
[http://dx.doi.org/10.1246/cl.1974.913]
[35]
Hayashi, M.; Imaishi, H.; Ohno, K.; Murata, H. Bull. Chem. Soc. Jpn., 1971, 44(1), 299-299.
[http://dx.doi.org/10.1246/bcsj.44.299]
[36]
Hayashi, M.; Kuwada, K. J. Mol. Struct., 1975, 28(1), 147-161.
[http://dx.doi.org/10.1016/0022-2860(75)80051-2]
[37]
Becke, A.D. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[38]
Hayashi, N.; Ujihara, T.; Ikeda, H. Tetrahedron, 2020, 76(7), 130919.
[http://dx.doi.org/10.1016/j.tet.2019.130919]
[39]
Yadav, V.K.; Yadav, V.K. Steric and stereoelectronic effects in organic chemistry; Springer, 2016.
[40]
Corey, E.J.; Mitra, R.B.; Uda, H. J. Am. Chem. Soc., 1964, 86(3), 485-492.
[http://dx.doi.org/10.1021/ja01057a040]
[41]
Kraus, W. Angew. Chem. Int. Ed. Engl., 1966, 5(3), 316-317.
[http://dx.doi.org/10.1002/anie.196603163]
[42]
Schmidt, H. Mühlstät, M.; Son, P. Chem. Ber., 1966, 99(9), 2736-2744.
[http://dx.doi.org/10.1002/cber.19660990904]
[43]
Martin, J.; Parker, W.; Raphael, R. J. Chem. Soc., 1964, 289-295.
[http://dx.doi.org/10.1039/jr9640000289]
[44]
Atabaki, H.; Nori-Shargh, D.; Momen, H.M. RSC Advances, 2017, 7(37), 22757-22770.
[http://dx.doi.org/10.1039/C7RA00520B]
[45]
Hasanzadeh, N.; Nori, S.D.; Yahyaei, H.; Mousavi, S.N.; Kamrava, S. J. Phys. Chem. A, 2017, 121(29), 5548-5560.
[http://dx.doi.org/10.1021/acs.jpca.7b04447] [PMID: 28661674]
[46]
Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. J. Chem. Phys., 1980, 72(1), 650-654.
[http://dx.doi.org/10.1063/1.438955]
[47]
Curtiss, L.A.; McGrath, M.P.; Blaudeau, J.P.; Davis, N.E.; Binning, R.C., Jr; Radom, L. J. Chem. Phys., 1995, 103(14), 6104-6113.
[http://dx.doi.org/10.1063/1.470438]
[48]
Glendening, E.; Badenhoop, J.; Reed, A.; Carpenter, J.; Bohmann, J.; Morales, C.; Weinhold, F. Google Sch. there correspond. record ref., 2004.
[49]
Nori, S.D.; Mousavi, S.N.; Kayi, H. J. Mol. Model., 2014, 20(5), 2249.
[http://dx.doi.org/10.1007/s00894-014-2249-x ] [PMID: 24817665]
[50]
Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.; Montgomery, J.A. J. Comput. Chem., 1993, 14(11), 1347-1363.
[http://dx.doi.org/10.1002/jcc.540141112]
[51]
Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[52]
Hehre, W.J.; Hehre, W.J.; Radom, L. AB INITIO Molecular Orbital Theory; Wiley, 1986.
[53]
Politzer, P.; Seminario, J.M. Modern density functional theory: A tool for chemistry; Elsevier, 1995.
[54]
McIver, J.W., Jr Acc. Chem. Res., 1974, 7(3), 72-77.
[http://dx.doi.org/10.1021/ar50075a002]
[55]
Ermer, O. Tetrahedron, 1975, 31(16), 1849-1854.
[http://dx.doi.org/10.1016/0040-4020(75)87040-2]
[56]
Borden, W.T. Modern molecular orbital theory for organic chemists; Prentice Hall, 1975.
[57]
Dewar, M. The Molecular Orbital Theory of Organic Chemistry; McGraw-Hill: New York, 1969.
[58]
Wolfsberg, M.; Helmholz, L. J. Chem. Phys., 1952, 20(5), 837-843.
[http://dx.doi.org/10.1063/1.1700580]
[59]
Mackerell, A.D., Jr; Feig, M.; Brooks, C.L., III J. Comput. Chem., 2004, 25(11), 1400-1415.
[http://dx.doi.org/10.1002/jcc.20065] [PMID: 15185334]
[60]
Alabugin, I.V.; Kuhn, L.; Medvedev, M.G.; Krivoshchapov, N.V.; Vil’, V.A.; Yaremenko, I.A.; Mehaffy, P.; Yarie, M.; Terent’ev, A.O.; Zolfigol, M.A. Chem. Soc. Rev., 2021, 50(18), 10253-10345.
[http://dx.doi.org/10.1039/D1CS00386K] [PMID: 34263287]
[61]
Badenhoop, J.K.; Weinhold, F. J. Chem. Phys., 1997, 107(14), 5406-5421.
[http://dx.doi.org/10.1063/1.474248]
[62]
Badenhoop, J.K.; Weinhold, F. J. Chem. Phys., 1997, 107(14), 5422-5432.
[http://dx.doi.org/10.1063/1.475149]
[63]
Badenhoop, J.K.; Weinhold, F. Int. J. Quantum Chem., 1999, 72(4), 269-280.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1999)72:4<269:AID-QUA9>3.0.CO;2-8]
[64]
Weisskopf, V.F. Science, 1975, 187(4177), 605-612.
[http://dx.doi.org/10.1126/science.187.4177.605] [PMID: 17810052]
[65]
Christiansen, P.A.; Palke, W.E. J. Chem. Phys., 1977, 67(1), 57-63.
[http://dx.doi.org/10.1063/1.434541]