Multiple Cancer Combating by Natural Bioactives: A Review

Page: [239 - 251] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Significant progress in anticancer research has led to a rise in the study of bioactive chemicals with potential anticancer effects. Still, many bioactive natural chemicals must be investigated to generate more effective anti-cancer therapeutics. There have been many attempts to treat cancer. Based on diverse research, this review summarizes many bioactive substances obtained from nature that can fight against different types of malignancies with minimal harm. Polyphenolic flavonoids, carotenoid (fucoxanthin), tannin, and other notable natural bioactive with anticancer potential were examined and reviewed systematically with an eye toward their significance in many types of cancer treatment. Throughout the text, it was concluded that natural bioactive play a very prominent role in combating different types of cancer, and the information related to the bioactive role in cancer treatment over the last 10 years was gathered from several research and review articles. The material kept in this paper can act as a template for future research in expressing the more beneficial role of other bioactive in acting as an adjuvant in chemotherapy practice for prevention and treatment of various cancer additionally with no or minimal adverse effects, which are prominent with the conventional drugs used for the treatment of cancer.

Keywords: Bioactive, Cancer, chemotherapy, anti-cancer, natural

Graphical Abstract

[1]
World Health Organization (WHO). Cancer Fact sheet Available from: http://www. WHO. int/news-room/fact- sheets/detail/cancer [Accessed on: 21-03-2022].
[2]
Martin E. Defining cancer: Causes and treatments. Microreviews Cell Mol Biol 2019; 5(2)
[3]
Saini A, Kumar M, Bhatt S, Saini V, Malik A. Cancer causes and treatments. Int J Pharm Sci Res 2020; 11(7): 3121-4.
[4]
Amin A, Mahmoud-Ghoneim D. Texture analysis of liver fibrosis microscopic images: A study on the effect of biomarkers. Acta Biochim Biophys Sin (Shanghai) 2011; 43(3): 193-203.
[http://dx.doi.org/10.1093/abbs/gmq129] [PMID: 21258076]
[5]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: Cancer today Lyon: International Agency for Research on Cancer 2018. Available from: https://gco.iarc.fr/
[7]
El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol 2017; 50(1): 212-22.
[http://dx.doi.org/10.3892/ijo.2016.3769] [PMID: 27878253]
[8]
Richters A, Aben KKH, Kiemeney LALM. The global burden of urinary bladder cancer: An update. World J Urol 2020; 38(8): 1895-904.
[http://dx.doi.org/10.1007/s00345-019-02984-4] [PMID: 31676912]
[9]
American Cancer Society. Breast cancer facts & figures 2019-2020. Am Cancer Soc 2019; 1-44.
[10]
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. Cancer J Clin 2020; 70(3): 145-64.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[11]
Brüggmann D, Ouassou K, Klingelhöfer D, Bohlmann MK, Jaque J, Groneberg DA. Endometrial cancer: Mapping the global landscape of research. J Transl Med 2020; 18(1): 386.
[http://dx.doi.org/10.1186/s12967-020-02554-y] [PMID: 33046107]
[12]
Padala SA, Barsouk A, Thandra KC, et al. Epidemiology of renal cell carcinoma. World J Oncol 2020; 11(3): 79-87.
[http://dx.doi.org/10.14740/wjon1279] [PMID: 32494314]
[13]
Lyengar V, Shimanovsky A. Continuing education activity Leukemia. Treasure Island (FL): StatPearls Publishing 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560490/
[14]
Banales JM, Marin JJG, Lamarca A, et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17(9): 557-88.
[http://dx.doi.org/10.1038/s41575-020-0310-z] [PMID: 32606456]
[15]
Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health 2019; 85(1): 8.
[http://dx.doi.org/10.5334/aogh.2419] [PMID: 30741509]
[16]
Urban K, Mehrmal S, Uppal P, Giesey RL, Delost GR. The global burden of skin cancer: A longitudinal analysis from the Global Burden of Disease Study, 1990-2017. JAAD Int 2021; 2: 98-108.
[17]
Cai W, Zeng Q, Zhang X, Ruan W. Trends analysis of non-Hodgkin lymphoma at the national, regional, and global level, 1990-2019: Results from the Global Burden of Disease Study 2019. Front Med (Lausanne) 2021; 8: 738693.
[http://dx.doi.org/10.3389/fmed.2021.738693] [PMID: 34631756]
[18]
Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol 2019; 10(1): 10-27.
[http://dx.doi.org/10.14740/wjon1166] [PMID: 30834048]
[19]
Habib A, Jaffar G, Khalid MS, et al. Risk factors associated with prostate cancer. J Drug Deliv Ther 2021; 11(2): 188-93.
[http://dx.doi.org/10.22270/jddt.v11i2.4758]
[20]
Miranda-Filho A, Lortet-Tieulent J, Bray F, et al. Thyroid cancer incidence trends by histology in 25 countries: A population-based study. Lancet Diabetes Endocrinol 2021; 9(4): 225-34.
[http://dx.doi.org/10.1016/S2213-8587(21)00027-9] [PMID: 33662333]
[21]
Mu C, Sheng Y, Wang Q, Amin A, Li X, Xie Y. Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analyzed by network pharmacology: Viral and cancer signaling mechanisms. J Funct Foods 2021; 77: 104149.
[http://dx.doi.org/10.1016/j.jff.2020.104149] [PMID: 32837538]
[22]
Marshall AC. Traditional Chinese medicine and clinical pharmacology. Drug Discov Eval: Meth Clin Pharmacol 2020; 2: 455-82.
[23]
Nazarbek G, Kutzhanova A, Nurtay L, et al. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: Cases of herbzymes of Taishan-Huangjing (Rhizoma polygonati) and Goji (Lycium chinense). Nanoscale Adv 2021; 3(23): 6728-38.
[http://dx.doi.org/10.1039/D1NA00475A]
[24]
Nurtay L, Sun Q, Mu C, et al. Rhizoma polygonati from Mount Tai: Nutritional value and usefulness as a traditional Chinese medicine, source of herbzyme, and potential remediating agent for COVID-19 and chronic and hidden hunger. Acupuncture Herbal Med 2021; 1(1): 31-8.
[http://dx.doi.org/10.1097/HM9.0000000000000008]
[25]
Chang CWT, Takemoto JY, Zhan J. Natural bioactive compounds. Isr J Chem 2019; 59(5): 325-6.
[http://dx.doi.org/10.1002/ijch.201900050] [PMID: 31680702]
[26]
Posada E. The Ayurveda natural medicine system and its environmental implications. Environ Sci Ind J 2017; 13(4): 144.
[27]
Baig B, Halim SA, Farrukh A, Greish Y, Amin A. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed Pharmacother 2019; 116: 108852.
[http://dx.doi.org/10.1016/j.biopha.2019.108852] [PMID: 30999152]
[28]
Amin A, Awad B. Crocin-sorafenib combination therapy for liver cancer. United States patent US 10,933,076 2021.
[29]
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov 2021; 20(3): 200-16.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[30]
Amin A, Farrukh A, Murali C, et al. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability. Molecules 2021; 26(13): 3855.
[http://dx.doi.org/10.3390/molecules26133855] [PMID: 34202689]
[31]
Juaid N, Amin A, Abdalla A, et al. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int J Mol Sci 2021; 22(19): 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[32]
Haruna A, Yahaya SM. Recent advances in the chemistry of bioactive compounds from plants and soil microbes: A review. Chemistry Africa 2021; 4(2): 231-48.
[http://dx.doi.org/10.1007/s42250-020-00213-9]
[33]
Amin A, Hamza AA, Daoud S, Hamza W. Spirulina protects against cadmium-induced hepatotoxicity in rats. Am J Pharmacol Toxicol 2006; 1(2): 21-5.
[http://dx.doi.org/10.3844/ajptsp.2006.21.25]
[34]
Murali C, Mudgil P, Gan CY, et al. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci Rep 2021; 11(1): 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[35]
Ahsan T, Chen J, Zhao X, Irfan M, Wu Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express 2017; 7(1): 54.
[http://dx.doi.org/10.1186/s13568-017-0351-z] [PMID: 28255861]
[36]
Alves-Silva JM, Romane A, Efferth T, Salgueiro L. North African medicinal plants traditionally used in cancer therapy. Front Pharmacol 2017; 8: 383.
[http://dx.doi.org/10.3389/fphar.2017.00383] [PMID: 28694778]
[37]
Tariq A, Sadia S, Pan K, et al. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 2017; 31(2): 202-64.
[http://dx.doi.org/10.1002/ptr.5751] [PMID: 28093828]
[38]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83(3): 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[39]
Wiklander O. EV-mediated delivery of binding protein-small molecule conjugates. Patent WO2018011191 2018.
[40]
Wu D. Flavonoid compositions for the treatment of cancer. US Patent US20170087125 2017.
[41]
Chaudhary M. Steal targeted nanoparticles (STN) for oral drug delivery. Patent WO2016046845 2016.
[42]
Ganta S, Coleman TP. Drug delivery nanoemulsion systems. Patent WO2016014337 2016.
[43]
Amin A. Prevention of liver cancer with safranal-based formulations. United States patent US 10,912,741 2021.
[44]
Amin A, AlMansoori A, Baig B. Safranal-sorafenib combination therapy for liver cancer. United States patent US Patent 10,568,873 2020.
[45]
Rengasamy KRR, Mahomoodally MF, Aumeeruddy MZ, Zengin G, Xiao J, Kim DH. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem Toxicol 2020; 135: 111013.
[http://dx.doi.org/10.1016/j.fct.2019.111013] [PMID: 31794803]
[46]
Berdowska I, Matusiewicz M, Fecka I. Punicalagin in cancer prevention-via signaling pathways targeting. Nutrients 2021; 13(8): 2733.
[http://dx.doi.org/10.3390/nu13082733] [PMID: 34444893]
[47]
Gupta AP, Khan S, Manzoor MM, et al. Anticancer curcumin: Natural analogues and structure-activity relationship. Studi Nat Prod Chem 2017; 54-401355-401.
[http://dx.doi.org/10.1016/B978-0-444-63929-5.00010-3]
[48]
Lin BW, Gong CC, Song HF, Cui YY. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 2017; 174(11): 1226-43.
[http://dx.doi.org/10.1111/bph.13627] [PMID: 27646173]
[49]
Li S, Kuo HCD, Yin R, et al. Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem Pharmacol 2020; 175: 113890.
[http://dx.doi.org/10.1016/j.bcp.2020.113890] [PMID: 32119837]
[50]
Rascon-Valenzuela LA, Torres Moreno H, Velazquez C, Garibay-Escobar A, Robles-Zepeda R. Triterpenoids: Synthesis, uses in cancer treatment and other biological activities. Adv Med Biol 2017; 106: 41.
[51]
Nguyen LT, Fărcaș AC, Socaci SA, et al. An overview of Saponins-a bioactive group. Bull UASVM Food Sci Technol 2020; 77: 25-36.
[52]
Liu W, Yang B, Yang L, et al. Therapeutic effects of ten commonly used Chinese herbs and their bioactive compounds on cancers. Evid-Based Compl and Altern Med 2019; 2019
[http://dx.doi.org/10.1155/2019/6057837]
[53]
Hafidh RR. A comprehensive anticancer molecular study for genistein the promising anticancer drug. J Contemp Med Sci 2017; 3(11): 264-9.
[54]
Kopytko P, Piotrowska K, Janisiak J, Tarnowski M. Garcinol-a natural histone acetyltransferase inhibitor and new anti-cancer epigenetic drug. Int J Mol Sci 2021; 22(6): 2828.
[http://dx.doi.org/10.3390/ijms22062828] [PMID: 33799504]
[55]
Shi YS, Zhang Y, Li HT, et al. Limonoids from citrus: Chemistry, anti-tumor potential, and other bioactivities. J Funct Foods 2020; 75: 104213.
[http://dx.doi.org/10.1016/j.jff.2020.104213]
[56]
Veisi A, Akbari G, Mard SA, Badfar G, Zarezade V, Mirshekar MA. Role of crocin in several cancer cell lines: An updated review. Iran J Basic Med Sci 2020; 23(1): 3-12.
[PMID: 32405344]
[57]
Sharma A, Kashyap D, Sak K, Tuli HS, Sharma AK. Therapeutic charm of quercetin and its derivatives: A review of research and patents. Pharm Pat Anal 2018; 7(1): 15-32.
[http://dx.doi.org/10.4155/ppa-2017-0030] [PMID: 29227203]
[58]
Satari A, Ghasemi S, Habtemariam S, Asgharian S, Lorigooini Z. Rutin: A flavonoid as an effective sensitizer for anticancer therapy; insights into multifaceted mechanisms and applicability for combination therapy. Evid Based Complement Alternat Med 2021; 2021: 1-10.
[http://dx.doi.org/10.1155/2021/9913179] [PMID: 34484407]
[59]
Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci 2019; 22(3): 225-37.
[PMID: 31156781]
[60]
Ceci C, Lacal P, Tentori L, De Martino M, Miano R, Graziani G. Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 2018; 10(11): 1756.
[http://dx.doi.org/10.3390/nu10111756] [PMID: 30441769]
[61]
Cadoná FC, Rosa JL, Schneider T, et al. Guaraná, a highly caffeinated food, presents in vitro antitumor activity in colorectal and breast cancer cell lines by inhibiting AKT/mTOR/S6K and MAPKs pathways. Nutr Cancer 2017; 69(5): 800-10.
[http://dx.doi.org/10.1080/01635581.2017.1324994] [PMID: 28569556]
[62]
Cadoná FC, Dantas RF, de Mello GH, Silva-Jr FP. Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Crit Rev Food Sci Nutr 2021; 1-20.
[http://dx.doi.org/10.1080/10408398.2021.1913091] [PMID: 33890518]
[63]
Kashyap D, Sharma A, Tuli HS, et al. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J Funct Foods 2018; 48: 457-71.
[http://dx.doi.org/10.1016/j.jff.2018.07.037]
[64]
Hassan SH, Gul S, Zahra HS, et al. Alpha solanine: A novel natural bioactive molecule with anticancer effects in multiple human malignancies. Nutr Cancer 2021; 73(9): 1541-52.
[http://dx.doi.org/10.1080/01635581.2020.1803932] [PMID: 32762370]
[65]
Kashyap D, Sharma A, Tuli HS, Sak K, Punia S, Mukherjee TK. Kaempferol - A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. J Funct Foods 2017; 30: 203-19.
[http://dx.doi.org/10.1016/j.jff.2017.01.022] [PMID: 32288791]
[66]
Hamza AA, Heeba GH, Hamza S, Abdalla A, Amin A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed Pharmacother 2021; 134: 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[67]
Al-Dabbagh B, Elhaty IA, Murali C, Madhoon AA, Amin A. Salvadora persica (Miswak): Antioxidant and promising antiangiogenic insights. Am J Plant Sci 2018; 9(6): 1228-44.
[http://dx.doi.org/10.4236/ajps.2018.96091]
[68]
Abdalla Y, Abdalla A, Hamza AA, Amin A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front Pharmacol 2021; 12: 777500.
[PMID: 35177980]
[69]
Rauf A, Imran M, Khan IA, et al. Anticancer potential of quercetin: A comprehensive review. Phytother Res 2018; 32(11): 2109-30.
[http://dx.doi.org/10.1002/ptr.6155] [PMID: 30039547]
[70]
Nguyen LT, Lee YH, Sharma AR, et al. Quercetin induces apoptosis and cell cycle arrest in triple-negative breast cancer cells through modulation of Foxo3a activity. Korean J Physiol Pharmacol 2017; 21(2): 205-13.
[http://dx.doi.org/10.4196/kjpp.2017.21.2.205] [PMID: 28280414]
[71]
Srinivasan A, Thangavel C, Liu Y, et al. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol Carcinog 2016; 55(5): 743-56.
[http://dx.doi.org/10.1002/mc.22318] [PMID: 25968914]
[72]
Seo HS, Ku JM, Choi HS, et al. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol Rep 2016; 36(1): 31-42.
[http://dx.doi.org/10.3892/or.2016.4786] [PMID: 27175602]
[73]
Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 2016; 49(6): 678-97.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[74]
Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep 2016; 43(2): 99-105.
[http://dx.doi.org/10.1007/s11033-016-3942-x] [PMID: 26748999]
[75]
Lin TH, Hsu WH, Tsai PH, et al. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct 2017; 8(4): 1558-68.
[http://dx.doi.org/10.1039/C6FO00551A] [PMID: 28277581]
[76]
Luo C, Liu Y, Wang P, et al. The effect of quercetin nanoparticle on cervical cancer progression by inducing apoptosis, autophagy and anti-proliferation via JAK2 suppression. Biomed Pharmacother 2016; 82: 595-605.
[http://dx.doi.org/10.1016/j.biopha.2016.05.029] [PMID: 27470402]
[77]
Klimaszewska-Wiśniewska A, Hałas-Wiśniewska M, Izdebska M, Gagat M, Grzanka A, Grzanka D. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton. Acta Histochem 2017; 119(2): 99-112.
[http://dx.doi.org/10.1016/j.acthis.2016.11.003] [PMID: 27887793]
[78]
Clemente-Soto AF, Salas-Vidal E, Milan-Pacheco C, Sánchez-Carranza JN, Peralta-Zaragoza O, González-Maya L. Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression independent manner in HPV positive human cervical cancer derived cells. Mol Med Rep 2019; 19(3): 2097-106.
[http://dx.doi.org/10.3892/mmr.2019.9850] [PMID: 30664221]
[79]
Xu W, Xie S, Chen X, Pan S, Qian H, Zhu X. Effects of quercetin on the efficacy of various chemotherapeutic drugs in cervical cancer cells. Drug Des Devel Ther 2021; 15: 577-88.
[http://dx.doi.org/10.2147/DDDT.S291865] [PMID: 33623367]
[80]
Chuang CH, Yeh CL, Yeh SL, Lin ES, Wang LY, Wang YH. Quercetin metabolites inhibit MMP-2 expression in A549 lung cancer cells by PPAR-γ associated mechanisms. J Nutr Biochem 2016; 33: 45-53.
[http://dx.doi.org/10.1016/j.jnutbio.2016.03.011] [PMID: 27260467]
[81]
Pratheeshkumar P, Son YO, Divya SP, et al. Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget 2017; 8(32): 52118-31.
[http://dx.doi.org/10.18632/oncotarget.10130] [PMID: 28881718]
[82]
Kee JY, Han YH, Kim DS, et al. Inhibitory effect of quercetin on colorectal lung metastasis through inducing apoptosis, and suppression of metastatic ability. Phytomedicine 2016; 23(13): 1680-90.
[http://dx.doi.org/10.1016/j.phymed.2016.09.011] [PMID: 27823633]
[83]
Nwaeburu CC, Bauer N, Zhao Z, et al. Up-regulation of microRNA let-7c by quercetin inhibits pancreatic cancer progression by activation of Numbl. Oncotarget 2016; 7(36): 58367-80.
[http://dx.doi.org/10.18632/oncotarget.11122] [PMID: 27521217]
[84]
Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles. Biomed Pharmacother 2018; 106: 1513-26.
[http://dx.doi.org/10.1016/j.biopha.2018.07.106] [PMID: 30119227]
[85]
Zhao J, Liu J, Wei T, et al. Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale 2016; 8(9): 5126-38.
[http://dx.doi.org/10.1039/C5NR08966B] [PMID: 26875690]
[86]
Rameshthangam P, Chitra JP. Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract. J Mater Sci Technol 2018; 34(3): 508-22.
[http://dx.doi.org/10.1016/j.jmst.2017.01.004]
[87]
Massi A, Bortolini O, Ragno D, et al. Research progress in the modification of quercetin leading to anticancer agents. Molecules 2017; 22(8): 1270.
[http://dx.doi.org/10.3390/molecules22081270] [PMID: 28758919]
[88]
Nouri Z, Fakhri S, Nouri K, Wallace CE, Farzaei MH, Bishayee A. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach. Cancers (Basel) 2020; 12(8): 2276.
[http://dx.doi.org/10.3390/cancers12082276] [PMID: 32823876]
[89]
Elsayed HE, Ebrahim HY, Mohyeldin MM, et al. Rutin as a novel c-met inhibitory lead for the control of triple negative breast malignancies. Nutr Cancer 2017; 69(8): 1256-71.
[http://dx.doi.org/10.1080/01635581.2017.1367936] [PMID: 29083228]
[90]
Hasani NA, Amin IM, Kamaludin R, Rosdyd NM, Ibahim MJ, Kadir SH. P53 and cyclin B1 mediate apoptotic effects of apigenin and rutin in ERï¡+-breast cancer MCF-7 cells. J Teknol 2018; 80(1)
[91]
Saleh A, ElFayoumi HM, Youns M, Barakat W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch Pharmacol 2019; 392(2): 165-75.
[http://dx.doi.org/10.1007/s00210-018-1579-0] [PMID: 30465055]
[92]
Frascini F, Iriti M, Maestri P, Rimondini L, Catalano E, Megna S. Compositions comprising rutin useful for the treatment of tumors resistant to chemotherapy. US patent US 9,757,405 2017.
[93]
de Oliveira CT, Colenci R, Pacheco CC, et al. Hydrolyzed rutin decreases worsening of anaplasia in glioblastoma relapse. CNS & Neurological Disorders-Drug Targets 2019; 18(5): 405-12.
[http://dx.doi.org/10.2174/1871527318666190314103104]
[94]
Wu F, Chen J, Fan LM, et al. Analysis of the effect of rutin on GSK-3β and TNF-α expression in lung cancer. Exp Ther Med 2017; 14(1): 127-30.
[http://dx.doi.org/10.3892/etm.2017.4494] [PMID: 28672902]
[95]
Park MH, Kim S, Song Y, et al. Rutin induces autophagy in cancer cells. Int J Oral Biol 2016; 41(1): 45-51.
[http://dx.doi.org/10.11620/IJOB.2016.41.1.045]
[96]
Nafees S, Mehdi SH, Zafaryab M, Zeya B, Sarwar T, Rizvi MA. Synergistic interaction of rutin and silibinin on human colon cancer cell line. Arch Med Res 2018; 49(4): 226-34.
[http://dx.doi.org/10.1016/j.arcmed.2018.09.008] [PMID: 30314650]
[97]
Jayameena P, Sivakumari K, Ashok K, Rajesh S. Rutin: A potential anticancer drug against human colon cancer (HCT116) cells. Int J Biol Pharm Allied Sci 2018; 7(9): 1731-45.
[98]
Canturk Z, Dikmen M, Artagan O, Ozarda MG, Ozturk N. Cytotoxic effects of resveratrol, rutin and rosmarinic acid on ARH–77 human (multiple myeloma) cell line. Nat Prod Comm 2016; 11(10): 1934578X1601101007.
[99]
Ikeda NEA, Novak EM, Maria DA, Velosa AS, Pereira RMS. Synthesis, characterization and biological evaluation of Rutin–zinc(II) flavonoid -metal complex. Chem Biol Interact 2015; 239: 184-91.
[http://dx.doi.org/10.1016/j.cbi.2015.06.011] [PMID: 26091902]
[100]
Prasad R, Banerjee S, Kharshiing CE, Bhattacharjee A, Prasad SB. Rutin-mediated apoptosis and glutathione changes in ascites daltons lymphoma cells: In silico analysis of rutin interactions with some antiapoptotic and glutathione-related proteins. Indian J Pharm Sci 2019; 81(4): 720-8.
[101]
Li Q, Ren L, Zhang Y, et al. P38 signal transduction pathway has more cofactors on apoptosis of SGC-7901 gastric cancer cells induced by combination of rutin and oxaliplatin. BioMed Res Int 2019; 2019: 1-9.
[http://dx.doi.org/10.1155/2019/6407210] [PMID: 31781632]
[102]
Roy AS, Tripathy DR, Samanta S, Ghosh SK, Dasgupta S. DNA damaging, cell cytotoxicity and serum albumin binding efficacy of the rutin-Cu(ii) complex. Mol Biosyst 2016; 12(5): 1687-701.
[http://dx.doi.org/10.1039/C6MB00161K] [PMID: 27035097]
[103]
Chang C, Zhang L, Miao Y, Fang B, Yang Z. Anticancer and apoptotic-inducing effects of rutin-chitosan nanoconjugates in triple negative breast cancer cells. J Cluster Sci 2021; 32(2): 331-40.
[http://dx.doi.org/10.1007/s10876-020-01792-w]
[104]
Méresse S, Fodil M, Fleury F, Chénais B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: A promising bioactive compound for cancer therapy. Int J Mol Sci 2020; 21(23): 9273.
[http://dx.doi.org/10.3390/ijms21239273] [PMID: 33291743]
[105]
Mei C, Zhou S, Zhu L, Ming J, Zeng F, Xu R. Antitumor effects of Laminaria extract fucoxanthin on lung cancer. Mar Drugs 2017; 15(2): 39.
[http://dx.doi.org/10.3390/md15020039] [PMID: 28212270]
[106]
Foo SC, Yusoff FM, Imam MU, et al. Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. Biotechnol Rep (Amst) 2019; 21: e00296.
[http://dx.doi.org/10.1016/j.btre.2018.e00296] [PMID: 30581767]
[107]
Garg S, Afzal S, Elwakeel A, et al. Marine carotenoid fucoxanthin possesses anti-metastasis activity: Molecular evidence. Mar Drugs 2019; 17(6): 338.
[http://dx.doi.org/10.3390/md17060338] [PMID: 31195739]
[108]
Malhão F, Macedo AC, Costa C, Rocha E, Ramos AA. Fucoxanthin holds potential to become a drug adjuvant in breast cancer treatment: Evidence from 2D and 3D cell cultures. Molecules 2021; 26(14): 4288.
[http://dx.doi.org/10.3390/molecules26144288] [PMID: 34299562]
[109]
Wang J, Ma Y, Yang J, et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J Cell Mol Med 2019; 23(3): 2219-29.
[http://dx.doi.org/10.1111/jcmm.14151] [PMID: 30648805]
[110]
Fang L, Wang H, Zhang J, Fang X. Punicalagin induces ROSżmediated apoptotic cell death through inhibiting STAT3 translocation in lung cancer A549 cells. J Biochem Mol Toxicol 2021; 35(6): 1-10.
[http://dx.doi.org/10.1002/jbt.22771] [PMID: 33720461]
[111]
Ganesan T, Sinniah A, Chik Z, Alshawsh MA. Punicalagin regulates apoptosis-autophagy switch via modulation of annexin a1 in colorectal cancer. Nutrients 2020; 12(8): 2430.
[http://dx.doi.org/10.3390/nu12082430] [PMID: 32823596]
[112]
Adaramoye O, Erguen B, Nitzsche B, Höpfner M, Jung K, Rabien A. Punicalagin, a polyphenol from pomegranate fruit, induces growth inhibition and apoptosis in human PC-3 and LNCaP cells. Chem Biol Interact 2017; 274: 100-6.
[http://dx.doi.org/10.1016/j.cbi.2017.07.009] [PMID: 28709945]
[113]
Zhang L, Chinnathambi A, Alharbi SA, Veeraraghavan VP, Mohan SK, Zhang G. Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi J Biol Sci 2020; 27(4): 1100-6.
[http://dx.doi.org/10.1016/j.sjbs.2020.02.015] [PMID: 32256171]
[114]
Pan L, Duan Y, Ma F, Lou L. Punicalagin inhibits the viability, migration, invasion, and EMT by regulating GOLPH3 in breast cancer cells. J Recept Signal Transduct Res 2020; 40(2): 173-80.
[http://dx.doi.org/10.1080/10799893.2020.1719152] [PMID: 32024401]
[115]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[116]
Fabianowska-Majewska K, Kaufman-Szymczyk A, Szymanska-Kolba A, Jakubik J, Majewski G, Lubecka K. Curcumin from turmeric rhizome: A potential modulator of DNA methylation machinery in breast cancer inhibition. Nutrients 2021; 13(2): 332.
[http://dx.doi.org/10.3390/nu13020332] [PMID: 33498667]
[117]
Zhang W, Chen C, Shi H, et al. Curcumin is a biologically active copper chelator with antitumor activity. Phytomedicine 2016; 23(1): 1-8.
[http://dx.doi.org/10.1016/j.phymed.2015.11.005] [PMID: 26902401]
[118]
Zhou X, Su J, Feng S, et al. Antitumor activity of curcumin is involved in down-regulation of YAP/TAZ expression in pancreatic cancer cells. Oncotarget 2016; 7(48): 79076-88.
[http://dx.doi.org/10.18632/oncotarget.12596] [PMID: 27738325]
[119]
Ji P, Wang L, Chen Y, Wang S, Wu Z, Qi X. Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrystals for targeted breast cancer treatment with prolonged biodistribution. Biomater Sci 2020; 8(1): 462-72.
[http://dx.doi.org/10.1039/C9BM01605H] [PMID: 31750450]
[120]
Kazi M, A Nasr F, Noman O, Alharbi A, Alqahtani MS, Alanazi FK. Development, characterization optimization, and assessment of curcumin-loaded bioactive self-nanoemulsifying formulations and their inhibitory effects on human breast cancer MCF-7 cells. Pharmaceutics 2020; 12(11): 1107.
[http://dx.doi.org/10.3390/pharmaceutics12111107] [PMID: 33217989]
[121]
Chen J, Xu B, Sun J, Jiang X, Bai W. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Crit Rev Food Sci Nutr 2021; 1-13.
[http://dx.doi.org/10.1080/10408398.2021.1913092] [PMID: 33872094]
[122]
Kalemba-Drożdż M, Cierniak A, Cichoń I. Berry fruit juices protect lymphocytes against DNA damage and ROS formation induced with heterocyclic aromatic amine PhIP. J Berry Res 2020; 10(1): 95-113.
[http://dx.doi.org/10.3233/JBR-190429]
[123]
Chen L, Jiang B, Zhong C, et al. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 2018; 39(3): 471-81.
[http://dx.doi.org/10.1093/carcin/bgy009] [PMID: 29361151]
[124]
Pan F, Liu Y, Liu J, Wang E. Stability of blueberry anthocyanin, anthocyanidin and pyranoanthocyanidin pigments and their inhibitory effects and mechanisms in human cervical cancer HeLa cells. RSC Advances 2019; 9(19): 10842-53.
[http://dx.doi.org/10.1039/C9RA01772K] [PMID: 35515294]
[125]
Mazzoni L, Giampieri F, Alvarez Suarez JM, et al. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food Funct 2019; 10(11): 7103-20.
[http://dx.doi.org/10.1039/C9FO01721F] [PMID: 31621765]
[126]
Yang X, Luo E, Liu X, Han B, Yu X, Peng X. Delphinidin-3-glucoside suppresses breast carcinogenesis by inactivating the Akt/HOTAIR signaling pathway. BMC Cancer 2016; 16(1): 423.
[http://dx.doi.org/10.1186/s12885-016-2465-0] [PMID: 27388461]
[127]
Lee JY, Jo Y, Shin H, et al. Anthocyanin-fucoidan nanocomplex for preventing carcinogen induced cancer: Enhanced absorption and stability. Int J Pharm 2020; 586: 119597.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119597] [PMID: 32629067]
[128]
Alkhalaf MI, Alansari WS, Alshubaily FA, et al. Chemoprotective effects of inositol hexaphosphate against cyclophosphamide-induced testicular damage in rats. Sci Rep 2020; 10(1): 12599.
[http://dx.doi.org/10.1038/s41598-020-68608-9] [PMID: 32724173]
[129]
Amabile M, De Luca A, Tripodi D, et al. Effects of inositol hexaphosphate and myo-inositol administration in breast cancer patients during adjuvant chemotherapy. J Pers Med 2021; 11(8): 756.
[http://dx.doi.org/10.3390/jpm11080756] [PMID: 34442400]
[130]
Bačić I, Družijanić N, Karlo R, Škifić I, Jagić S. Efficacy of IP6 + inositol in the treatment of breast cancer patients receiving chemotherapy: Prospective, randomized, pilot clinical study. J Exp Clin Cancer Res 2010; 29(1): 12.
[http://dx.doi.org/10.1186/1756-9966-29-12] [PMID: 20152024]
[131]
Liu X, Liu C, Chen C, et al. Combination of inositol hexaphosphate and inositol inhibits liver metastasis of colorectal cancer in mice through the Wnt/β-catenin pathway. OncoTargets Ther 2020; 13: 3223-35.
[http://dx.doi.org/10.2147/OTT.S247646] [PMID: 32368081]
[132]
Singh RP, Agarwal C, Agarwal R. Inositol hexaphosphate inhibits growth, and induces G1 arrest and apoptotic death of prostate carcinoma DU145 cells: Modulation of CDKI-CDK-cyclin and pRb-related protein-E2F complexes. Carcinogenesis 2003; 24(3): 555-63.
[http://dx.doi.org/10.1093/carcin/24.3.555] [PMID: 12663518]
[133]
Agarwal C, Dhanalakshmi S, Singh RP, Agarwal R. Inositol hexaphosphate inhibits growth and induces G1 arrest and apoptotic death of androgen-dependent human prostate carcinoma LNCaP cells. Neoplasia 2004; 6(5): 646-59.
[http://dx.doi.org/10.1593/neo.04232] [PMID: 15548374]
[134]
Seca A, Pinto D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int J Mol Sci 2018; 19(1): 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]