Preparation of β-CD-Vitexin Microspheres and their Effects on SW480 Cell Proliferation

Page: [433 - 440] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Objective: In order to overcome the insolution and low bioavailability of the vitexin in vivo, β-cyclodextrin-vitexin (β-CD-vitexin) microspheres were prepared, and their effects on the proliferation of SW480 cells were observed.

Methods: Scanning electron microscopy, ultraviolet spectrum, Fourier transform infrared spectroscopy, and release rate analysis identified the formation of β-CD-vitexin microspheres. MTT assay detected the effect of β-CD-vitexin microspheres on tumor cell proliferation at 6, 12, 24, and 48 h. Fluorescence microscopy and flow cytometry were used to observe the effect of β-CD-vitexin microspheres on the apoptosis of SW480 cells. The mRNA expression of the p53 gene was measured by qPCR.

Results: β-CD-vitexin microspheres were successfully prepared. SW480 cell proliferation was inhibited by 0.1, 0.2, and 0.4 mg/mL of β-CD-vitexin microspheres in a dose- and time-dependent manner, and the mechanism of proliferation inhibition was related to cell apoptosis caused by the upregulated expression of p53 gene.

Conclusion: The preparation of β-CD-vitexin sustained release microspheres is feasible, and β-CDvitexin microspheres have potential anti-colorectal cancer value.

Keywords: β-CD-vitexin microspheres, Preparation, Identification, SW480 cell proliferations, microspheres.

Graphical Abstract

[1]
Rosa, S.I.; Rios-Santos, F.; Balogun, S.O.; Martins, D.T. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine, 2016, 23(1), 9-17.
[http://dx.doi.org/10.1016/j.phymed.2015.11.003] [PMID: 26902402]
[2]
Zhang, W.; Xu, M.; Yu, C.; Zhang, G.; Tang, X. Simultaneous determination of vitexin-4′'-O-glucoside, vitexin-2′'-O-rhamnoside, rutin and vitexin from hawthorn leaves flavonoids in rat plasma by UPLC-ESI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(21), 1837-1844.
[http://dx.doi.org/10.1016/j.jchromb.2010.05.023] [PMID: 20570577]
[3]
He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 2016, 115, 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[4]
Liu, X.; Jiang, Q.; Liu, H.; Luo, S. Vitexin induces apoptosis through mitochondrial pathway and PI3K/Akt/mTOR signaling in human non-small cell lung cancer A549 cells. Biol. Res., 2019, 52(1), 7.
[http://dx.doi.org/10.1186/s40659-019-0214-y] [PMID: 30797236]
[5]
Zhang, G.; Li, D.; Chen, H.; Zhang, J.; Jin, X. Vitexin induces G2/M-phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Mol. Med. Rep., 2018, 17(3), 4599-4604.
[http://dx.doi.org/10.3892/mmr.2018.8394] [PMID: 29328424]
[6]
Singh, D.; Rawat, M.S.; Semalty, A.; Semalty, M. Rutin-phospholipid complex: An innovative technique in novel drug delivery system- NDDS. Curr. Drug Deliv., 2012, 9(3), 305-314.
[http://dx.doi.org/10.2174/156720112800389070] [PMID: 22283645]
[7]
Morazzoni, P.; Magistretti, M.J.; Giachetti, C.; Zanolo, G. Comparative bioavailability of Silipide, a new flavanolignan complex, in rats. Eur. J. Drug Metab. Pharmacokinet., 1992, 17(1), 39-44.
[http://dx.doi.org/10.1007/BF03189986] [PMID: 1499596]
[8]
Piešťanský, J.; Maráková, K.; Mikuš, P. Two-dimensional capillary electrophoresis with On-Line sample preparation and cyclodextrin separation environment for direct determination of serotonin in human urine. Molecules, 2017, 22(10), 1668.
[http://dx.doi.org/10.3390/molecules22101668] [PMID: 28991152]
[9]
Zhang, Y.; Lin, X.; Wang, J.; Jing, S.; Wang, D.; Tian, Z.; Kang, M.; Ding, C.; He, S.; Ma, J. Preparation of β-CD-quercetin complex and its effects on ethanol- damaged BRL-3A hepatocytes. Curr. Drug Deliv., 2020, 17(8), 720-726.
[http://dx.doi.org/10.2174/1567201817666200708114738] [PMID: 32640958]
[10]
Yoon, S.J.; Hyun, H.; Lee, D.W.; Yang, D.H. Visible light-cured glycol chitosan hydrogel containing a beta-cyclodextrin-curcumin inclusion complex improves wound healing in vivo. Molecules, 2017, 22(9), E1513.
[http://dx.doi.org/10.3390/molecules22091513] [PMID: 28891961]
[11]
Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (transcinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. Lebensm. Wiss. Technol., 2013, 51(1), 86-93.
[http://dx.doi.org/10.1016/j.lwt.2012.11.011]
[12]
Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym., 2015, 131, 264-272.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.014] [PMID: 26256184]
[13]
Wang, H.; Zhang, Y.; Tian, Z.; Ma, J.; Kang, M.; Ding, C.; Ming, D. Preparation of β-CD-ellagic acid microspheres and their effects on HepG2 cell proliferation. Molecules, 2017, 22(12), E2175.
[http://dx.doi.org/10.3390/molecules22122175] [PMID: 29292740]
[14]
Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of oregano (Origanum onites L.) essential oil in β-cyclodextrin (β-CD): Synthesis and characterization of the inclusion complexes. Bioengineering (Basel), 2017, 4(3), E74.
[http://dx.doi.org/10.3390/bioengineering4030074] [PMID: 28952553]
[15]
Das, S.; Roy, D. Cyclodextrin: A novel excipient for drug development. Int. J. Curr. Pharm. Rev. Res., 2017, 8(3), 215-222.
[http://dx.doi.org/10.25258/ijcprr.v8i03.9206]
[16]
Das, S.; Dey, R. Trivalent ion cross-linked and acetalated gellan gum microspheres of glimepiride. Asian J. Pharm. Clin. Res., 2020, 13(5), 66-68.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i5.37229]
[17]
Ding, C.; Shen, H.; Tian, Z.; Kang, M.; Ma, J.; He, Q.; Wang, J.; Zhang, Y.; Deng, Y.; Wang, D. Protective effect of hawthorn vitexin on the ethanol-injured DNA of BRL-3A hepatocytes. Medicine (Baltimore), 2021, 100(50), e28228.
[http://dx.doi.org/10.1097/MD.0000000000028228] [PMID: 34918685]
[18]
Jiang, Q.; Yang, M.; Qu, Z.; Zhou, J.; Zhang, Q. Resveratrol enhances anticancer effects of paclitaxel in HepG2 human liver cancer cells. BMC Complement. Altern. Med., 2017, 17(1), 477.
[http://dx.doi.org/10.1186/s12906-017-1956-0] [PMID: 28978315]
[19]
Hosseini, A.; Bakhtiari, E.; Mousavi, S.H. Protective effect of Hibiscus sabdariffa on doxorubicin-induced cytotoxicity in H9c2 cardiomyoblast cells. Iran. J. Pharm. Res., 2017, 16(2), 708-713.
[PMID: 28979325]
[20]
Ramasamy, S.; Enoch, I.V.M.V.; Rex Jeya Rajkumar, S.R.J. Polymeric cyclodextrin-dextran spooled nickel ferrite nanoparticles: Expanded anticancer efficacy of loaded camptothecin. Mater. Lett., 2019, 261, 127114.
[http://dx.doi.org/10.1016/j.matlet.2019.127114]
[21]
Enoch, I.V.M.V.; Ramasamy, S.; Mohiyuddin, S.; Gopinath, P.; Manoharan, R. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release. Appl. Nanosci., 2018, 8(3), 273-284.
[http://dx.doi.org/10.1007/s13204-018-0798-5]
[22]
Yang, S.H.; Liao, P.H.; Pan, Y.F.; Chen, S.L.; Chou, S.S.; Chou, M.Y. The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother. Res., 2013, 27(8), 1154-1161.
[http://dx.doi.org/10.1002/ptr.4841] [PMID: 22976055]
[23]
Shi, Y.; Deng, L.; Rao, W.; Xu, Q. Inhibiting effects and mechanism of vitexin against proliferation of SMMC-7721 cancer cells. Chin. Hosp. Pharm. J., 2016, 36(5), 366-371.
[http://dx.doi.org/10.13286/j.cnki.Chinhosppharmacyj.2016.05.08]
[24]
Kim, J.; Lee, I.; Seo, J.; Jung, M.; Kim, Y.; Yim, N.; Bae, K. Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother. Res., 2010, 24(10), 1543-1548.
[http://dx.doi.org/10.1002/ptr.3186] [PMID: 20878708]