Infectious Disorders - Drug Targets

Author(s): Dinesh Kumar Patel*

DOI: 10.2174/1871526522666220825160906

Biological Importance, Therapeutic Benefits, and Analytical Aspects of Active Flavonoidal Compounds ‘Corylin’ from Psoralea corylifolia in the Field of Medicine

Article ID: e250822208005 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Flavonoidal class phytochemicals are the best examples of secondary metabolite found in different natural sources, including ‘fruits, grains, vegetables, broccoli, tea, berries, wine, strawberries, apples, grapes, lettuce, and citrus fruit. Natural products are a rich source of flavonoidal compounds present in our diet source.

Objective: Flavonoidal class chemicals can be subcategorized into chalcones, isoflavone, flavonols, catechin, flavones, flavanones, and anthocyanidin with respect to their basic chemical structures. Psoralea corylifolia L. belongs to the family Fabaceae and is an herbal medicine used in traditional Chinese Medicine for the treatment of inflammatory disorders, bacterial infections, and cancerous disorders.

Methods: In the present work, scientific data have been collected from different databases and analyzed in order to find the therapeutic potential of corylin in medicine. Different scientific databases such as Google, Scopus, PubMed, Science Direct, etc., have been searched to collect the needed scientific information on corylin. Scientific information on corylin has been collected in the present work in order to know the pharmacological activities and medicinal uses of corylin in the scientific fields. However, analytical techniques data of corylin have also been collected and analyzed for standardization of Psoralea corylifolia and other medicinal plants.

Results: Scientific data analysis of research works revealed the medicinal importance of Psoralea corylifolia and its important phytoconstituents corylin in medicine. Scientific data analysis revealed that corylin is a flavonoidal class phytochemical found in the nuts of Psoralea corylifolia L. Biological importance of corylin in bone differentiation, bone growth, and osteoporosis has been proven in this scientific research work. The anti-inflammatory, anti-oxidant, and antitumor activity of corylin has been also described in this medical literature. The biological importance of corylin in hyperlipidemia, insulin resistance, atherosclerosis, hepatocellular carcinoma, and neurodisorders have also been presented in this work.

Conclusion: Scientific data analysis revealed the biological importance and therapeutic potential of corylin in the field of medicine.

Keywords: Biological importance, therapeutic benefit, analytical aspect, flavonoid, Psoralea corylifolia, corylin, medicine.

Graphical Abstract

[1]
Patel K, Kumar V, Verma A, Rahman M, Patel DK. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “A concise report of its phytopharmaceutical importance”. Curr Tradit Med 2017; 3(3): 168-77.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[2]
Patel K, Kumar V, Verma A, Rahman M, Kumar PD. Health benefits of furanocoumarins ‘Psoralidin’ an active phytochemical of psoralea corylifolia: The present, past and future scenario. Curr Bioact Compd 2019; 15(4): 369-76.
[http://dx.doi.org/10.2174/1573407214666180511153438]
[3]
Marques GS, Leão WF, Lyra MAM, et al. Comparative evaluation of UV/VIS and HPLC analytical methodologies applied for quantification of flavonoids from leaves of Bauhinia forficata. Rev Bras Farmacogn 2013; 23(1): 51-7.
[http://dx.doi.org/10.1590/S0102-695X2012005000143]
[4]
Fontana PD, Cazarolli LH, Lavado C, et al. Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition 2011; 27(11-12): 1161-7.
[http://dx.doi.org/10.1016/j.nut.2011.01.008] [PMID: 21684120]
[5]
Mohan S, Nandhakumar L. Role of various flavonoids: Hypotheses on novel approach to treat diabetes. J Med Hypotheses Ideas 2014; 8(1): 1-6.
[http://dx.doi.org/10.1016/j.jmhi.2013.06.001]
[6]
De Souza LA, Tavares WMG, Lopes APM, Soeiro MM, De Almeida WB. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chem Phys Lett 2017; 676: 46-52.
[http://dx.doi.org/10.1016/j.cplett.2017.03.038]
[7]
Ibrahim RM, El-Halawany AM, Saleh DO, Naggar EMBE, El-Shabrawy AERO, El-Hawary SS. HPLC-DAD-MS/MS profiling of phenolics from Securigera securidaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev Bras Farmacogn 2015; 25(2): 134-41.
[http://dx.doi.org/10.1016/j.bjp.2015.02.008]
[8]
Morita M, Takahashi I, Kanai M, et al. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett 2005; 579(2): 409-14.
[http://dx.doi.org/10.1016/j.febslet.2004.11.102] [PMID: 15642351]
[9]
Patel K, Kumar V, Rahman M, Verma A, Patel DK. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr Tradit Med 2018; 4(2): 120-7.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[10]
Govindarasu M, Palani M, Vaiyapuri M. In silico docking studies on kaempferitrin with diverse inflammatory and apoptotic proteins functional approach towards the colon cancer. Int J Pharm Pharm Sci 2017; 9(9): 199.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.20500]
[11]
Maiti S, Nazmeen A, Medda N, Patra R, Ghosh TK. Flavonoids green tea against oxidant stress and inflammation with related human diseases. Clin Nutr Exp 2019; 24: 1-14.
[http://dx.doi.org/10.1016/j.yclnex.2018.12.004]
[12]
Bakoyiannis I, Daskalopoulou A, Pergialiotis V, Perrea D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed Pharmacother 2019; 109: 1488-97.
[http://dx.doi.org/10.1016/j.biopha.2018.10.086] [PMID: 30551400]
[13]
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 2019; 111: 947-57.
[http://dx.doi.org/10.1016/j.biopha.2018.12.127] [PMID: 30841474]
[14]
Wang T, Li Q, Bi K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharma Sci 2018; 13(1): 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[15]
Tarahovsky YS, Kim YA, Yagolnik EA, Muzafarov EN. Flavonoid-membrane interactions: Involvement of flavonoid-metal complexes in raft signaling. Biochim Biophys Acta Biomembr 2014; 1838(5): 1235-46.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.021] [PMID: 24472512]
[16]
Imran M, Rauf A, Abu-Izneid T, et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother 2019; 112: 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[17]
Chen CY, Chen CC, Shieh TM, et al. Corylin suppresses hepatocellular carcinoma progression via the inhibition of epithelial-mesenchymal transition, mediated by long noncoding RNA GAS5. Int J Mol Sci 2018; 19(2): 380.
[http://dx.doi.org/10.3390/ijms19020380] [PMID: 29382035]
[18]
Shan L, Yang S, Zhang G, et al. Comparison of the inhibitory potential of bavachalcone and corylin against UDP-glucuronosyltransferases. Evid Based Complement Alternat Med 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/958937] [PMID: 24829606]
[19]
Yan C, Wu Y, Weng Z, et al. Development of an HPLC method for absolute quantification and QAMS of flavonoids components in Psoralea corylifolia L. J Anal Methods Chem 2015; 2015: 1-7.
[http://dx.doi.org/10.1155/2015/792637] [PMID: 26587307]
[20]
Chen CC, Chen CY, Ueng SH, et al. Corylin increases the sensitivity of hepatocellular carcinoma cells to chemotherapy through long noncoding RNA RAD51-AS1-mediated inhibition of DNA repair. Cell Death Dis 2018; 9(5): 543.
[http://dx.doi.org/10.1038/s41419-018-0575-0] [PMID: 29749376]
[21]
Huang MY, Tu CE, Wang SC, et al. Corylin inhibits LPS-induced inflammatory response and attenuates the activation of NLRP3 inflammasome in microglia. BMC Complement Altern Med 2018; 18(1): 221.
[http://dx.doi.org/10.1186/s12906-018-2287-5] [PMID: 30107806]
[22]
Hung YL, Fang SH, Wang SC, et al. Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep 2017; 7(1): 46299.
[http://dx.doi.org/10.1038/srep46299] [PMID: 28397806]
[23]
Chen CC, Li HY, Leu YL, Chen YJ, Wang CJ, Wang SH. Corylin inhibits vascular cell inflammation, proliferation and migration and reduces atherosclerosis in ApoE-deficient mice. Antioxidants 2020; 9(4): 275.
[http://dx.doi.org/10.3390/antiox9040275] [PMID: 32218307]
[24]
Yu AXD, Xu ML, Yao P, et al. Corylin, a flavonoid derived from Psoralea Fructus, induces osteoblastic differentiation via estrogen and Wnt/β‐catenin signaling pathways. FASEB J 2020; 34(3): 4311-28.
[http://dx.doi.org/10.1096/fj.201902319RRR] [PMID: 31965654]
[25]
Zhang T, Zhong S, Meng Y, et al. Quantitative structure-activity relationship for estrogenic flavonoids from Psoralea corylifolia. J Pharm Biomed Anal 2018; 161: 129-35.
[http://dx.doi.org/10.1016/j.jpba.2018.08.040] [PMID: 30149188]
[26]
Lee S, Yun B, Kim M, et al. Phenolic compounds isolated from Psoralea corylifolia inhibit IL-6-induced STAT3 activation. Planta Med 2012; 78(9): 903-6.
[http://dx.doi.org/10.1055/s-0031-1298482] [PMID: 22573369]
[27]
Chen IC, Wang SC, Chen YT, et al. Corylin ameliorates LPS-Induced acute lung injury via suppressing the MAPKs and IL-6/STAT3 signaling pathways. Pharmaceuticals (Basel) 2021; 14(10): 1046.
[http://dx.doi.org/10.3390/ph14101046] [PMID: 34681270]
[28]
Zheng ZG, Zhang X, Liu XX, et al. Inhibition of HSP90β improves lipid disorders by promoting mature SREBPs degradation via the ubiquitin-proteasome system. Theranostics 2019; 9(20): 5769-83.
[http://dx.doi.org/10.7150/thno.36505] [PMID: 31534518]
[29]
Chen CC, Kuo CH, Leu YL, Wang SH. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and β3-AR activation. Pharmacol Res 2021; 164: 105291.
[http://dx.doi.org/10.1016/j.phrs.2020.105291] [PMID: 33253817]
[30]
Chang ZY, Liu HM, Leu YL, Hsu CH, Lee TY. Modulation of gut microbiota combined with upregulation of intestinal tight junction explains anti-inflammatory effect of corylin on colitis-associated cancer in mice. Int J Mol Sci 2022; 23(5): 2667.
[http://dx.doi.org/10.3390/ijms23052667] [PMID: 35269806]
[31]
Yang L, Yao Y, Bai Y, et al. Effect of the isoflavone corylin from cullen corylifolium on colorectal cancer growth, by targeting the STAT3 signaling pathway. Phytomedicine 2021; 80153366.
[http://dx.doi.org/10.1016/j.phymed.2020.153366] [PMID: 33080566]
[32]
Che L, Yang H, Wang D, Liu S. Corylin sensitizes breast cancer cells to overcome tamoxifen resistance by regulating OAS1/miR-22-3p/SIRT1 axis. Acta Biochim Pol 2021; 68(4): 757-64.
[http://dx.doi.org/10.18388/abp.2020_5663] [PMID: 34731560]
[33]
Liu S, Wang L, Zhang R. Corylin suppresses metastasis of breast cancer cells by modulating miR-34c/LINC00963 target. Libyan J Med 2021; 16(1): 1883224.
[http://dx.doi.org/10.1080/19932820.2021.1883224] [PMID: 33550958]
[34]
Wang D, Li F, Jiang Z. Osteoblastic proliferation stimulating activity of Psoralea corylifolia extracts and two of its flavonoids. Planta Med 2001; 67(8): 748-9.
[http://dx.doi.org/10.1055/s-2001-18343] [PMID: 11731919]
[35]
Xiong Z, Wang D, Xu Y, Li F. Osteoblastic differentiation bioassay and its application to investigating the activity of fractions and compounds from Psoralea corylifolia L. Pharmazie 2003; 58(12): 925-8.
[PMID: 14703975]
[36]
Qiu Z, Tang X, Wu Q, et al. A new strategy for discovering effective substances and mechanisms of traditional Chinese medicine based on standardized drug containing plasma and the absorbed ingredients composition, a case study of Xian-Ling-Gu-Bao capsules. J Ethnopharmacol 2021; 279: 114396.
[http://dx.doi.org/10.1016/j.jep.2021.114396] [PMID: 34246738]
[37]
Yu AXD, Xiao J, Zhao SZ, et al. Biological evaluation and transcriptomic analysis of corylin as an inhibitor of osteoclast differentiation. Int J Mol Sci 2021; 22(7): 3540.
[http://dx.doi.org/10.3390/ijms22073540] [PMID: 33805517]
[38]
Na CS, Hong SS, Choi YH, et al. Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ-induced toxicity in PC12 cells. Arch Pharm Res 2010; 33(7): 999-1003.
[http://dx.doi.org/10.1007/s12272-010-0704-5] [PMID: 20661708]
[39]
Sun DX, Ge GB, Dong PP, et al. Inhibition behavior of fructus psoraleae’s ingredients towards human carboxylesterase 1 (hCES1). Xenobiotica 2016; 46(6): 503-10.
[http://dx.doi.org/10.3109/00498254.2015.1091521] [PMID: 26560012]
[40]
Qin Z, Li S, Yao Z, et al. Metabolic profiling of corylin in vivo and in vitro. J Pharm Biomed Anal 2018; 155: 157-68.
[http://dx.doi.org/10.1016/j.jpba.2018.03.047] [PMID: 29631076]
[41]
Wang TH, Tseng WC, Leu YL, et al. The flavonoid corylin exhibits lifespan extension properties in mouse. Nat Commun 2022; 13(1): 1238.
[http://dx.doi.org/10.1038/s41467-022-28908-2] [PMID: 35264584]
[42]
Zhao Z, Liu T, Zhu S, et al. Development and evaluation studies of Corylin loaded nanostructured lipid carriers gel for topical treatment of UV-induced skin aging. Exp Gerontol 2021; 153: 111499.
[http://dx.doi.org/10.1016/j.exger.2021.111499] [PMID: 34329721]
[43]
Yang YF, Zhang YB, Chen ZJ, Zhang YT, Yang XW. Plasma pharmacokinetics and cerebral nuclei distribution of major constituents of Psoraleae fructus in rats after oral administration. Phytomedicine 2018; 38: 166-74.
[http://dx.doi.org/10.1016/j.phymed.2017.12.002] [PMID: 29425649]
[44]
Zhou Z, Yang L, Cheng L, et al. Simultaneous characterization of multiple Psoraleae Fructus bioactive compounds in rat plasma by ultra‐high‐performance liquid chromatography coupled with triple quadrupole mass spectrometry for application in sex‐related differences in pharmacokinetics. J Sep Sci 2020; 43(14): 2804-16.
[http://dx.doi.org/10.1002/jssc.202000286] [PMID: 32384213]
[45]
Men W, Cheng L, Chen M, Zhang X, Zhang Y, Zhou K. Study on pharmacokinetics of eight active compounds from Bufei-Huoxue Capsule based on UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1184122974.
[http://dx.doi.org/10.1016/j.jchromb.2021.122974] [PMID: 34655890]
[46]
Luan L, Shen X, Liu X, Wu Y, Tan M. Qualitative analysis of Psoraleae Fructus by HPLC-DAD/TOF-MS fingerprint and quantitative analysis of multiple components by single marker. Biomed Chromatogr 2018; 32(2): e4059.
[http://dx.doi.org/10.1002/bmc.4059] [PMID: 28777876]
[47]
Lin RM, Wang DW, Xiong ZL, Xu Y, Li FM. HPLC determination of two flavonoid compounds in Psoralea corylifolia. Zhongguo Zhongyao Zazhi 2002; 27(9): 669-71.
[PMID: 12776567]
[48]
Zhang Y, Chen Z, Xu X, et al. Rapid separation and simultaneous quantitative determination of 13 constituents in Psoraleae Fructus by a single marker using high-performance liquid chromatography with diode array detection. J Sep Sci 2017; 40(21): 4191-202.
[http://dx.doi.org/10.1002/jssc.201700482] [PMID: 28869337]
[49]
Yin W, Yin FZ, Li L, Lu TL, Li WD, Cai BC. Quality assessment of Psoralea fructus by HPLC fingerprint coupled with multi-components analysis. Indian J Pharm Sci 2015; 77(6): 715-22.
[http://dx.doi.org/10.4103/0250-474X.174996] [PMID: 26997699]
[50]
Qiu RL, Li L, Zhu MH, Liu J. Study on the chemical constituents of Psoralea corylifolia. Zhong Yao Cai 2011; 34(8): 1211-3.
[PMID: 22233033]
[51]
Wang TX, Yin ZH, Zhang W, Peng T, Kang WY. Chemical constituents from Psoralea corylifolia and their antioxidant alpha-glucosidase inhibitory and antimicrobial activities. Zhongguo Zhongyao Zazhi 2013; 38(14): 2328-33.
[PMID: 24199566]
[52]
Qiao CF, Han QB, Song JZ, et al. Chemical fingerprint and quantitative analysis of Fructus psoraleae by high-performance liquid chromatography. J Sep Sci 2007; 30(6): 813-8.
[http://dx.doi.org/10.1002/jssc.200600339] [PMID: 17536725]
[53]
Nkengfack AE, Vouffo TW, Fomum ZT, Meyer M, Bergendorff O, Sterner O. Prenylated isoflavanone from the roots of Erythrina sigmoidea. Phytochemistry 1994; 36(4): 1047-51.
[http://dx.doi.org/10.1016/S0031-9422(00)90489-8] [PMID: 7765206]
[54]
Zhao L, Huang C, Shan Z, Xiang B, Mei L. Fingerprint analysis of Psoralea corylifolia L. by HPLC and LC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 821(1): 67-74.
[http://dx.doi.org/10.1016/j.jchromb.2005.04.008] [PMID: 15905140]
[55]
Kim YC, Oh H, Kim BS, et al. In vitro protein tyrosine phosphatase 1B inhibitory phenols from the seeds of Psoralea corylifolia. Planta Med 2005; 71(1): 87-9.
[http://dx.doi.org/10.1055/s-2005-837759] [PMID: 15678382]