Development of Copper Nanoparticle Conjugated Chitosan Microparticle as a Stable Source of 2nm Copper Nanoparticle Effective against Methicillin- resistant Staphylococcus aureus

Page: [310 - 326] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Copper nanoparticle (CuNP) has well-established antimicrobial activity. Instability in an aqueous medium due to aggregation into larger particles, conversion into metal ions, and oxidation into metal oxides are the major limitations of its practical use against bacterial infections.

Objective: Development of CuNP Conjugated Chitosan Microparticles as a reservoir that will release CuNP effective against notorious bacteria like Methicillin-resistant Staphylococcus aureus.

Methods: CuNP conjugated chitosan microparticles (CNCCM) were synthesized using a simple twostep process. In the first step, a solution of chitosan in 2% (w/v) ascorbic acid was added dropwise in copper sulphate solution to prepare Cu ion conjugated chitosan beads. In the second step, these beads were soaked in sodium hydroxide solution to get the CNCCM. The dried CNCCM were characterized thoroughly for surface conjugation of CuNP, and the release of CuNP in a suitable medium. The physicochemical properties of release CuNP were further verified with the in silico modelled CuNP. The Antimicrobial and antibiofilm activities of released CuNp were evaluated against methicillin-resistant Staphylococcus aureus (MRSA).

Results: 2% (w/v) ascorbic acid solution (pH 3.5) was the optimum medium for the release of ~2 nm CuNP from CNCCM. The CuNP had an optical band gap of ~ 2 eV. It inhibited the cell wall synthesis of MRSA. The minimum inhibitory concentration was 200 nM. At 100 nM dose, the CuNP caused ~73% reduction in biofilm development after 24 h of growth. The cytotoxic effect of CuNP on the human cell line (HEK 293) was significantly less than that on MRSA. The 48 h IC50 value against HEK 293 was 3.45-fold higher than the MIC value against MRSA after 24 h treatment.

Conclusion: CuNP Conjugated Chitosan Microparticle has been developed. It works as a stable reservoir of ~2 nm CuNP. The CuNP is released in an aqueous medium containing 2% (w/v) ascorbic acid (pH 3.5). The released CuNP has a bacteriostatic effect against MRSA at a concentration safe for human cells.

Keywords: copper nanoparticle, antibiofilm activity, methicillin-resistant Staphylococcus aureus, pH triggered release, antimicrobial activity

Graphical Abstract

[1]
Joshi KM, Shelar A, Kasabe U, et al. Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Mater Sci Eng C 2021; 134: 112592.
[PMID: 35527134]
[2]
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid Based Complement Alternat Med 2015; 2015: 1-16.
[http://dx.doi.org/10.1155/2015/246012] [PMID: 25861355]
[3]
Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel) 2020; 10(2): 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]
[4]
Huh AJ, Kwon YJ. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011; 156(2): 128-45.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[5]
Raghunath A, Perumal E. Metal oxide nanoparticles as antimicrobial agents: A promise for the future. Int J Antimicrob Agents 2017; 49(2): 137-52.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.011] [PMID: 28089172]
[6]
Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 2018; 37(3): 209-30.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009] [PMID: 30317972]
[7]
Krause BC, Kriegel FL, Tartz V, et al. Combinatory effects of cerium dioxide nanoparticles and acetaminophen on the liver-a case study of low-dose interactions in human huh-7 cells. Int J Mol Sci 2021; 22(13): 6866.
[http://dx.doi.org/10.3390/ijms22136866] [PMID: 34202329]
[8]
Maharjan RS, Singh AV, Hanif J, et al. Investigation of the associations between a nanomaterial’s microrheology and toxicology. ACS Omega 2022; 7(16): 13985-97.
[http://dx.doi.org/10.1021/acsomega.2c00472] [PMID: 35559161]
[9]
Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater Sci 2020; 8(17): 4653-64.
[http://dx.doi.org/10.1039/D0BM00558D] [PMID: 32672255]
[10]
Karlsson HL, Toprak MS, Fadeel B. Chapter 4. Toxicity of metal and metal oxide nanoparticles. In: Nordberg GF, Fowler BA, Nordberg M, Eds. Handbook on the Toxicology of Metals. (4th ed.). San Diego: Academic Press 2015; pp. 75-112.
[http://dx.doi.org/10.1016/B978-0-444-59453-2.00004-4]
[11]
Das B, Patra S. Chapter 1. Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. Grumezescu Nanostructures for Antimicrobial Therapy Ficai A. Grumezescu, AM: Elsevier 2017; pp. 1-22.
[http://dx.doi.org/10.1016/B978-0-323-46152-8.00001-9]
[12]
Aye HL, Choopun S, Chairuangsri T. Preparation of nanoparticles by laser ablation on copper target in distilled water. Adv Mat Res 2010; 93-94: 83-6.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.93-94.83]
[13]
Anand V. Harshavardhan, Srivastava VC. Synthesis and characterization of copper nanoparticles by electrochemical method: Effect of pH. J Nano Res 2015; 31: 81-92.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.31.81]
[14]
Zhang QB, Hua YX. Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride–urea deep eutectic solvent: Nucleation and growth mechanism. Phys Chem Chem Phys 2014; 16(48): 27088-95.
[http://dx.doi.org/10.1039/C4CP03041A] [PMID: 25387166]
[15]
Dement’eva OV, Rudoy VM. Copper nanoparticles synthesized by the polyol method and their oxidation in polar dispersion media. The influence of chloride and acetate ions. Colloid J 2012; 74(6): 668-74.
[http://dx.doi.org/10.1134/S1061933X1206004X]
[16]
Cheng X, Zhang X, Yin H, Wang A, Xu Y. Modifier effects on chemical reduction synthesis of nanostructured copper. Appl Surf Sci 2006; 253(5): 2727-32.
[http://dx.doi.org/10.1016/j.apsusc.2006.05.125]
[17]
Zafar N, Shamaila S, Khalid H. Synthesis of copper nanoparticles by chemical reduction method. Transactions of Nonferrous Metals Society of China 2019; 29(7): 1510-5.
[18]
Liu Q, Zhou D, Yamamoto Y, Ichino R, Okido M. Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Trans Nonferrous Met Soc China 2012; 22(1): 117-23.
[http://dx.doi.org/10.1016/S1003-6326(11)61149-7]
[19]
Liu Q, Yasunami T, Kuruda K, Okido M. Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans Nonferrous Met Soc China 2012; 22(9): 2198-203.
[http://dx.doi.org/10.1016/S1003-6326(11)61449-0]
[20]
Patel BH, Channiwala MZ, Chaudhari SB, Mandot AA. Biosynthesis of copper nanoparticles; its characterization and efficacy against human pathogenic bacterium. J Environ Chem Eng 2016; 4(2): 2163-9.
[http://dx.doi.org/10.1016/j.jece.2016.03.046]
[21]
Kulkarni V, Kulkarni P. Green synthesis of copper nanoparticles using ocimum sanctum leaf extract. Int J Chem Stud 2013; 1: 1.
[22]
Ismail MIM. Green synthesis and characterizations of copper nanoparticles. Mater Chem Phys 2020; 240: 122283.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122283]
[23]
Hassanien R, Husein DZ, Al-Hakkani MF. Biosynthesis of copper nanoparticles using aqueous Tilia extract: Antimicrobial and anticancer activities. Heliyon 2018; 4(12): e01077.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01077] [PMID: 30603710]
[24]
Nasrollahzadeh M, Momeni SS, Sajadi SM. Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J Colloid Interface Sci 2017; 506: 471-7.
[http://dx.doi.org/10.1016/j.jcis.2017.07.072] [PMID: 28755642]
[25]
David MZ, Daum RS. Update on epidemiology and treatment of mrsa infections in children. Curr Pediatr Rep 2013; 1(3): 170-81.
[http://dx.doi.org/10.1007/s40124-013-0023-7] [PMID: 24040579]
[26]
Neu HC. The crisis in antibiotic resistance. Science 1992; 257(5073): 1064-73.
[http://dx.doi.org/10.1126/science.257.5073.1064] [PMID: 1509257]
[27]
Monecke S, Coombs G, Shore AC, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 2011; 6(4): e17936.
[http://dx.doi.org/10.1371/journal.pone.0017936] [PMID: 21494333]
[28]
Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 2009; 33(6): 587-90.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.12.004] [PMID: 19195845]
[29]
Balcucho J, Narváez DM, Castro-Mayorga JL. Antimicrobial and biocompatible polycaprolactone and copper oxide nanoparticle wound dressings against methicillin-resistant Staphylococcus aureus. Nanomaterials (Basel) 2020; 10(9): 1692.
[http://dx.doi.org/10.3390/nano10091692] [PMID: 32872095]
[30]
Dong Y, Zhu H, Shen Y, Zhang W, Zhang L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS One 2019; 14(9): e0222322.
[http://dx.doi.org/10.1371/journal.pone.0222322] [PMID: 31518380]
[31]
Usman M, Ibrahim N, Shameli K, Zainuddin N, Yunus W. Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods. Molecules 2012; 17(12): 14928-36.
[http://dx.doi.org/10.3390/molecules171214928] [PMID: 23242252]
[32]
Jayaramudu T, Varaprasad K, Pyarasani RD, et al. Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite films. Int J Biol Macromol 2019; 128: 499-508.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.145] [PMID: 30699337]
[33]
Zhang Y, Huo M, Zhou J, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J 2010; 12(3): 263-71.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
[34]
Hlaing M, Gebear-Eigzabher B, Roa A, Marcano A, Radu D, Lai CY. Absorption and scattering cross-section extinction values of silver nanoparticles. Opt Mater 2016; 58: 439-44.
[http://dx.doi.org/10.1016/j.optmat.2016.06.013]
[35]
Mie theory calculator. nanoComposix 2021. Available from: https://nanocomposix.com/pages/mie-theory-calculator
[36]
Ghosh DD, Mukherjee P, Ghosh D, Banerjee D. Carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn2+ in blood plasma. Colloids Surf A Physicochem Eng Asp 2021; 611: 125781.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125781]
[37]
Dhineshbabu NR, Rajendran V, Nithyavathy N, Vetumperumal R. Study of structural and optical properties of cupric oxide nanoparticles. Appl Nanosci 2016; 6(6): 933-9.
[http://dx.doi.org/10.1007/s13204-015-0499-2]
[38]
Momma K, Izumi F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 2008; 41(3): 653-8.
[http://dx.doi.org/10.1107/S0021889808012016]
[39]
Halal A, Rahman KS, Abdullah SF, Sopian K, Amin N. An investigation on CdS1-xTex interface compound in CdS/CdTe hetero-junction solar cells by density functional theory (DFT). Superlattices Microstruct 2021; 151: 106805.
[http://dx.doi.org/10.1016/j.spmi.2021.106805]
[40]
Weissmann M, Weht R. Electronic and magnetic properties of the different phases of Ti_ {4} O_ {7} from density functional theory. Phys Rev B Condens Matter Mater Phys 2011; •••: 84.
[41]
Malik H, Sarkar S, Mohanty S, Carlson K. Modelling and synthesis of Magnéli Phases in ordered titanium oxide nanotubes with preserved morphology. Sci Rep 2020; 10(1): 8050.
[http://dx.doi.org/10.1038/s41598-020-64918-0] [PMID: 32415134]
[42]
Weinstein MP, Lewis JS II. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. J Clin Microbiol 2020; 58(3): e01864-19.
[http://dx.doi.org/10.1128/JCM.01864-19] [PMID: 31915289]
[43]
Pankey GA, Sabath LD. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis 2004; 38(6): 864-70.
[http://dx.doi.org/10.1086/381972] [PMID: 14999632]
[44]
Walencka E, Sadowska B, Róžalska S, Hryniewicz W, Róžalska B. Staphylococcus aureus biofilm as a target for single or repeated doses of oxacillin, vancomycin, linezolid and/or lysostaphin. Folia Microbiol (Praha) 2006; 51(5): 381-6.
[http://dx.doi.org/10.1007/BF02931580] [PMID: 17176756]
[45]
Paudel A, Hamamoto H, Kobayashi Y, Yokoshima S, Fukuyama T, Sekimizu K. Identification of novel deoxyribofuranosyl indole antimicrobial agents. J Antibiot (Tokyo) 2012; 65(2): 53-7.
[http://dx.doi.org/10.1038/ja.2011.110] [PMID: 22167161]
[46]
Mandal Supratim, Maiti Sourav, Bandyopadhya Chandrakanta, Pal Chiranjib. Induction of ROS by a novel chromone linked nitrone derivative promotes mitochondria mediated caspase dependent apoptosis in HepG2 and HeLa cells. World Sci Res 2018; 103: 167-85.
[47]
Shu XZ, Zhu KJ. Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation. J Microencapsul 2001; 18(2): 237-45.
[http://dx.doi.org/10.1080/02652040010000415] [PMID: 11253940]
[48]
Huang HH, Yan FQ, Kek YM, et al. Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 1997; 13(2): 172-5.
[http://dx.doi.org/10.1021/la9605495]
[49]
Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 2007; 7(7): 1947-52.
[http://dx.doi.org/10.1021/nl070648a]
[50]
Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm 2006; 309(1-2): 44-50.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.044] [PMID: 16376033]
[51]
Willock DJ. Metallic bonding and crystals. In: Bassani F, Liedl GL, Wyder P, Eds. Encyclopedia of Condensed Matter Physics. Oxford: Elsevier 2005; pp. 353-61.
[http://dx.doi.org/10.1016/B0-12-369401-9/00410-1]
[52]
Ngoc LLT, Wiedemair J, van den Berg A, Carlen ET. Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure. Opt Express 2015; 23(5): 5547-64.
[http://dx.doi.org/10.1364/OE.23.005547] [PMID: 25836787]
[53]
Misra PK. Chapter 4 Nearly free electron model. In: Misra PK, Ed. Physics of Condensed Matter. Boston: Academic Press 2012; pp. 95-130.
[http://dx.doi.org/10.1016/B978-0-12-384954-0.00004-9]
[54]
Marchiori R. 8 - Mathematical Fundamentals of Nanotechnology Nanostructures. William Andrew Publishing 2017; pp. 209-32.
[http://dx.doi.org/10.1016/B978-0-323-49782-4.00008-5]
[55]
Nyquist RA, Ed. Chapter 5 Sulfoxides, sulfones, sulfates, monothiosulfates, sulfonyl halides, sulfites, sulfonamides, sulfonates, and n-sulfinyl anilines Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra. San Diego: Academic Press 2001; pp. 85-117.

[56]
Berger J. Infrared and Raman spectra of CuSO4, 5H2O; CuSO4, 5D2O; and CuSeO4, 5H2O. J Raman Spectrosc 1976; 5(2): 103-14.
[http://dx.doi.org/10.1002/jrs.1250050202]
[57]
Mo FK, Tian XL, Tian DF, Wang ZY. Synthesis and evaluation of chitosan-Vitamin C complex. Indian J Pharm Sci 2009; 71(4): 371-6.
[http://dx.doi.org/10.4103/0250-474X.57284] [PMID: 20502541]
[58]
Movasaghi Z, Rehman S. ur Rehman DI. Fourier Transform Infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 2008; 43(2): 134-79.
[http://dx.doi.org/10.1080/05704920701829043]
[59]
Balan V, Mihai CT, Cojocaru FD, et al. Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials (Basel) 2019; 12(18): 2884.
[60]
Simonova D, Karamancheva I. Application of fourier transform infrared spectroscopy for tumor diagnosis. Biotechnol Biotechnol Equip 2013; 27(6): 4200-7.
[http://dx.doi.org/10.5504/BBEQ.2013.0106]
[61]
Cimino P, Troiani A, Pepi F, et al. From ascorbic acid to furan derivatives: The gas phase acid catalyzed degradation of vitamin C. Phys Chem Chem Phys 2018; 20(25): 17132-40.
[http://dx.doi.org/10.1039/C8CP01893F] [PMID: 29897359]
[62]
León A, Reuquen P, Garín C, et al. FTIR and raman characterization of tio2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci (Basel) 2017; 7(1): 49.
[http://dx.doi.org/10.3390/app7010049]
[63]
Sandford SA, Bernstein MP, Materese CK. The infrared spectra of polycyclic aromatic hydrocarbons with excess peripheral H atoms (Hn-PAHs) and their relation to the 3.4 and 6.9 µm PAH emission features. Astrophys J Suppl Ser 2013; 205(1): 8.
[http://dx.doi.org/10.1088/0067-0049/205/1/8] [PMID: 26435553]
[64]
Matsui T, Kitagawa Y, Okumura M, Shigeta Y. Accurate standard hydrogen electrode potential and applications to the redox potentials of vitamin C and NAD/NADH. J Phys Chem A 2015; 119(2): 369-76.
[http://dx.doi.org/10.1021/jp508308y] [PMID: 25514626]
[65]
Ghosh D, Dastidar DG, Banerjee D, Chatterjee S. pH-Triggered in-situ release of silver nanoparticle in hydrogel for topical applications. Biomed Phys Eng Express 2019; 5(6): 065009.
[http://dx.doi.org/10.1088/2057-1976/ab4382]