Gut-Brain Axis and Neurological Disorders-How Microbiomes Affect our Mental Health

Page: [1008 - 1030] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

The gut microbiota is an essential part of the gastrointestinal tract and recent research, including clinical and preclinical studies, shed light on the interaction between the gut and the brain. A rising amount of evidence strongly proves the involvement of gut microbes in brain function and their contribution in altering behavior, mood, and ultimately in the pathogenesis of certain neurological conditions. The gut microbiota produces and modulates neurotransmitters such as GABA, serotonin, dopamine, glutamate, etc. Furthermore, there is a presence of a biological link between the microbiota, immune signaling, and CNS suggesting that microbial metabolites could regulate both neurological and immunological activities in the brain. Thus, this review focuses on the bidirectional communication between the gut and brain, its impact and role in the modulation of various neurological disorders, such as schizophrenia, depression, anxiety, etc., and attempts to explore the underlying mechanism for the same. The article also discusses studies involving germ-free mice, studies on the effects of faeces transfer of microbiota, and research involving gut microbiota composition in animal models. The effects of probiotics and prebiotics on neurological disorders are also discussed, along with the clinical studies for each of them. In a nutshell, extensive studies are required to explore this bidirectional communication between the gut and brain, which might help researchers develop new therapeutic targets in treating neurological disorders and increase our understanding of the gut-brain axis.

Keywords: Gut-brain axis, gut microbiota, neurotransmitters, and neurological disorders, GABA, immunological activities.

Graphical Abstract

[1]
Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrient 2021; 13(6): 2099.
[http://dx.doi.org/10.3390/nu13062099]
[2]
Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome 2017; 5(1): 48.
[http://dx.doi.org/10.1186/s40168-017-0268-4] [PMID: 28454555]
[3]
Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol 2020; 19(2): 179-94.
[http://dx.doi.org/10.1016/S1474-4422(19)30356-4] [PMID: 31753762]
[4]
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med 2018; 24(4): 392-400.
[http://dx.doi.org/10.1038/nm.4517] [PMID: 29634682]
[5]
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222-7.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[6]
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307(5717): 1915-20.
[http://dx.doi.org/10.1126/science.1104816]
[7]
Sharma P, Agrawal A. Does modern research validate the ancient wisdom of gut flora and brain connection? A literature review of gut dysbiosis in neurological and neurosurgical disorders over the last decade. Neurosurg Rev 2022; 45(1): 27-48.
[PMID: 33904013]
[8]
Suganya K, Koo BS. Gut-brain axis: Role of gut microbiota on neurological disorders and how probiotics/prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci 2020; 21(20): 7551.
[http://dx.doi.org/10.3390/ijms21207551] [PMID: 33066156]
[9]
Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 2013; 18(6): 666-73.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[10]
Socała K, Doboszewska U, Szopa A, et al. The role of microbiotagut- brain axis in neuropsychiatric and neurological disorders. Pharmacol Res 2021; 172: 105840.
[http://dx.doi.org/10.1016/j.phrs.2021.105840] [PMID: 34450312]
[11]
Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13(10): 701-12.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[12]
Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 2012; 9(5): 286-94.
[http://dx.doi.org/10.1038/nrgastro.2012.32] [PMID: 22392290]
[13]
Badawy AAB. Tryptophan availability for kynurenine pathway metabolism across the life span: Control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology 2017; 112(Pt B): 248-63.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.015 ] [PMID: 26617070]
[14]
Mittal R, Debs LH, Patel AP, et al. Neurotransmitters: The critical modulators regulating gut–brain axis. J Cell Physiol 2017; 232(9): 2359-72.
[http://dx.doi.org/10.1002/jcp.25518] [PMID: 27512962]
[15]
Mayer EA. Gut feelings: The emerging biology of gut–brain communication. Nat Rev Neurosci 2011; 12(8): 453-66.
[http://dx.doi.org/10.1038/nrn3071] [PMID: 21750565]
[16]
Doroszkiewicz J, Groblewska M, Mroczko B. The role of gut microbiota and gut–brain interplay in selected diseases of the central nervous system. Int J Mol Sci 2021; 22(18): 10028.
[http://dx.doi.org/10.3390/ijms221810028] [PMID: 34576191]
[17]
Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci 2018; 12: 49.
[http://dx.doi.org/10.3389/fnins.2018.00049] [PMID: 29467611]
[18]
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 2018; 9: 44.
[http://dx.doi.org/10.3389/fpsyt.2018.00044] [PMID: 29593576]
[19]
Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav Immun 2011; 25(3): 397-407.
[http://dx.doi.org/10.1016/j.bbi.2010.10.023] [PMID: 21040780]
[20]
Hu MD, Jia L, Edelblum KL. Policing the intestinal epithelial barrier: Innate immune functions of intraepithelial lymphocytes. Curr Pathobiol Rep 2018; 6(1): 35-46.
[http://dx.doi.org/10.1007/s40139-018-0157-y] [PMID: 29755893]
[21]
Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1(2): 113-8.
[http://dx.doi.org/10.1038/77783] [PMID: 11248802]
[22]
Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203(10): 2271-9.
[http://dx.doi.org/10.1084/jem.20061308] [PMID: 16982811]
[23]
Suslov AV, Chairkina E, Shepetovskaya MD, et al. The neuroimmune role of intestinal microbiota in the pathogenesis of cardiovascular disease. J Clin Med 2021; 10(9): 1995.
[http://dx.doi.org/10.3390/jcm10091995] [PMID: 34066528]
[24]
Maranduba CMDC, De Castro SBR, Souza GT, et al. Intestinal microbiota as modulators of the immune system and neuroimmune system: Impact on the host health and homeostasis. J Immunol Res 2015; 2015: 931574.
[25]
Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015; 17(5): 662-71.
[http://dx.doi.org/10.1016/j.chom.2015.03.005] [PMID: 25865369]
[26]
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 2018; 1693(Pt B): 128-33.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015] [PMID: 29903615]
[27]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[28]
Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018; 141(7): 1917-33.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[29]
Frost G, Sleeth ML, Sahuri-Arisoylu M, et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 2014; 5(1): 3611.
[http://dx.doi.org/10.1038/ncomms4611] [PMID: 24781306]
[30]
Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ- Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012; 113(2): 411-7.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05344.x] [PMID: 22612585]
[31]
Dhakal R, Bajpai VK, Baek KH. Production of gaba (γ- aminobutyric acid) by microorganisms: A review. Braz J Microbiol 2012; 43(4): 1230-41.
[http://dx.doi.org/10.1590/S1517-83822012000400001] [PMID: 24031948]
[32]
Duranti S, Ruiz L, Lugli GA, et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci Rep 2020; 10(1): 14112.
[http://dx.doi.org/10.1038/s41598-020-70986-z] [PMID: 32839473]
[33]
Pokusaeva K, Johnson C, Luk B, et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 2017; 29(1): e12904.
[http://dx.doi.org/10.1111/nmo.12904] [PMID: 27458085]
[34]
Strandwitz P, Kim KH, Terekhova D, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 2019; 4(3): 396-403.
[http://dx.doi.org/10.1038/s41564-018-0307-3] [PMID: 30531975]
[35]
Dahlin M, Elfving Å, Ungerstedt U, Åmark P. The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 2005; 64(3): 115-25.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.03.008] [PMID: 15961283]
[36]
Baik JH. Dopamine signaling in reward-related behaviors. Front Neural Circuits 2013; 7: 152.
[PMID: 24130517]
[37]
Nieoullon A. Dopamine and the regulation of cognition and attention. Prog Neurobiol 2002; 67(1): 53-83.
[http://dx.doi.org/10.1016/S0301-0082(02)00011-4] [PMID: 12126656]
[38]
Eisenhofer G, Åneman A, Friberg P, et al. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 1997; 82(11): 3864-71.
[http://dx.doi.org/10.1210/jcem.82.11.4339] [PMID: 9360553]
[39]
Han W, Tellez LA, Perkins MH, et al. A neural circuit for gut-induced reward. Cell 2018; 175(3): 665-78.e23.
[http://dx.doi.org/10.1016/j.cell.2018.08.049] [PMID: 30245012]
[40]
González-Arancibia C, Urrutia-Piñones J, Illanes-González J, et al. Do your gut microbes affect your brain dopamine? Psychopharmacology 2019; 236(5): 1611-22.
[http://dx.doi.org/10.1007/s00213-019-05265-5] [PMID: 31098656]
[41]
Xue R, Zhang H, Pan J, et al. Peripheral dopamine controlled by gut microbes inhibits invariant natural killer T cell-mediated hepatitis. Front Immunol 2018; 9: 2398.
[http://dx.doi.org/10.3389/fimmu.2018.02398] [PMID: 30386344]
[42]
Wang Y, Tong Q, Ma SR, et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct Target Ther 2021; 6(1): 77.
[http://dx.doi.org/10.1038/s41392-020-00456-5] [PMID: 33623004]
[43]
Makris AP, Karianaki M, Tsamis KI, Paschou SA. The role of the gut-brain axis in depression: Endocrine, neural, and immune pathways. Hormones 2021; 20(1): 1-12.
[44]
Meldrum BS. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr 2000; 130(4S): 1007S-15S.
[http://dx.doi.org/10.1093/jn/130.4.1007S] [PMID: 10736372]
[45]
Chang CH, Lin CH, Lane HY. d-glutamate and gut microbiota in Alzheimer’s disease. Int J Mol Sci 2020; 21(8): 2676.
[46]
van der Stel AX, van Mourik A. Łaniewski P, van Putten JPM, Jagusztyn-Krynicka EK, Wösten MMSM. The Campylobacter jejuni RacRS two-component system activates the glutamate synthesis by directly upregulating γ-GlutamylTranspeptidase (GGT). Front Microbiol 2015; 6: 567.
[http://dx.doi.org/10.3389/fmicb.2015.00567] [PMID: 26097472]
[47]
Palomo-Buitrago ME, Sabater-Masdeu M, Moreno-Navarrete JM, et al. Glutamate interactions with obesity, insulin resistance, cognition and gut microbiota composition. Acta Diabetol 2019; 56(5): 569-79.
[http://dx.doi.org/10.1007/s00592-019-01313-w] [PMID: 30888539]
[48]
Borodovitsyna O, Flamini M, Chandler D. Noradrenergic modulation of cognition in health and disease. Neural Plast 2017; 2017: 57-9.
[http://dx.doi.org/10.1155/2017/6031478]
[49]
Lyte M, Brown DR. Evidence for PMAT- and OCT-like biogenic amine transporters in a probiotic strain of Lactobacillus: Implications for interkingdom communication within the microbiota-gut-brain axis. PLoS One 2018; 13(1): e0191037.
[http://dx.doi.org/10.1371/journal.pone.0191037] [PMID: 29324833]
[50]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[51]
Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: A bacterial adrenergic receptor. Proc Natl Acad Sci USA 2006; 103(27): 10420-5.
[http://dx.doi.org/10.1073/pnas.0604343103] [PMID: 16803956]
[52]
Cogan TA, Thomas AO, Rees LEN, et al. Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 2007; 56(8): 1060-5.
[http://dx.doi.org/10.1136/gut.2006.114926] [PMID: 17185353]
[53]
Freestone PPE, Haigh RD, Williams PH, Lyte M. Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett 2003; 222(1): 39-43.
[http://dx.doi.org/10.1016/S0378-1097(03)00243-X] [PMID: 12757944]
[54]
Freestone PP, Williams PH, Haigh RD, Maggs AF, Neal CP, Lyte M. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: A possible contributory factor in trauma-induced sepsis. Shock 2002; 18(5): 465-70.
[http://dx.doi.org/10.1097/00024382-200211000-00014] [PMID: 12412628]
[55]
O’Donnell PM, Aviles H, Lyte M, Sonnenfeld G. Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: Importance of inoculum density and role of transferrin. Appl Environ Microbiol 2006; 72(7): 5097-9.
[http://dx.doi.org/10.1128/AEM.00075-06] [PMID: 16820514]
[56]
Lyte M, Arulanandam BP, Frank CD. Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. J Lab Clin Med 1996; 128(4): 392-8.
[http://dx.doi.org/10.1016/S0022-2143(96)80011-4] [PMID: 8833888]
[57]
Roeder T. Tyramine and octopamine: Ruling behavior and metabolism. Annu Rev Entomol 2005; 50(1): 447-77.
[http://dx.doi.org/10.1146/annurev.ento.50.071803.130404] [PMID: 15355245]
[58]
Fernández M, Linares DM, Alvarez MA. Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. J Food Prot 2004; 67(11): 2521-9.
[http://dx.doi.org/10.4315/0362-028X-67.11.2521] [PMID: 15553636]
[59]
O’Donnell MP, Fox BW, Chao PH, Schroeder FC, Sengupta P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 2020; 583(7816): 415-20.
[http://dx.doi.org/10.1038/s41586-020-2395-5] [PMID: 32555456]
[60]
Lyte M. The biogenic amine tyramine modulates the adherence of Escherichia coli O157:H7 to intestinal mucosa. J Food Prot 2004; 67(5): 878-83.
[http://dx.doi.org/10.4315/0362-028X-67.5.878] [PMID: 15151221]
[61]
Marcobal A, Ias Rivas B, Landete JM, Tabera L, Munoz R. Bacteria tyramine and phenylethylamine biosynthesis by food bacteria. Crit Rev Food Sci Nutr 2012; 52(5): 448-67.
[62]
Coton M, Coton E, Lucas P, Lonvaud A. Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiol 2004; 21: 125-30.
[63]
Marcobal A, de las Rivas B, Muñoz R. Methods for the detection of bacteria producing biogenic amines on foods: A survey. J Consum Prot Food Safety 2006; 1(3): 187-96.
[http://dx.doi.org/10.1007/s00003-006-0035-0]
[64]
Lucas P, Lonvaud-funel A. The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: Characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett 2003; 229(1): 65-71.
[65]
Borowsky B, Adham N, Jones KA, et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 2001; 98(16): 8966-71.
[http://dx.doi.org/10.1073/pnas.151105198] [PMID: 11459929]
[66]
Koornneef M, Hanhart CJ, Veen JH, et al. The hallucinogen N,N-Dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science 2009; 323(5916): 934-7.
[67]
Williams BB, Van Benschoten AH, Cimermancic P, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014; 16(4): 495-503.
[http://dx.doi.org/10.1016/j.chom.2014.09.001] [PMID: 25263219]
[68]
Anderson GM. Quantitation of tryptophan metabolites in rat feces by thin-layer chromatography. J Chromatogr A 1975; 105(2): 323-8.
[http://dx.doi.org/10.1016/S0021-9673(01)82261-5] [PMID: 1150778]
[69]
Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 2018; 23(6): 775-85.e5.
[http://dx.doi.org/10.1016/j.chom.2018.05.004] [PMID: 29902441]
[70]
Neis E, Dejong C, Rensen S. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015; 7(4): 2930-46.
[http://dx.doi.org/10.3390/nu7042930] [PMID: 25894657]
[71]
Marcobal A, Kashyap PC, Nelson TA, et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 2013; 7(10): 1933-43.
[http://dx.doi.org/10.1038/ismej.2013.89] [PMID: 23739052]
[72]
Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76(1): 116-29.
[http://dx.doi.org/10.1016/j.neuron.2012.08.036] [PMID: 23040810]
[73]
Horiuchi Y, Kimura R, Kato N, et al. Evolutional study on acetylcholine expression. Life Sci 2003; 72(15): 1745-56.
[http://dx.doi.org/10.1016/S0024-3205(02)02478-5] [PMID: 12559395]
[74]
Nimgampalle M, Kuna Y. Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J Clin Diagn Res 2017; 11(8): KC01-5.
[http://dx.doi.org/10.7860/JCDR/2017/26106.10428] [PMID: 28969160]
[75]
Stephenson M, Rowatt E. The production of acetylcholine by a strain of Lactobacillus plantarum. J Gen Microbiol 1947; 1(3): 279-98.
[76]
Helton SG, Lohoff FW. Serotonin pathway polymorphisms and the treatment of major depressive disorder and anxiety disorders. Pharmacogenomics 2015; 16(5): 41-53.
[77]
Hata T, Asano Y, Yoshihara K, et al. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS One 2017; 12(7): e0180745.
[http://dx.doi.org/10.1371/journal.pone.0180745] [PMID: 28683093]
[78]
Bailey MT, Cryan JF. The microbiome as a key regulator of brain, behavior and immunity: Commentary on the 2017 named series. Brain Behav Immun 2017; 66: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2017.08.017] [PMID: 28843452]
[79]
Cussotto S, Sandhu KV, Dinan TG, Cryan JF. The neuroendocrinology of the microbiota-gut-brain axis: A behavioural perspective. Front Neuroendocrinol 2018; 51: 80-101.
[http://dx.doi.org/10.1016/j.yfrne.2018.04.002] [PMID: 29753796]
[80]
Roshchina VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. Adv Exp Med Biol 2016; 874: 25-77.
[http://dx.doi.org/10.1007/978-3-319-20215-0_2]
[81]
Hillard CJ. Circulating endocannabinoids: From whence do they come and where are they going? Neuropsychopharmacology 2018; 43(1): 155-72.
[http://dx.doi.org/10.1038/npp.2017.130] [PMID: 28653665]
[82]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2): 264-76.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[83]
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 2009; 106(10): 3698-703.
[http://dx.doi.org/10.1073/pnas.0812874106] [PMID: 19234110]
[84]
Kostic AD, Garrett WS. Keystone microbiome meeting 2012: A mountain top experience. EMBO Rep 2012; 13(6): 478-80.
[http://dx.doi.org/10.1038/embor.2012.69]
[85]
Valladares R, Bojilova L, Potts AH, et al. Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J 2013; 27(4): 1711-20.
[http://dx.doi.org/10.1096/fj.12-223339] [PMID: 23303207]
[86]
Portincasa P, Bonfrate L, Vacca M, et al. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis. Int J Mol Sci 2022; 23(3): 1105.
[http://dx.doi.org/10.3390/ijms23031105] [PMID: 35163038]
[87]
Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018; 7(4): 198-206.
[http://dx.doi.org/10.1007/s13668-018-0248-8] [PMID: 30264354]
[88]
Erny D. Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[89]
Soret R, Chevalier J, De Coppet P, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010; 138(5): 1772-82.e4.
[http://dx.doi.org/10.1053/j.gastro.2010.01.053] [PMID: 20152836]
[90]
Schachter J, Martel J, Lin CS, et al. Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain Behav Immun 2018; 69: 1-8.
[http://dx.doi.org/10.1016/j.bbi.2017.08.026] [PMID: 28888668]
[91]
Grochowska M, Wojnar M, Radkowski M. The gut microbiota in neuropsychiatric disorders. Acta Neurobiol Exp 2018; 78(2): 69-81.
[http://dx.doi.org/10.21307/ane-2018-008] [PMID: 30019700]
[92]
Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016; 21(6): 786-96.
[http://dx.doi.org/10.1038/mp.2016.44]
[93]
Koopman M, El Aidy S, Spitzer C, Lampe A, El Aidy S. Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr Opin Psychiatry 2017; 30(5): 369-77.
[http://dx.doi.org/10.1097/YCO.0000000000000350] [PMID: 28654462]
[94]
Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol 2016; 32(2): 96-102.
[http://dx.doi.org/10.1097/MOG.0000000000000244] [PMID: 26760398]
[95]
Moulton CD, Pavlidis P, Norton C, et al. Depressive symptoms in inflammatory bowel disease: An extraintestinal manifestation of inflammation? Clin Exp Immunol 2019; 197(3): 308-18.
[http://dx.doi.org/10.1111/cei.13276] [PMID: 30762873]
[96]
Simkin DR. Microbiome and mental health, specifically as it relates to adolescents. Curr Psychiatry Rep 2019; 21(9): 1-12.
[97]
Bi W, Zhu L, Jing X, et al. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Mol Med Rep 2014; 10(4): 1793-9.
[http://dx.doi.org/10.3892/mmr.2014.2480] [PMID: 25119251]
[98]
Maes M, Berk M, Goehler L, et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 2012; 10(1): 66.
[http://dx.doi.org/10.1186/1741-7015-10-66] [PMID: 22747645]
[99]
DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: The devil is in the details. J Neurochem 2016; 139: 136-53.
[100]
Swardfager W, Herrmann N, Dowlati Y, et al. Indoleamine 2,3-dioxygenase activation and depressive symptoms in patients with coronary artery disease. Psychoneuroendocrinology 2009; 34(10): 1560-6.
[http://dx.doi.org/10.1016/j.psyneuen.2009.05.019] [PMID: 19540675]
[101]
Barreto FS, Chaves FAJM, de Araújo MCCR, et al. Tryptophan catabolites along the indoleamine 2,3-dioxygenase pathway as a biological link between depression and cancer. Behav Pharmacol 2018; 29(2 and 3): 165-80.
[http://dx.doi.org/10.1097/FBP.0000000000000384] [PMID: 29543650]
[102]
Winter G, Hart RA, Charlesworth RPG, Sharpley CF. Gut microbiome and depression: What we know and what we need to know. Rev Neurosci 2018; 29(6): 629-43.
[http://dx.doi.org/10.1515/revneuro-2017-0072] [PMID: 29397391]
[103]
Gabbay V, Bradley KA, Mao X, Ostrover R, Kang G, Shungu DC. Anterior cingulate cortex γ-aminobutyric acid deficits in youth with depression. Transl Psychiatry 2017; 7(8): e1216.
[http://dx.doi.org/10.1038/tp.2017.187]
[104]
Nedic EG, Sagud M, Nikolac PM, et al. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105: 110139.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110139] [PMID: 33068682]
[105]
Xu H, Wang Z, Zhu L, et al. Targeted neurotransmitters profiling identifies metabolic signatures in rat brain by LC-MS/MS: Application in insomnia, depression and Alzheimer’s disease. Mol 2018; 23(9): 2375.
[106]
Remes O, Brayne C, van der Linde R, Lafortune L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav 2016; 6(7): e00497.
[http://dx.doi.org/10.1002/brb3.497] [PMID: 27458547]
[107]
Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci 2015; 17(3): 327-35.
[http://dx.doi.org/10.31887/DCNS.2015.17.3/bbandelow] [PMID: 26487813]
[108]
Yang B, Wei J, Ju P, Chen J. Effects of regulating intestinal microbiota on anxiety symptoms: A systematic review. Gen Psychiatr 2019; 32(2): e100056.
[http://dx.doi.org/10.1136/gpsych-2019-100056] [PMID: 31179435]
[109]
Dong MX, Chen GH, Hu L. Dopaminergic system alteration in anxiety and compulsive disorders: A systematic review of neuroimaging studies. Front Neurosci 2020; 14: 608520.
[http://dx.doi.org/10.3389/fnins.2020.608520] [PMID: 33343291]
[110]
Nasir M, Trujillo D, Levine J, Dwyer JB, Rupp ZW, Bloch MH. Glutamate systems in DSM-5 anxiety disorders: Their role and a review of glutamate and GABA psychopharmacology. Front Psychiatry 2020; 11: 548505.
[http://dx.doi.org/10.3389/fpsyt.2020.548505] [PMID: 33329087]
[111]
Xia G, Han Y, Meng F, et al. Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Mol Psychiatry 2021; 26(7): 2837-53.
[http://dx.doi.org/10.1038/s41380-021-01053-w] [PMID: 33767348]
[112]
Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2011; 23(3): 255-e119.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x] [PMID: 21054680]
[113]
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 2004; 558(1): 263-75.
[http://dx.doi.org/10.1113/jphysiol.2004.063388] [PMID: 15133062]
[114]
Chahwan B, Kwan S, Isik A, van Hemert S, Burke C, Roberts L. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J Affect Disord 2019; 253: 317-26.
[http://dx.doi.org/10.1016/j.jad.2019.04.097] [PMID: 31078831]
[115]
Messaoudi M, Lalonde R, Violle N, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 2011; 105(5): 755-64.
[http://dx.doi.org/10.1017/S0007114510004319] [PMID: 20974015]
[116]
Hilimire MR, DeVylder JE, Forestell CA. Fermented foods, neuroticism, and social anxiety: An interaction model. Psychiatry Res 2015; 228(2): 203-8.
[http://dx.doi.org/10.1016/j.psychres.2015.04.023] [PMID: 25998000]
[117]
Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition 2016; 32(3): 315-20.
[http://dx.doi.org/10.1016/j.nut.2015.09.003] [PMID: 26706022]
[118]
Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic Lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 2019; 100: 213-22.
[http://dx.doi.org/10.1016/j.psyneuen.2018.10.010] [PMID: 30388595]
[119]
Reitz C, Mayeux R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014; 88(4): 640-51.
[http://dx.doi.org/10.1016/j.bcp.2013.12.024] [PMID: 24398425]
[120]
Ulland TK, Ewald AC, Knutson AO, Marino KM, Smith SMC, Watters JJ. Alzheimer’s disease, sleep disordered breathing, and microglia: Puzzling out a common link. Cells 2021; 10(11): 2907.
[http://dx.doi.org/10.3390/cells10112907] [PMID: 34831129]
[121]
Jouanne M, Rault S, Voisin-Chiret AS. Tau protein aggregation in Alzheimer’s disease: An attractive target for the development of novel therapeutic agents. Eur J Med Chem 2017; 139: 153-67.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.070] [PMID: 28800454]
[122]
Köhler C, Maes M, Slyepchenko A, et al. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: Mechanisms and pathophysiological role in Alzheimer’s disease. Curr Pharm Des 2016; 22(40): 6152-66.
[http://dx.doi.org/10.2174/1381612822666160907093807] [PMID: 27604604]
[123]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[124]
Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 2018; 63(4): 1337-46.
[http://dx.doi.org/10.3233/JAD-180176] [PMID: 29758946]
[125]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[126]
Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil 2019; 25(1): 48-60.
[http://dx.doi.org/10.5056/jnm18087] [PMID: 30646475]
[127]
Chalazonitis A, Rao M. Enteric nervous system manifestations of neurodegenerative disease. Brain Res 2018; 1693(Pt B): 207-13.
[http://dx.doi.org/10.1016/j.brainres.2018.01.011] [PMID: 29360466]
[128]
Liu S, Gao J, Zhu M, Liu K, Zhang HL. Gut microbiota and dysbiosis in Alzheimer’s disease: Implications for pathogenesis and treatment. Mol Neurobiol 2020; 57(12): 5026-43.
[http://dx.doi.org/10.1007/s12035-020-02073-3] [PMID: 32829453]
[129]
Ashford JW. Treatment of Alzheimer’s disease: Trazodone, sleep, serotonin, norepinephrine, and future directions. J Alzheimers Dis 2019; 67(3): 923-30.
[http://dx.doi.org/10.3233/JAD-181106] [PMID: 30776014]
[130]
Calvo-Flores GB, Vinnakota C, Govindpani K, Waldvogel HJ, Faull RLM, Kwakowsky A. The GABAergic system as a therapeutic target for Alzheimer’s disease. J Neurochem 2018; 146(6): 649-69.
[http://dx.doi.org/10.1111/jnc.14345] [PMID: 29645219]
[131]
D’Amelio M, Nisticò R. Unlocking the secrets of dopamine in Alzheimer’s Disease. Pharmacol Res 2018; 128: 399.
[http://dx.doi.org/10.1016/j.phrs.2017.06.018] [PMID: 28669711]
[132]
Stanciu GD, Luca A, Rusu RN, et al. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomol 2020; 10(1): 40.
[133]
Koussoulas K, Swaminathan M, Fung C, Bornstein JC, Foong JPP. Neurally released GABA acts via GABAC receptors to modulate Ca2+ transients evoked by trains of synaptic inputs, but not responses evoked by single stimuli, in myenteric neurons of mouse ileum. Front Physiol 2018; 9: 97.
[http://dx.doi.org/10.3389/fphys.2018.00097] [PMID: 29487540]
[134]
Wu L, Han Y, Zheng Z, et al. Altered gut microbial metabolites in amnestic mild cognitive impairment and Alzheimer’s disease: Signals in host-microbe interplay. Nutrients 2021; 13(1): 228.
[http://dx.doi.org/10.3390/nu13010228] [PMID: 33466861]
[135]
Chen D, Yang X, Yang J, et al. Prebiotic effect of Fructooligosaccharides from Morinda officinalis on Alzheimer’s disease in rodent models by targeting the microbiota-gut-brain axis. Front Aging Neurosci 2017; 9: 403.
[http://dx.doi.org/10.3389/fnagi.2017.00403] [PMID: 29276488]
[136]
Hazan S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report. J Int Med Res 2020; 48(6): 300060520925930.
[http://dx.doi.org/10.1177/0300060520925930] [PMID: 32600151]
[137]
Akbari E, Asemi Z, Daneshvar KR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial. Front Aging Neurosci 2016; 8: 256.
[http://dx.doi.org/10.3389/fnagi.2016.00256] [PMID: 27891089]
[138]
Masato A, Plotegher N, Boassa D, Bubacco L. Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener 2019; 14(1): 35.
[http://dx.doi.org/10.1186/s13024-019-0332-6] [PMID: 31488222]
[139]
Nishiwaki H, Ito M, Ishida T, et al. Meta-analysis of gut dysbiosis in Parkinson’s disease. Mov Disord 2020; 35(9): 1626-35.
[http://dx.doi.org/10.1002/mds.28119] [PMID: 32557853]
[140]
Shen T, Yue Y, He T, et al. The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front Aging Neurosci 2021; 13: 636545.
[http://dx.doi.org/10.3389/fnagi.2021.636545] [PMID: 33643026]
[141]
Dehay B, Bourdenx M, Gorry P, et al. Targeting α-synuclein for treatment of Parkinson’s disease: Mechanistic and therapeutic considerations. Lancet Neurol 2015; 14(8): 855-66.
[http://dx.doi.org/10.1016/S1474-4422(15)00006-X]
[142]
Cloud LJ, Greene JG. Gastrointestinal features of Parkinson’s disease. Curr Neurol Neurosci Rep 2011; 11(4): 379-84.
[http://dx.doi.org/10.1007/s11910-011-0204-0] [PMID: 21499704]
[143]
Kim JS, Sung HY. Gastrointestinal autonomic dysfunction in patients with Parkinson’s disease. J Mov Disord 2015; 8(2): 76-82.
[http://dx.doi.org/10.14802/jmd.15008] [PMID: 26090079]
[144]
Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 2011; 6(12): e28032.
[http://dx.doi.org/10.1371/journal.pone.0028032] [PMID: 22145021]
[145]
Çamcı G, Oğuz S. Association between Parkinson’s disease and Helicobacter pylori. J Clin Neurol 2016; 12(2): 147-50.
[http://dx.doi.org/10.3988/jcn.2016.12.2.147] [PMID: 26932258]
[146]
Fasano A, Bove F, Gabrielli M, et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 2013; 28(9): 1241-9.
[http://dx.doi.org/10.1002/mds.25522] [PMID: 23712625]
[147]
Tan AH, Mahadeva S, Thalha AM, et al. Small intestinal bacterial overgrowth in Parkinson’s disease. Parkinsonism Relat Disord 2014; 20(5): 535-40.
[http://dx.doi.org/10.1016/j.parkreldis.2014.02.019] [PMID: 24637123]
[148]
Dogra N, Mani RJ, Katare DP. The Gut-brain axis: Two ways signaling in Parkinson’s disease. Cell Mol Neurobiol 2022; 42(2): 315-32.
[http://dx.doi.org/10.1007/s10571-021-01066-7] [PMID: 33649989]
[149]
Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30(3): 350-8.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[150]
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016; 167(6): 1469-80.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[151]
Yang D, Zhao D, Zahid S, Shah A, Wu W, Lai M. The role of the gut microbiota in the pathogenesis of Parkinson’s disease. Front Neurol 2019; 10: 1-13.
[152]
Hill-Burns EM, Debelius JW, Morton JT, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 2017; 32(5): 739-49.
[http://dx.doi.org/10.1002/mds.26942] [PMID: 28195358]
[153]
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473(7346): 174-80.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[154]
Andrews ZB, Erion D, Beiler R, et al. Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism. J Neurosci 2009; 29(45): 14057-65.
[http://dx.doi.org/10.1523/JNEUROSCI.3890-09.2009] [PMID: 19906954]
[155]
Lai F, Jiang R, Xie W, et al. Intestinal pathology and gut microbiota alterations in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurochem Res 2018; 43(10): 1986-99.
[http://dx.doi.org/10.1007/s11064-018-2620-x]
[156]
Gorecki AM, Preskey L, Bakeberg MC, et al. Altered gut microbiome in Parkinson’s disease and the influence of Lipopolysaccharide in a human α-synuclein over-expressing mouse model. 2019; 13: 1-13.
[157]
Sun MF, Zhu YL, Zhou ZL, et al. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 2018; 70: 48-60.
[http://dx.doi.org/10.1016/j.bbi.2018.02.005] [PMID: 29471030]
[158]
Tamtaji OR, Taghizadeh M, Daneshvar KR, et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2019; 38(3): 1031-5.
[http://dx.doi.org/10.1016/j.clnu.2018.05.018] [PMID: 29891223]
[159]
Ibrahim A, Ali RAR, Manaf MRA, et al. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial. PLoS One 2020; 15(12): e0244680.
[http://dx.doi.org/10.1371/journal.pone.0244680] [PMID: 33382780]
[160]
Lu CS, Chang HC, Weng YH, Chen CC, Kuo YS, Tsai YC. The add-on effect of Lactobacillus plantarum PS128 in patients with Parkinson’s disease: A pilot study. Front Nutr 2021; 8: 650053.
[http://dx.doi.org/10.3389/fnut.2021.650053] [PMID: 34277679]
[161]
Tan AH, Lim SY, Chong KK, et al. Probiotics for constipation in Parkinson disease: A randomized placebo-controlled study. Neurology 2021; 96(5): e772-82.
[PMID: 33046607]
[162]
Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: The gut-brain axis. J Neuroinflammation 2019; 16(1): 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[163]
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015; 15(9): 545-58.
[http://dx.doi.org/10.1038/nri3871] [PMID: 26250739]
[164]
Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011; 479(7374): 538-41.
[http://dx.doi.org/10.1038/nature10554] [PMID: 22031325]
[165]
Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA 2017; 114(40): 10719-24.
[http://dx.doi.org/10.1073/pnas.1711233114] [PMID: 28893994]
[166]
Ormstad H, Simonsen CS, Broch L, Maes DM, Anderson G, Celius EG. Chronic fatigue and depression due to multiple sclerosis: Immune-inflammatory pathways, tryptophan catabolites and the gut-brain axis as possible shared pathways. Mult Scler Relat Disord 2020; 46: 102533.
[http://dx.doi.org/10.1016/j.msard.2020.102533] [PMID: 33010585]
[167]
Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental Autoimmune Encephalomyelitis (EAE) as a model for Multiple Sclerosis (MS). Br J Pharmacol 2011; 164(4): 1079-106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x] [PMID: 21371012]
[168]
Croxford AL, Kurschus FC, Waisman A. Mouse models for multiple sclerosis: Historical facts and future implications. Biochim Biophys Acta Mol Basis Dis 2011; 1812(2): 177-83.
[http://dx.doi.org/10.1016/j.bbadis.2010.06.010] [PMID: 20600870]
[169]
Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 2009; 183(10): 6041-50.
[http://dx.doi.org/10.4049/jimmunol.0900747] [PMID: 19841183]
[170]
Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2011; 108 (Suppl. 1): 4615-22.
[http://dx.doi.org/10.1073/pnas.1000082107] [PMID: 20660719]
[171]
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139(3): 485-98.
[http://dx.doi.org/10.1016/j.cell.2009.09.033] [PMID: 19836068]
[172]
Tankou SK, Regev K, Healy BC, et al. Investigation of probiotics in multiple sclerosis. Mult Scler 2018; 24(1): 58-63.
[http://dx.doi.org/10.1177/1352458517737390] [PMID: 29307299]
[173]
Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA 2017; 114(40): 10713-8.
[http://dx.doi.org/10.1073/pnas.1711235114] [PMID: 28893978]
[174]
Mestre L, Carrillo-Salinas FJ, Mecha M, et al. Manipulation of gut microbiota influences immune responses, axon preservation, and motor disability in a model of progressive multiple sclerosis. Front Immunol 2019; 10: 1374.
[http://dx.doi.org/10.3389/fimmu.2019.01374] [PMID: 31258540]
[175]
Zeraati M, Enayati M, Kafami L, Shahidi SH, Salari AA. Gut microbiota depletion from early adolescence alters adult immunological and neurobehavioral responses in a mouse model of multiple sclerosis. Neuropharmacology 2019; 157: 107685.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107685] [PMID: 31247271]
[176]
Libbey JE, Sanchez JM, Doty DJ, et al. Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model. Benef Microbes 2018; 9(3): 495-513.
[http://dx.doi.org/10.3920/BM2017.0116] [PMID: 29380645]
[177]
Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol 2018; 83(6): 1147-61.
[http://dx.doi.org/10.1002/ana.25244] [PMID: 29679417]
[178]
Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016; 7(1): 12015.
[http://dx.doi.org/10.1038/ncomms12015] [PMID: 27352007]
[179]
Kouchaki E, Tamtaji OR, Salami M, et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2017; 36(5): 1245-9.
[http://dx.doi.org/10.1016/j.clnu.2016.08.015] [PMID: 27669638]
[180]
Tamtaji OR, Kouchaki E, Salami M, et al. The effects of probiotic supplementation on gene expression related to inflammation, insulin, and lipids in patients with multiple sclerosis: A the effects of probiotic supplementation on gene expression related to. J Am Coll Nutr 2017; 36(8): 660-5.
[http://dx.doi.org/10.1080/07315724.2017.1347074] [PMID: 28922099]
[181]
Tremlett H, Fadrosh DW, Faruqi AA, et al. Gut microbiota in early pediatric multiple sclerosis: A case-control study. Eur J Neurol 2016; 23(8): 1308-21.
[http://dx.doi.org/10.1111/ene.13026] [PMID: 27176462]
[182]
Brown AS, Derkits EJ. Prenatal infection and schizophrenia: A review of epidemiologic and translational studies. Am J Psychiatry 2010; 167(3): 261-80.
[http://dx.doi.org/10.1176/appi.ajp.2009.09030361] [PMID: 20123911]
[183]
Zhu F, Guo R, Wang W, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Mol Psychiatry 2020; 25(11): 2905-18.
[http://dx.doi.org/10.1038/s41380-019-0475-4] [PMID: 31391545]
[184]
Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: Using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 2016; 19(8): pyw020.
[http://dx.doi.org/10.1093/ijnp/pyw020] [PMID: 26912607]
[185]
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: Homeostatic signaling to connectivity. Mol Psychiatry 2016; 21(1): 10-28.
[http://dx.doi.org/10.1038/mp.2015.141] [PMID: 26390828]
[186]
Walker EF, Trotman HD, Pearce BD, et al. Cortisol levels and risk for psychosis: Initial findings from the North American prodrome longitudinal study. Biol Psychiatry 2013; 74(6): 410-7.
[http://dx.doi.org/10.1016/j.biopsych.2013.02.016] [PMID: 23562006]
[187]
Girgis RR, Kumar SS, Brown AS. The cytokine model of schizophrenia: Emerging therapeutic strategies. Biol Psychiatry 2014; 75(4): 292-9.
[http://dx.doi.org/10.1016/j.biopsych.2013.12.002] [PMID: 24439555]
[188]
Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016; 22(6): 598-605.
[http://dx.doi.org/10.1038/nm.4102] [PMID: 27158904]
[189]
Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 2016; 22(6): 586-97.
[http://dx.doi.org/10.1038/nm.4106] [PMID: 27158906]
[190]
Patrono E, Svoboda J, Stuchlík A. Schizophrenia, the gut microbiota, and new opportunities from optogenetic manipulations of the gut-brain axis. Behav Brain Funct 2021; 17(1): 7.
[http://dx.doi.org/10.1186/s12993-021-00180-2] [PMID: 34158061]
[191]
McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, dopamine and the striatum: From biology to symptoms. Trends Neurosci 2019; 42(3): 205-20.
[http://dx.doi.org/10.1016/j.tins.2018.12.004] [PMID: 30621912]
[192]
Zhu F, Ju Y, Wang W, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat Commun 2020; 11(1): 1612.
[http://dx.doi.org/10.1038/s41467-020-15457-9] [PMID: 32235826]
[193]
Shen Y, Xu J, Li Z, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophr Res 2018; 197: 470-7.
[http://dx.doi.org/10.1016/j.schres.2018.01.002] [PMID: 29352709]
[194]
Nguyen TT, Kosciolek T, Maldonado Y, et al. Differences in gut microbiome composition between persons with chronic schizophrenia and healthy comparison subjects. Schizophr Res 2019; 204: 23-9.
[http://dx.doi.org/10.1016/j.schres.2018.09.014]
[195]
Severance EG, Gressitt KL, Stallings CR, et al. Probiotic normalization of Candida albicans in schizophrenia: A randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun 2017; 62: 41-5.
[http://dx.doi.org/10.1016/j.bbi.2016.11.019] [PMID: 27871802]
[196]
Tomasik J, Yolken RH, Bahn S, Dickerson FB. Immunomodulatory effects of probiotic supplementation in schizophrenia patients: A randomized, placebo-controlled trial. Biomark Insights 2015; 10: BMI.S22007.
[http://dx.doi.org/10.4137/BMI.S22007] [PMID: 26052224]
[197]
Okubo R, Koga M, Katsumata N, et al. Effect of Bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: A proof-of-concept study. J Affect Disord 2019; 245: 377-85.
[http://dx.doi.org/10.1016/j.jad.2018.11.011] [PMID: 30423465]
[198]
Pulikkan J, Maji A, Dhakan DB, et al. Gut microbial dysbiosis in Indian children with autism spectrum disorders. Microb Ecol 2018; 76(4): 1102-14.
[http://dx.doi.org/10.1007/s00248-018-1176-2] [PMID: 29564487]
[199]
Ma B, Liang J, Dai M, et al. Altered gut microbiota in Chinese children with autism spectrum disorders. Front Cell Infect Microbiol 2019; 9: 40.
[http://dx.doi.org/10.3389/fcimb.2019.00040] [PMID: 30895172]