Comprehensive Review on Metal Nanoparticles Catalyzed Synthesis of Aza- and Oxa-Heterocycles Reported in 2021

Page: [800 - 817] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Among the several heterocyclic compounds containing aza- and oxa-heterocycles are predominant due to their abundant biological importance. The nanoparticles have demonstrated excellent catalytic activity under optimum conditions with higher reusability or recyclability and higher yields of synthetic heterocyclic targets. Previously we reviewed the synthesis of aza- and oxa-heterocycles catalyzed by metal nanoparticles (MNPs) during 2009-2019 and published an update of such reports of 2020 on the same subject. With anticipations to the next, the present comprehensive work highlights the synthesis of aza- and oxa-heterocycles catalyzed by MNPs reported during the year 2021 to update the reader of the present work with the most recent trends in selection of MNPs in the synthesis of desired heterocyclic scaffolds.

Keywords: Nanocatalysis, MNPs, heterocycles, nanoparticles, synthesis, catalysis.

Graphical Abstract

[1]
Lipkus, A.H.; Yuan, Q.; Lucas, K.A.; Funk, S.A.; Bartelt, W.F., III; Schenck, R.J.; Trippe, A.J. Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J. Org. Chem., 2008, 73(12), 4443-4451.
[http://dx.doi.org/10.1021/jo8001276] [PMID: 18505297]
[2]
Sureja, D.K.; Vadalia, K.R. Microwave assisted, solvent-free synthesis and in-vitro antimicrobial screening of some novel pyrazolo[3,4-d]Pyrimidin-4(5H)-one derivatives. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(1), 33-38.
[http://dx.doi.org/10.1016/j.bjbas.2016.12.006]
[3]
Sureja, D.K.; Vadalia, K.R. POCl3 catalyzed, one-step, solvent-free synthesis of some novel thieno[2,3-d]pyrimidin-4(3H)-one derivatives as antimicrobial agent. J. Saudi Chem. Soc., 2018, 22(2), 248-253.
[http://dx.doi.org/10.1016/j.jscs.2016.07.004]
[4]
Pancholia, S.; Dhameliya, T.M.; Shah, P.; Jadhavar, P.S.; Sridevi, J.P.; Yogeshwari, P.; Sriram, D.; Chakraborti, A.K. Benzo[d]thiazol-2-yl(piperazin-1-yl)methanones as new anti-mycobacterial chemotypes: Design, synthesis, biological evaluation and 3D-QSAR studies. Eur. J. Med. Chem., 2016, 116, 187-199.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.060] [PMID: 27061982]
[5]
Dhameliya, T.M.; Tiwari, R.; Banerjee, A.; Pancholia, S.; Sriram, D.; Panda, D.; Chakraborti, A.K. Benzo[d]thiazole-2-carbanilides as new anti-TB chemotypes: Design, synthesis, biological evaluation, and structure-activity relationship. Eur. J. Med. Chem., 2018, 155, 364-380.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.049] [PMID: 29902722]
[6]
De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605]
[7]
Bhakhar, K.A.; Sureja, D.K.; Dhameliya, T.M. Synthetic account of indoles in search of potential anti-mycobacterial agents: A review and future insights. J. Mol. Struct., 2022, 1248, 131522.
[http://dx.doi.org/10.1016/j.molstruc.2021.131522]
[8]
Dhameliya, T.M.; Patel, K.I.; Tiwari, R.; Vagolu, S.K.; Panda, D.; Sriram, D.; Chakraborti, A.K. Design, synthesis, and biological evaluation of benzo[d]imidazole-2-carboxamides as new anti-TB agents. Bioorg. Chem., 2021, 107, 104538.
[http://dx.doi.org/10.1016/j.bioorg.2020.104538] [PMID: 33349456]
[9]
Sureja, D.K.; Dholakia, S.P.; Vadalia, K.R. Synthesis of some novel pyrazolo[3,4-d] pyrimidin-4(5H)-one derivatives as potential antimicrobial agent. J. Pharm. Bioallied Sci., 2016, 8(4), 321-326.
[http://dx.doi.org/10.4103/0975-7406.199337] [PMID: 28216957]
[10]
Dhameliya, T.M.; Chudasma, S.J.; Patel, T.M.; Dave, B.P. A review on synthetic account of 1,2,4-oxadiazoles as anti-infective agents. Mol. Divers., 2022, 1-14.
[http://dx.doi.org/10.1007/s11030-021-10375-4] [PMID: 34984590]
[11]
Dhameliya, T.M.; Devani, A.A.; Patel, K.A.; Shah, K.C. Comprehensive coverage on anti-mycobacterial endeavour reported in 2021. ChemistrySelect, 2022, 7(19), e202200921.
[http://dx.doi.org/10.1002/slct.202200921]
[12]
Dhameliya, T.M.; Bhakhar, K.A.; Gajjar, N.D.; Patel, K.A.; Devani, A.A.; Hirani, R.V. Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J. Mol. Struct., 2022, 1248, 131473.
[http://dx.doi.org/10.1016/j.molstruc.2021.131473]
[13]
Alsayed, S.S.R.; Lun, S.; Payne, A.; Bishai, W.R.; Gunosewoyo, H. Design, synthesis and antimycobacterial evaluation of novel adamantane and adamantanol analogues effective against drug-resistant tuberculosis. Bioorg. Chem., 2021, 106, 104486.
[http://dx.doi.org/10.1016/j.bioorg.2020.104486] [PMID: 33276981]
[14]
Jadhavar, P.S.; Dhameliya, T.M.; Vaja, M.D.; Kumar, D.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Synthesis, biological evaluation and structure-activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(11), 2663-2669.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.012] [PMID: 27095514]
[15]
Jadhavar, P.S.; Patel, K.I.; Dhameliya, T.M.; Saha, N.; Vaja, M.D.; Krishna, V.S.; Sriram, D.; Chakraborti, A.K. Benzimidazoquinazolines as new potent anti-TB chemotypes: Design, synthesis, and biological evaluation. Bioorg. Chem., 2020, 99, 103774.
[http://dx.doi.org/10.1016/j.bioorg.2020.103774] [PMID: 32224336]
[16]
Jadhavar, P.S.; Vaja, M.D.; Dhameliya, T.M.; Chakraborti, A.K. Oxazolidinones as anti-tubercular agents: Discovery, development and future perspectives. Curr. Med. Chem., 2015, 22(38), 4379-4397.
[http://dx.doi.org/10.2174/0929867323666151106125759] [PMID: 26549430]
[17]
Delost, M.D.; Smith, D.T.; Anderson, B.J.; Njardarson, J.T. From oxiranes to oligomers: Architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles. J. Med. Chem., 2018, 61(24), 10996-11020.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00876] [PMID: 30024747]
[18]
Available from: https://www.scopus.com/ (Accessed on: Jun 6, 2022)
[19]
Cortes-Clerget, M.; Yu, J.; Kincaid, J.R.A.; Walde, P.; Gallou, F.; Lipshutz, B.H. Water as the reaction medium in organic chemistry: From our worst enemy to our best friend. Chem. Sci. (Camb.), 2021, 12(12), 4237-4266.
[http://dx.doi.org/10.1039/D0SC06000C] [PMID: 34163692]
[20]
Reddy, P.N.; Padmaja, P.; Subba Reddy, B.V.; Rambabu, G. Ionic liquid/water mixture promoted organic transformations. RSC Advances, 2015, 5(63), 51035-51054.
[http://dx.doi.org/10.1039/C5RA08625F]
[21]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res., 2013, 46(8), 1825-1837.
[http://dx.doi.org/10.1021/ar300197s] [PMID: 23350747]
[22]
Gallou, F.; Isley, N.A.; Ganic, A.; Onken, U.; Parmentier, M. Surfactant technology applied toward an active pharmaceutical ingredient: More than a simple green chemistry advance. Green Chem., 2016, 18(1), 14-19.
[http://dx.doi.org/10.1039/C5GC02371H]
[23]
Lassaletta, J.M. Spotting trends in organocatalysis for the next decade. Nat. Commun., 2020, 11(1), 3787.
[http://dx.doi.org/10.1038/s41467-020-17600-y] [PMID: 32728081]
[24]
Mohan, S.V.; Katakojwala, R. The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0. Curr. Opin. Green Sustain. Chem., 2021, 28, 100434.
[http://dx.doi.org/10.1016/j.cogsc.2020.100434]
[25]
Jiménez-González, C.; Constable, D.J.C.; Ponder, C.S. Evaluating the “greenness” of chemical processes and products in the pharmaceutical industry-A green metrics primer. Chem. Soc. Rev., 2012, 41(4), 1485-1498.
[http://dx.doi.org/10.1039/C1CS15215G] [PMID: 22076593]
[26]
Ardila-Fierro, K.J.; Hernández, J.G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem, 2021, 14(10), 2145-2162.
[http://dx.doi.org/10.1002/cssc.202100478] [PMID: 33835716]
[27]
Kralisch, D.; Ott, D.; Gericke, D. Rules and benefits of life cycle assessment in green chemical process and synthesis design: A tutorial review. Green Chem., 2015, 17(1), 123-145.
[http://dx.doi.org/10.1039/C4GC01153H]
[28]
Sanna, V.; Satta, S.; Hsiai, T.; Sechi, M. Development of targeted nanoparticles loaded with antiviral drugs for SARS-CoV-2 inhibition. Eur. J. Med. Chem., 2022, 231, 114121.
[http://dx.doi.org/10.1016/j.ejmech.2022.114121] [PMID: 35114539]
[29]
Mikhailova, E.O. Gold nanoparticles: Biosynthesis and potential of biomedical application. J. Funct. Biomater., 2021, 12(4), 70.
[http://dx.doi.org/10.3390/jfb12040070] [PMID: 34940549]
[30]
Mallakpour, S.; Azadi, E.; Hussain, C.M. Fight against COVID-19 pandemic with the help of carbon-based nanomaterials. New J. Chem., 2021, 45(20), 8832-8846.
[http://dx.doi.org/10.1039/D1NJ01333E]
[31]
Zheng, M.; Jia, H.; Wang, H.; Liu, L.; He, Z.; Zhang, Z.; Yang, W.; Gao, L.; Gao, X.; Gao, F. Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Advances, 2021, 11(13), 7129-7137.
[http://dx.doi.org/10.1039/D1RA00328C] [PMID: 35423287]
[32]
Moradpoor, H.; Safaei, M.; Mozaffari, H.R.; Sharifi, R.; Imani, M.M.; Golshah, A.; Bashardoust, N. An overview of recent progress in dental applications of zinc oxide nanoparticles. RSC Advances, 2021, 11(34), 21189-21206.
[http://dx.doi.org/10.1039/D0RA10789A] [PMID: 35479373]
[33]
Singh, K.R.; Nayak, V.; Singh, J.; Singh, A.K.; Singh, R.P. Potentialities of bioinspired metal and metal oxide nanoparticles in biomedical sciences. RSC Advances, 2021, 11(40), 24722-24746.
[http://dx.doi.org/10.1039/D1RA04273D] [PMID: 35481029]
[34]
Zheng, X.; Zhang, P.; Fu, Z.; Meng, S.; Dai, L.; Yang, H. Applications of nanomaterials in tissue engineering. RSC Advances, 2021, 11(31), 19041-19058.
[http://dx.doi.org/10.1039/D1RA01849C] [PMID: 35478636]
[35]
Dhameliya, T.M.; Nagar, P.R.; Bhakhar, K.A.; Jivani, H.R.; Shah, B.J.; Patel, K.M.; Patel, V.S.; Soni, A.H.; Joshi, L.P.; Gajjar, N.D. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J. Mol. Liq., 2022, 348, 118329.
[http://dx.doi.org/10.1016/j.molliq.2021.118329]
[36]
Zhang, B.; Yan, N. Towards rational design of nanoparticle catalysis in ionic liquids. Catalysts, 2013, 3(2), 543-562.
[http://dx.doi.org/10.3390/catal3020543]
[37]
Luska, K.L.; Migowski, P.; Leitner, W. Ionic liquid-stabilized nanoparticles as catalysts for the conversion of biomass. Green Chem., 2015, 17(6), 3195-3206.
[http://dx.doi.org/10.1039/C5GC00231A]
[38]
Zaera, F. Molecular approaches to heterogeneous catalysis. Coord. Chem. Rev., 2021, 448, 214179.
[http://dx.doi.org/10.1016/j.ccr.2021.214179]
[39]
Lu, L.; Zou, S.; Fang, B. The critical impacts of ligands on heterogeneous nanocatalysis: A review. ACS Catal., 2021, 11(10), 6020-6058.
[http://dx.doi.org/10.1021/acscatal.1c00903]
[40]
Gao, C.; Lyu, F.; Yin, Y. Encapsulated metal nanoparticles for catalysis. Chem. Rev., 2021, 121(2), 834-881.
[http://dx.doi.org/10.1021/acs.chemrev.0c00237] [PMID: 32585087]
[41]
Gebre, S.H. Recent developments in the fabrication of magnetic nanoparticles for the synthesis of trisubstituted pyridines and imidazoles: A green approach. Synth. Commun., 2021, 51, 1669-1699.
[http://dx.doi.org/10.1080/00397911.2021.1900257]
[42]
Varma, R.S. Journey on greener pathways: From the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem., 2014, 16(4), 2027-2041.
[http://dx.doi.org/10.1039/c3gc42640h]
[43]
Ohtaka, A. Recent progress of metal nanoparticle catalysts for C-C bond forming reactions. Catalysts, 2021, 11(11), 1266.
[http://dx.doi.org/10.3390/catal11111266]
[44]
Alam, A.M.; Shon, Y.S. Water-soluble noble metal nanoparticle catalysts capped with small organic molecules for organic transformations in water. ACS Appl. Nano Mater., 2021, 4(4), 3294-3318.
[http://dx.doi.org/10.1021/acsanm.1c00335] [PMID: 34095774]
[45]
Mathur, R.; Negi, K.S.; Shrivastava, R.; Nair, R. Recent developments in the nanomaterial-catalyzed green synthesis of structurally diverse 1,4-dihydropyridines. RSC Advances, 2021, 11(3), 1376-1393.
[http://dx.doi.org/10.1039/D0RA07807G] [PMID: 35424131]
[46]
Mohammadi Ziarani, G.; Kheilkordi, Z.; Mohajer, F.; Badiei, A.; Luque, R. Magnetically recoverable catalysts for the preparation of pyridine derivatives: An overview. RSC Advances, 2021, 11(28), 17456-17477.
[http://dx.doi.org/10.1039/D1RA02418C] [PMID: 35479731]
[47]
Dhameliya, T.M.; Donga, H.A.; Vaghela, P.V.; Panchal, B.G.; Sureja, D.K.; Bodiwala, K.B.; Chhabria, M.T. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Advances, 2020, 10(54), 32740-32820.
[http://dx.doi.org/10.1039/D0RA02272A] [PMID: 35516511]
[48]
Dhameliya, T.M.; Patel, R.J.; Gajjar, N.D.; Amin, R.H.; Bodiwala, K.B.; Sureja, D.K. Recent trends in Metal Nanoparticles (MNPs) catalyzed synthesis of Aza- and Oxa-heterocycles. In: Advanced Nanocatalysis for Organic Synthesis and Electroanalysis; Bentham Science Publishers, 2022; pp. 114-157.
[http://dx.doi.org/10.2174/9789815040166122010009]
[49]
Veisi, H.; Neyestani, N.; Pirhayati, M.; Ahany Kamangar, S.; Lotfi, S.; Tamoradi, T.; Karmakar, B. Copper nanoparticle anchored biguanidine-modified Zr-UiO-66 MOFs: A competent heterogeneous and reusable nanocatalyst in Buchwald-Hartwig and Ullmann type coupling reactions. RSC Advances, 2021, 11(36), 22278-22286.
[http://dx.doi.org/10.1039/D1RA02634H] [PMID: 35480808]
[50]
Mokhtar, M.; Alghamdi, K.S.; Ahmed, N.S.; Bakhotmah, D.; Saleh, T.S.; Alghamdi, K.S.; Ahmed, N.S. Design and green synthesis of novel quinolinone derivatives of potential anti-breast cancer activity against MCF-7 cell line targeting multi-receptor tyrosine kinases. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1454-1471.
[http://dx.doi.org/10.1080/14756366.2021.1944126] [PMID: 34210212]
[51]
Alghamdi, K.S.; Ahmed, N.S.I.; Bakhotmah, D.; Mokhtar, M. Chitosan decorated copper nanoparticles as efficient catalyst for synthesis of novel quinoline derivatives. J. Nanosci. Nanotechnol., 2020, 20(2), 890-899.
[http://dx.doi.org/10.1166/jnn.2020.16923] [PMID: 31383084]
[52]
Ren, P.; Li, Q.; Song, T.; Wang, Z.; Motokura, K.; Yang, Y. Highly efficient and stable atomically dispersed Cu catalyst for azide-alkyne cycloaddition reaction. ChemCatChem, 2021, 13(18), 3960-3966.
[http://dx.doi.org/10.1002/cctc.202100831]
[53]
Shukla, F.; Das, M.; Thakore, S. Copper nanoparticles loaded polymer vesicles as environmentally amicable nanoreactors: A sustainable approach for cascading synthesis of benzimidazole. J. Mol. Liq., 2021, 336, 116217.
[http://dx.doi.org/10.1016/j.molliq.2021.116217]
[54]
Ghamari Kargar, P.; Bagherzade, G. Robust, highly active, and stable supported Co(II) nanoparticles on magnetic cellulose nanofiber-functionalized for the multi-component reactions of piperidines and alcohol oxidation. RSC Advances, 2021, 11(38), 23192-23206.
[http://dx.doi.org/10.1039/D1RA00208B] [PMID: 35479769]
[55]
Lin, C.; Wan, W.; Wei, X.; Chen, J. H2 activation with Co nanoparticles encapsulated in N-doped carbon nanotubes for green synthesis of benzimidazoles. ChemSusChem, 2021, 14(2), 709-720.
[http://dx.doi.org/10.1002/cssc.202002344] [PMID: 33226188]
[56]
Ma, Z.; Mohapatra, J.; Wei, K.; Liu, J.P.; Sun, S. Magnetic nanoparticles: Synthesis, anisotropy, and applications. Chem. Rev., 2021. acs.chemrev.1c00860.
[http://dx.doi.org/10.1021/acs.chemrev.1c00860] [PMID: 34968046]
[57]
Kumar, P.; Tomar, V.; Kumar, D.; Joshi, R.K.; Nemiwal, M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron, 2022, 106-107, 132641.
[http://dx.doi.org/10.1016/j.tet.2022.132641]
[58]
Sayyahi, S.; Fallah-Mehrjardi, M.; Saghanezhad, S.J. Synthesis of heterocyclic compounds by catalysts supported on nano-magnetite (Fe3O4)-an update. Mini Rev. Org. Chem., 2020, 18(1), 11-26.
[http://dx.doi.org/10.2174/1570193X17999200507094534]
[59]
Keshavarz, M.; Zarei Ahmady, A.; Vaccaro, L.; Kardani, M. Non-Covalent supported of l-proline on graphene oxide/Fe3O4 nanocomposite: A novel, highly efficient and superparamagnetically separable catalyst for the synthesis of bis-pyrazole derivatives. Molecules, 2018, 23(2), 330.
[http://dx.doi.org/10.3390/molecules23020330] [PMID: 29401720]
[60]
Maleki, B.; Eshghi, H.; Barghamadi, M.; Nasiri, N.; Khojastehnezhad, A.; Sedigh Ashrafi, S.; Pourshiani, O. Silica-coated magnetic NiFe2O4 nanoparticles-supported H3PW12O40; synthesis, preparation, and application as an efficient, magnetic, green catalyst for one-pot synthesis of tetrahydrobenzo[b]pyran and Pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed., 2016, 42(4), 3071-3093.
[http://dx.doi.org/10.1007/s11164-015-2198-8]
[61]
Phatangare, K.R.; Padalkar, V.S.; Gupta, V.D.; Patil, V.S.; Umape, P.G.; Sekar, N. Phosphomolybdic acid: An efficient and recyclable solid acid catalyst for the synthesis of 4,4′-(Arylmethylene)bis(1H-pyrazol-5-ols). Synth. Commun., 2012, 42(9), 1349-1358.
[http://dx.doi.org/10.1080/00397911.2010.539759]
[62]
Zarghani, M.; Akhlaghinia, B. Sulfonated nanohydroxyapatite functionalized with 2-aminoethyl dihydrogen phosphate (HAP@AEPH2-SO3H) as a new recyclable and eco-friendly catalyst for rapid one-pot synthesis of 4,4′-(aryl methylene)bis(3-methyl-1H-pyrazol-5-ol)s. RSC Advances, 2015, 5(107), 87769-87780.
[http://dx.doi.org/10.1039/C5RA16236J]
[63]
Tayebi, S.; Baghernejad, M.; Saberi, D.; Niknam, K. Sulfuric acid ([3-(3-Silicapropyl)sulfanyl]propyl)ester as a recyclable catalyst for the synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols). Chin. J. Catal., 2011, 32(9-10), 1477-1483.
[http://dx.doi.org/10.1016/S1872-2067(10)60260-4]
[64]
Niknam, K.; Saberi, D.; Sadegheyan, M.; Deris, A. Silica-bonded s-sulfonic acid: An efficient and recyclable solid acid catalyst for the synthesis of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols). Tetrahedron Lett., 2010, 51(4), 692-694.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.114]
[65]
Azarifar, D.; Ghaemi, M.; Jaymand, M.; Karamian, R.; Asadbegy, M.; Ghasemlou, F. Green synthesis and biological activities assessment of some new chromeno[2,3-b]pyridine derivatives. Mol. Divers., 2021.
[http://dx.doi.org/10.1007/s11030-021-10201-x] [PMID: 33861411]
[66]
Oboudatian, H.S.; Naeimi, H.; Moradian, M. A Brønsted acidic ionic liquid anchored to magnetite nanoparticles as a novel recoverable heterogeneous catalyst for the Biginelli reaction. RSC Advances, 2021, 11(13), 7271-7279.
[http://dx.doi.org/10.1039/D0RA09929E] [PMID: 35423245]
[67]
Liu, Z.Q.; Li, S.N.; Zeng, Q.S.; Liu, Y.J.; You, J.M.; Ying, A.G. Alkene-Modified Fe3O4 nanoparticle-mediated construction of functionalized mesoporous poly(ionic liquid)s: Synergistic catalysis of mesoporous confinement effect and hydrogen proton for organic transformations. Mol. Catal., 2021, 504, 111437.
[http://dx.doi.org/10.1016/j.mcat.2021.111437]
[68]
Rezayati, S.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A. Design of a schiff base complex of copper coated on epoxy-modified core-shell MNPs as an environmentally friendly and novel catalyst for the one-pot synthesis of various chromene-annulated heterocycles. ACS Omega, 2021, 6(39), 25608-25622.
[http://dx.doi.org/10.1021/acsomega.1c03672] [PMID: 34632217]
[69]
Taherkhani, H.; Ramazani, A.; Sajjadifar, S.; Aghahosseini, H.; Rezaei, A.; Rezayati, S. Grinding synthesis of 2-Amino-4H-Benzo[b]pyran derivatives catalyzed by highly efficient GPTMS/guanidine protected magnetic nanoparticles. ChemistrySelect, 2021, 6(41), 11362-11374.
[http://dx.doi.org/10.1002/slct.202102931]
[70]
Zare, M.; Moradi, L. Preparation and characterization of GO/KCC-1/Ni(II) as an efficient catalyst for the green synthesis of some 1,8-dioxodecahydroacridine derivatives. Appl. Organomet. Chem., 2021, 35(10), e6358.
[http://dx.doi.org/10.1002/aoc.6358]
[71]
Alavinia, S.; Ghorbani-Vaghei, R. The preparation, characterization and catalytic activity of Ni NPs supported on porous alginate-g-poly(p-styrene sulfonamide-co-acrylamide). RSC Advances, 2021, 11(47), 29728-29740.
[http://dx.doi.org/10.1039/D1RA04022G] [PMID: 35479525]
[72]
Albano, G.; Evangelisti, C.; Aronica, L.A. Palladium nanoparticles supported on smopex-234® as valuable catalysts for the synthesis of heterocycles. Catalysts, 2021, 11(6), 706.
[http://dx.doi.org/10.3390/catal11060706]
[73]
Silva, W.R.; Matsubara, E.Y.; Rosolen, J.M.; Donate, P.M.; Gunnella, R. Pd catalysts supported on different hydrophilic or hydrophobic carbonaceous substrate for furfural and 5-(hydroxymethyl)-furfural hydrogenation in water. Mol. Catal., 2021, 504, 111496.
[http://dx.doi.org/10.1016/j.mcat.2021.111496]
[74]
Poonam; Singh, R. Use of bimetallic nanoparticles in the synthesis of heterocyclic molecules. Curr. Org. Chem., 2020, 25, 351-360.
[75]
Dang-Bao, T.; Pla, D.; Favier, I.; Gómez, M. Bimetallic nanoparticles in alternative solvents for catalytic purposes. Catalysts, 2017, 7(7), 207.
[http://dx.doi.org/10.3390/catal7070207]
[76]
Geedkar, D.; Kumar, A.; Kumar, K.; Sharma, P. Hydromagnesite sheets impregnated with cobalt-ferrite magnetic nanoparticles as heterogeneous catalytic system for the synthesis of imidazo[1,2-a]pyridine scaffolds. RSC Advances, 2021, 11(38), 23207-23220.
[http://dx.doi.org/10.1039/D1RA02516C] [PMID: 35479776]
[77]
Bhutia, Z.T.; Das, D.; Chatterjee, A.; Banerjee, M. Efficient and “Green” synthetic route to imidazo[1,2-a]pyridine by Cu(II)-ascorbate-catalyzed A3-coupling in aqueous micellar media. ACS Omega, 2019, 4(3), 4481-4490.
[http://dx.doi.org/10.1021/acsomega.8b03581] [PMID: 31459643]
[78]
Tajbakhsh, M.; Farhang, M.; Hosseinzadeh, R.; Sarrafi, Y. Nano Fe3O4 supported biimidazole Cu(I) complex as a retrievable catalyst for the synthesis of imidazo[1,2-a]pyridines in aqueous medium. RSC Advances, 2014, 4(44), 23116-23124.
[http://dx.doi.org/10.1039/c4ra03333g]
[79]
Allahabadi, E.; Ebrahimi, S.; Soheilizad, M.; Khoshneviszadeh, M.; Mahdavi, M. Copper-catalyzed four-component synthesis of imidazo[1,2-a]pyridines via sequential reductive amination, condensation, and cyclization. Tetrahedron Lett., 2017, 58(2), 121-124.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.081]
[80]
Mandlimath, T.R.; Sathiyanarayanan, K.I. Facile synthesis of ZnAl2O4 nanoparticles: Efficient and reusable porous nano ZnAlO4 and copper supported on ZnAl2O4 catalysts for one pot green synthesis of propargylamines and imidazo[1,2-a]pyridines by A3 coupling reactions. RSC Advances, 2016, 6(4), 3117-3125.
[http://dx.doi.org/10.1039/C5RA20812B]
[81]
Purohit, G.; Kharkwal, A.; Rawat, D.S. CuIn-ethylxanthate, a “versatile precursor” for photosensitization of graphene-quantum dots and nanocatalyzed synthesis of imidazopyridines with ideal green chemistry metrics. ACS Sustain. Chem. Eng., 2020, 8(14), 5544-5557.
[http://dx.doi.org/10.1021/acssuschemeng.9b07371]
[82]
Zhang, M.; Lu, J.; Zhang, J-N.; Zhang, Z-H. Magnetic carbon nanotube supported Cu (CoFeO4/CNT-Cu) catalyst: A sustainable catalyst for the synthesis of 3-nitro-2-arylimidazo[1,2-a]pyridines. Catal. Commun., 2016, 78, 26-32.
[http://dx.doi.org/10.1016/j.catcom.2016.02.004]
[83]
Moghaddam, F.M.; Jarahiyan, A.; Pourjavadi, A. A regioselective approach to synthesize indolyl diketone derivatives via magnetic polymeric copper-catalyst. Catal. Lett., 2022, 152(4), 1119-1130.
[http://dx.doi.org/10.1007/s10562-021-03697-3]
[84]
Kazemnejadi, M.; Nasseri, M.A.; Sheikh, S.; Rezazadeh, Z.; Alavi Gol, S.A. Fe3O4@Sap/Cu(ii): An efficient magnetically recoverable green nanocatalyst for the preparation of acridine and quinazoline derivatives in aqueous media at room temperature. RSC Advances, 2021, 11(26), 15989-16003.
[http://dx.doi.org/10.1039/D1RA01373D] [PMID: 35481188]
[85]
Akhavan, M.; Bekhradnia, A. Stereoselective synthesis of spirocyclic pyrrolidines/pyrrolizidines/pyrrolothiazolidines using l-proline functionalized manganese ferrite nanorods as a novel heterogeneous catalyst. RSC Advances, 2021, 11(24), 14755-14768.
[http://dx.doi.org/10.1039/D1RA00841B] [PMID: 35423973]
[86]
Borade, R.M.; Kale, S.B.; Tekale, S.U.; Jadhav, K.M.; Pawar, R.P. Cobalt ferrite magnetic nanoparticles as highly efficient catalyst for the mechanochemical synthesis of 2-Aryl benzimidazoles. Catal. Commun., 2021, 159, 106349.
[http://dx.doi.org/10.1016/j.catcom.2021.106349]
[87]
Dezfoolinezhad, E.; Ghodrati, K.; Badri, R. Fe3O4@SiO2@-polyionene/Br3-Core-Shell-shell magnetic nanoparticles: A novel catalyst for the synthesis of imidazole derivatives under solvent-free conditions. New J. Chem., 2016, 40(5), 4575-4587.
[http://dx.doi.org/10.1039/C5NJ02680F]
[88]
Korani, E.; Ghodrati, K.; Asnaashari, M. Magnetic core-shell nanoparticles containing I3- as a novel catalyst for the facile synthesis of imidazole, thiazole and pyrimidine derivatives in solvent-free conditions. Silicon, 2018, 10(4), 1433-1441.
[http://dx.doi.org/10.1007/s12633-017-9623-0]
[89]
Soleimani, E.; Khodaei, M.M.; Yazdani, H.; Saei, P.; Zavar Reza, J. Synthesis of 2-substituted benzimidazoles and benzothiazoles using AgCO3/celite as an efficient solid catalyst. J. Iran. Chem. Soc., 2015, 12(7), 1281-1285.
[http://dx.doi.org/10.1007/s13738-015-0592-1]
[90]
Kanhe, N.S.; Tekale, S.U.; Kulkarni, N.V.; Nawale, A.B.; Das, A.K.; Bhoraskar, S.V.; Ingle, R.D.; Pawar, R.P. Micron-particulate crystalline hexagonal aluminium nitride: A novel, efficient and versatile heterogeneous catalyst for the synthesis of some heterocyclic compounds. J. Iran. Chem. Soc., 2013, 10(2), 243-249.
[http://dx.doi.org/10.1007/s13738-012-0152-x]
[91]
Amini, H.; Neamani, S.; Moradi, L. Green synthesis of pyrazolo pyrano pyrimidine derivatives using ZnFe2O4/GA as a new effective catalyst in water media. ChemistrySelect, 2021, 6(36), 9608-9615.
[http://dx.doi.org/10.1002/slct.202101980]
[92]
Arefi, E.; Khojastehnezhad, A.; Shiri, A. A magnetic copper organic framework material as an efficient and recyclable catalyst for the synthesis of 1,2,3-triazole derivatives. Sci. Rep., 2021, 11(1), 20514.
[http://dx.doi.org/10.1038/s41598-021-00012-3] [PMID: 34654831]
[93]
Zohreh, N.; Hosseini, S.H.; Pourjavadi, A.; Bennett, C. Immobilized Copper(II) on nitrogen-rich polymer-entrapped Fe3O4 nanoparticles: A highly loaded and magnetically recoverable catalyst for aqueous click chemistry. Appl. Organomet. Chem., 2016, 30(2), 73-80.
[http://dx.doi.org/10.1002/aoc.3398]
[94]
Shaabani, A.; Afshari, R.; Hooshmand, S.E.; Tabatabaei, A.T.; Hajishaabanha, F. Copper supported on MWCNT-Guanidine acetic acid@Fe3O4: Synthesis, characterization and application as a novel multi-task nanocatalyst for preparation of triazoles and bis(indolyl)methanes in water. RSC Advances, 2016, 6(22), 18113-18125.
[http://dx.doi.org/10.1039/C5RA23294E]
[95]
Namitharan, K.; Kumarraja, M.; Pitchumani, K. Cu(II)-hydrotalcite as an efficient heterogeneous catalyst for Huisgen [3+2] cycloaddition. Chemistry, 2009, 15(12), 2755-2758.
[http://dx.doi.org/10.1002/chem.200802384] [PMID: 19197920]
[96]
Jumde, R.P.; Evangelisti, C.; Mandoli, A.; Scotti, N.; Psaro, R. Aminopropyl-silica-supported Cu nanoparticles: An efficient catalyst for continuous-flow huisgen azide-alkyne cycloaddition (CuAAC). J. Catal., 2015, 324, 25-31.
[http://dx.doi.org/10.1016/j.jcat.2015.01.014]
[97]
Barman, M.K.; Sinha, A.K.; Nembenna, S. An efficient and recyclable thiourea-supported Copper(I) chloride catalyst for azide-alkyne cycloaddition reactions. Green Chem., 2016, 18(8), 2534-2541.
[http://dx.doi.org/10.1039/C5GC02545A]
[98]
Anand, S.; Pinheiro, D.; Sunaja Devi, K.R. Recent advances in hydrogenation reactions using bimetallic nanocatalysts: A review. Asian J. Org. Chem., 2021, 10(12), 3068-3100.
[http://dx.doi.org/10.1002/ajoc.202100495]
[99]
Wang, C.; Wang, A.; Yu, Z.; Wang, Y.; Sun, Z.; Kogan, V.M.; Liu, Y.Y. Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol over Pd/UiO-66. Catal. Commun., 2021, 148, 106178.
[http://dx.doi.org/10.1016/j.catcom.2020.106178]
[100]
Nguyen, N.K.; Ha, M.T.; Bui, H.Y.; Trinh, Q.T.; Tran, B.N.; Nguyen, V.T.; Hung, T.Q.; Dang, T.T.; Vu, X.H. Magnetically recyclable CuFe2O4 catalyst for efficient synthesis of bis(indolyl)methanes using indoles and alcohols under mild condition. Catal. Commun., 2021, 149, 106240.
[http://dx.doi.org/10.1016/j.catcom.2020.106240]
[101]
Rao, K.T.V.; Hu, Y.; Yuan, Z.; Zhang, Y.; Xu, C.C. Green synthesis of heterogeneous copper-alumina catalyst for selective hydrogenation of pure and biomass-derived 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan. Appl. Catal. A Gen., 2021, 609, 117892.
[http://dx.doi.org/10.1016/j.apcata.2020.117892]
[102]
Yellapurkar, I.; Bhabal, S.; Ramana, M.M.V.; Jangam, K.; Salve, V.; Patange, S.; More, P. Magnesium ferrichromate nanoparticles: An efficient and recyclable catalyst in the synthesis of pyrano[2,3-c]pyrazole derivatives. Res. Chem. Intermed., 2021, 47(7), 2669-2687.
[http://dx.doi.org/10.1007/s11164-021-04435-5]
[103]
Ebrahimiasl, H.; Azarifar, D.; Mohammadi, M.; Keypour, H. Mahmood abadi, M. Synthesis of Fe3O4-supported schiff base Cu (II) complex: A novel efficient and recyclable magnetic nanocatalyst for one-pot three-component synthesis of quinolin-5-one, chromene-3-carbonitrile and phthalazine-5,10-dione derivatives. Res. Chem. Intermed., 2021, 47(2), 683-707.
[http://dx.doi.org/10.1007/s11164-020-04293-7]
[104]
Aghaei-Hashjin, M.; Yahyazadeh, A.; Abbaspour-Gilandeh, E. Mo@GAA-Fe3O4 MNPs: A highly efficient and environmentally friendly heterogeneous magnetic nanocatalyst for the synthesis of polyhydroquinoline derivatives. RSC Advances, 2021, 11(18), 10497-10511.
[http://dx.doi.org/10.1039/D1RA00396H] [PMID: 35423550]
[105]
Nikooei, N.; Dekamin, M.G.; Valiey, E. Benzene-1,3,5-tricarboxylic acid-functionalized MCM-41 as a novel and recoverable hybrid catalyst for expeditious and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones via one-pot three-component reaction. Res. Chem. Intermed., 2020, 46(8), 3891-3909.
[http://dx.doi.org/10.1007/s11164-020-04179-8]
[106]
Tekale, S.U.; Pagore, V.P.; Kauthale, S.S.; La Pawar, R. P2O3/TFE: An efficient system for room temperature synthesis of hantzsch polyhydroquinolines. Chin. Chem. Lett., 2014, 25(8), 1149-1152.
[http://dx.doi.org/10.1016/j.cclet.2014.03.037]
[107]
Donelson, J.L.; Gibbs, R.A.; De, S.K. An efficient one-pot synthesis of polyhydroquinoline derivatives through the hantzsch four component condensation. J. Mol. Catal. Chem., 2006, 256(1-2), 309-311.
[http://dx.doi.org/10.1016/j.molcata.2006.03.079]
[108]
Wang, L.M.; Sheng, J.; Zhang, L.; Han, J.W.; Fan, Z.Y.; Tian, H.; Qian, C-T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through hantzsch reaction. Tetrahedron, 2005, 61(6), 1539-1543.
[http://dx.doi.org/10.1016/j.tet.2004.11.079]
[109]
Huang, F.; Wang, F.; Hu, Q.; Tang, L.; Xu, D.; Fang, Y.; Zhang, W. Monodisperse CuPd alloy nanoparticles as efficient and reusable catalyst for the C(Sp2)-H bond activation. Catal. Commun., 2021, 35, 106296.
[110]
Chen, L.; Lou, F.; Cheng, H.; Qi, Z. Uniform Heterostructured MnOx/MnCO3/Fe2O3 nanocomposites Assembled in an Ionic Liquid for Highly Selective Oxidation of 5-Hydroxymethylfurfural. New J. Chem., 2021, 45(27), 12050-12063.
[http://dx.doi.org/10.1039/D1NJ01470F]
[111]
Karimi, S.; Shekaari, H.; Halimehjani, A.Z.; Niakan, M. Solvent-free production of 5-hydroxymethylfurfural from deep eutectic substrate reaction mixtures over a magnetically recoverable solid acid catalyst. ACS Sustain. Chem. Eng., 2021, 9(1), 326-336.
[http://dx.doi.org/10.1021/acssuschemeng.0c07272]
[112]
Pang, H.; Hu, Y.; Yu, J.; Gallou, F.; Lipshutz, B.H. Water-sculpting of a heterogeneous nanoparticle precatalyst for mizoroki-heck couplings under aqueous micellar catalysis conditions. J. Am. Chem. Soc., 2021, 143(9), 3373-3382.
[http://dx.doi.org/10.1021/jacs.0c11484] [PMID: 33630579]
[113]
Rajabi-Moghaddam, H.; Naimi-Jamal, M.R.; Tajbakhsh, M. Fabrication of copper(II)-coated magnetic core-shell nanoparticles Fe3O4@SiO2-2-aminobenzohydrazide and investigation of its catalytic application in the synthesis of 1,2,3-triazole compounds. Sci. Rep., 2021, 11(1), 2073.
[http://dx.doi.org/10.1038/s41598-021-81632-7] [PMID: 33483570]
[114]
Sharma, R.K.; Yadav, S.; Dutta, S.; Kale, H.B.; Warkad, I.R.; Zbořil, R.; Varma, R.S.; Gawande, M.B. Silver nanomaterials: Synthesis and (electro/photo) catalytic applications. Chem. Soc. Rev., 2021, 50(20), 11293-11380.
[http://dx.doi.org/10.1039/D0CS00912A] [PMID: 34661205]
[115]
Darroudi, M.; Ziarani, G.M.; Ghasemi, J.B.; Badiei, A. Synthesis of Ag(I)@Fum-Pr-Pyr-benzimidazole and its optical and catalytic activities in click reactions. ChemistrySelect, 2021, 6(24), 6168-6180.
[http://dx.doi.org/10.1002/slct.202100492]
[116]
Jafari-Chermahini, M.T.; Tavakol, H. One-Pot synthesis of hantzsch 1,4-dihydropyridines by a series of iron oxide nanoparticles: putative synthetic TRPV6 calcium channel blockers. ChemistrySelect, 2021, 6(9), 2360-2365.
[http://dx.doi.org/10.1002/slct.202004390]
[117]
Xue, W.; Yang, G.; Gao, Y.; Karmakar, B. Sustainable Synthesis of Cu NPs decorated on pectin modified FeO4 nanocomposite: Catalytic synthesis of 1-substituted-1H-tetrazoles and in-vitro studies on its cytotoxicity and anti-colorectal adenocarcinoma effects on HT-29 cell lines. Arab. J. Chem., 2021, 14(9), 103306.
[http://dx.doi.org/10.1016/j.arabjc.2021.103306]
[118]
Ghamari Kargar, P.; Bagherzade, G.; Eshghi, H. Introduction of a trinuclear manganese(III) catalyst on the surface of magnetic cellulose as an eco-benign, efficient and reusable novel heterogeneous catalyst for the multi-component synthesis of new derivatives of xanthene. RSC Advances, 2021, 11(8), 4339-4355.
[http://dx.doi.org/10.1039/D0RA09420J] [PMID: 35424405]
[119]
Hazarika, R.; Garg, A.; Chetia, S.; Phukan, P.; Kulshrestha, A.; Kumar, A.; Bordoloi, A.; Kalita, A.J.; Guha, A.K.; Sarma, D. Magnetically separable ZnFe2O4 nanoparticles: A low cost and sustainable catalyst for propargyl amine and NH-triazole synthesis. Appl. Catal. A Gen., 2021, 625, 118338.
[http://dx.doi.org/10.1016/j.apcata.2021.118338]
[120]
Eisavi, R.; Naseri, K. Preparation, characterization and application of MgFe2O4/Cu nanocomposite as a new magnetic catalyst for one-pot regioselective synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. RSC Advances, 2021, 11(22), 13061-13076.
[http://dx.doi.org/10.1039/D1RA01588E] [PMID: 35423852]
[121]
Shamsa, F.; Motavalizadehkakhky, A.; Zhiani, R.; Mehrzad, J.; Hosseiny, M.S. ZnO nanoparticles supported on dendritic fibrous nanosilica as efficient catalysts for the one-pot synthesis of quinazoline-2,4(1H,3H)-diones. RSC Advances, 2021, 11(59), 37103-37111.
[http://dx.doi.org/10.1039/D1RA07197A] [PMID: 35496431]
[122]
Mallah, D.; Mirjalili, B.B.F. FNAOSiPPEA/Zn(II) as a bifunctional lewis acid/bronsted base heterogeneous magnetic nanocatalyst based on nano-almond shell for synthesis of naphtho[1,3]oxazine derivatives. ChemistrySelect, 2021, 6(42), 11483-11489.
[http://dx.doi.org/10.1002/slct.202102454]
[123]
Poor Heravi, M.R.; Aghamohammadi, P.; Vessally, E. Green synthesis and antibacterial, antifungal activities of 4H-pyran, tetrahydro-4H-chromenes and spiro-2-oxindole derivatives by highly efficient Fe3O4@SiO2@NH2@Pd(OCOCH3)2 nanocatalyst. J. Mol. Struct., 2022, 1249, 131534.
[http://dx.doi.org/10.1016/j.molstruc.2021.131534]
[124]
Sosa, A.A.; Palermo, V.; Langer, P.; Luque, R.; Romanelli, G.P.; Pizzio, L.R. Tungstophosphoric acid/mesoporous silicas as suitable catalysts in quinoxaline synthesis. Mol. Catal., 2022, 517, 112046.
[http://dx.doi.org/10.1016/j.mcat.2021.112046]
[125]
Rao, T.N.; AlOmar, S.Y.; Ahmed, F.; Albalawi, F.; Ahmad, N.; Rao, N.K.; Rao, M.V.B.; Cheedarala, R.K.; Reddy, G.R.; Naidu, T.M. Reusable nano-zirconia-catalyzed synthesis of benzimidazoles and their antibacterial and antifungal activities. Molecules, 2021, 26(14), 4219.
[http://dx.doi.org/10.3390/molecules26144219] [PMID: 34299494]
[126]
Yang, Y.; Li, S.; Bu, H.; Xia, X.; Chen, L.; Xu, Y.; Chen, Z. Metal graphitic nanocapsules for theranostics in harsh conditions. Front Chem., 2022, 10, 909110.
[http://dx.doi.org/10.3389/fchem.2022.909110] [PMID: 35646811]