An Insight on Novel Approaches & Perspectives for Gastro-Retentive Drug Delivery Systems

Page: [708 - 729] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

The conventional oral drug delivery systems face a lot of difficulties in the gastrointestinal tract, such as inappropriate drug release and reduction in the efficacy of the doses, which makes this system less susceptible to the delivery of drug formulation. For the enhancement of therapeutic efficacy and bioavailability of the drug, many efforts have been made. The drug candidates which are not stable at alkaline pH and soluble in acidic medium were selected to increase their therapeutic effectiveness through gastro retentive drug delivery systems (GRDDS). This article discusses various factors which alter the gastro retention time (GRT) of the gastro retentive drug delivery system in the stomach and intestine (duodenum). It emphasizes on the novel approaches made for the delivery and release of drugs with the use of magnetic systems, floating (low-density) systems, super porous hydrogels, raft systems, mucoadhesive systems, high-density systems and expandable systems. Along with the applications, the key aspects of in vivo, in vitro & clinical studies in different approaches to GRDDS have been addressed. In addition, future perspectives have been summarized to reduce gastric transit time in fasting and fed conditions.

Keywords: Bioavailability, floating systems, gastroretentive drug delivery systems, gastric transit time, raft systems, hydro- gels

[1]
Lopes, C.M.; Bettencourt, C.; Rossi, A.; Buttini, F.; Barata, P. Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int. J. Pharm., 2016, 510(1), 144-158.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.016] [PMID: 27173823]
[2]
Kagan, L.; Lapidot, N.; Afargan, M.; Kirmayer, D.; Moor, E.; Mardor, Y.; Friedman, M.; Hoffman, A. Gastroretentive accordion pill: Enhancement of riboflavin bioavailability in humans. J. Control. Release, 2006, 113(3), 208-215.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.022] [PMID: 16806558]
[3]
Boldhane, S.P.; Kuchekar, B.S. Development and optimization of metoprolol succinate gastroretentive drug delivery system. Acta Pharm., 2010, 60(4), 415-425.
[http://dx.doi.org/10.2478/v10007-010-0031-x] [PMID: 21169134]
[4]
Garg, R.; Gupta, D.G. Progress in controlled gastroretentive delivery systems. Trop J. Pharm., 2008, 7, 1055-1066.
[5]
Ammar, H.O.; Ghorab, M.; Kamel, R.; Salama, A.H. Design and optimization of gastro-retentive microballoons for enhanced bioavailability of cinnarizine. Drug Deliv. Transl. Res., 2016, 6(3), 210-224.
[http://dx.doi.org/10.1007/s13346-016-0280-4] [PMID: 26832133]
[6]
Friedmann, M.; Hoffman, A.; Klausner, E.; Lavy, E. Gastroretentive controlled release pharmaceutical dosage form. Yissum research development company of the Hebrew university of Jerusalem, Israel. US 6685962, 2004.
[7]
Friedmann, M.; Hoffman, A.; Klausner, E.; Lavy, E. Gastroretentive controlled release pharmaceutical dosage form. EP 20000978993 2005.
[8]
Gerard, D.; Schoelkopf, J.; Gane, P.; Eberle, V.; Alles, R.; Puckhov, M.; Huwyler, J. Gastroretentive drug formulation and delivery systems and their method of preparation using functionalised calcium carbonate. United States patent US 9,987,230, 2018.
[9]
Grenier, P.; Taillemite, J.; Serreau, S.; Nhamias, A.; Jagotec, A.G. Pharmaceutical composition containing coated, floating particles. United States patent US 8,927,028, 2015.
[10]
Hassan, M. Gastroretentive drug delivery system comprising an extruded hydratable polymer. U.S. Patent No. 8,586,083, 2013.
[11]
Pathak, K.; Akhtar, N.; Singh, S. Gastroretentive carrier systems in the delivery of therapeutic actives; Emisphere Technologies, Inc.: USA, 2015.
[12]
Navon, N. The Accordion Pill®: Unique oral delivery to enhance pharmacokinetics and therapeutic benefit of challenging drugs. Therapeutic. delive., 2019, 10(7), 433-442.
[13]
Zhao, S.; Lv, Y.; Zhang, J.B.; Wang, B.; Lv, G.J.; Ma, X.J. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori. World J. Gastroenterol., 2014, 20(28), 9321-9329.
[PMID: 25071326]
[14]
Prabha, K.; Sunil, S.; Kumar, A.V. Approaches to increase the gastric residence time: Floating drug delivery systems-a review. Asian J. Pharm. Clin. Res., 2013, 6(3), 1-9.
[15]
Yuen, K.H. The transit of dosage forms through the small intestine. Int. J. Pharm., 2010, 395(1-2), 9-16.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.045] [PMID: 20478371]
[16]
Rajora, A.; Nagpal, K. A critical review on floating tablets as a tool for achieving better gastric retention. Crit. Rev. Ther. Drug Carrier Syst., 2022, 39(1), 65-103.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2021038568] [PMID: 34936318]
[17]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11, 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[18]
Rimawi, I.B.; Muqedi, R.H.; Kanaze, F.I. Development of gabapentin expandable gastroretentive controlled drug delivery system. Sci. Rep., 2019, 9(1), 11675.
[http://dx.doi.org/10.1038/s41598-019-48260-8] [PMID: 31406203]
[19]
Chauhan, M.S.; Kumar, A.; Pathak, K. Osmotically regulated floating asymmetric membrane capsule for controlled site-specific delivery of ranitidine hydrochloride: Optimization by central composite design. AAPS PharmSciTech, 2012, 13(4), 1492-1501.
[http://dx.doi.org/10.1208/s12249-012-9870-8] [PMID: 23104305]
[20]
Kaushik, A.Y.; Tiwari, A.K.; Gaur, A. Role of excipients and polymeric advancements in preparation of floating drug delivery systems. Int. J. Pharm. Investig., 2015, 5(1), 1-12.
[http://dx.doi.org/10.4103/2230-973X.147219] [PMID: 25599027]
[21]
Sauzet, C.; Claeys-Bruno, M.; Nicolas, M.; Kister, J.; Piccerelle, P.; Prinderre, P. An innovative floating gastro retentive dosage system: Formulation and in vitro evaluation. Int. J. Pharm., 2009, 378(1-2), 23-29.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.027] [PMID: 19465095]
[22]
Jagdale, S.; Shinde, M. Development of floating delivery for solid self micro-emulsifying drug delivery system of prochlorperazine maleate. Recent Pat. Drug Deliv. Formul., 2017, 11(3), 198-210.
[http://dx.doi.org/10.2174/1872211311666171108112349] [PMID: 29119940]
[23]
Streubel, A.; Siepmann, J.; Bodmeier, R. Floating microparticles based on low density foam powder. Int. J. Pharm., 2002, 241(2), 279-292.
[http://dx.doi.org/10.1016/S0378-5173(02)00241-7] [PMID: 12100855]
[24]
Klausner, E.A.; Lavy, E.; Friedman, M.; Hoffman, A. Expandable gastroretentive dosage forms. J. Control. Release, 2003, 90(2), 143-162.
[http://dx.doi.org/10.1016/S0168-3659(03)00203-7] [PMID: 12810298]
[25]
Kagan, L.; Hoffman, A. Systems for region selective drug delivery in the gastrointestinal tract: Biopharmaceutical considerations. Expert Opin. Drug Deliv., 2008, 5(6), 681-692.
[http://dx.doi.org/10.1517/17425247.5.6.681] [PMID: 18532923]
[26]
Reinus, J.F.; Simon, D. Gastrointestinal Anatomy and Physiology: The Essentials; John Wiley & Sons: UK, 2014.
[http://dx.doi.org/10.1002/9781118833001]
[27]
Hu, Z.; Mawatari, S.; Shibata, N.; Takada, K.; Yoshikawa, H.; Arakawa, A.; Yosida, Y. Application of a biomagnetic measurement system (BMS) to the evaluation of gastrointestinal transit of intestinal pressure-controlled colon delivery capsules (PCDCs) in human subjects. Pharm. Res., 2000, 17(2), 160-167.
[http://dx.doi.org/10.1023/A:1007561129221] [PMID: 10751030]
[28]
Coupe, A.J.; Davis, S.S.; Wilding, I.R. Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm. Res., 1991, 8(3), 360-364.
[http://dx.doi.org/10.1023/A:1015849700421] [PMID: 2052525]
[29]
Rao, K.A.; Yazaki, E.; Evans, D.F.; Carbon, R. Objective evaluation of small bowel and colonic transit time using pH telemetry in athletes with gastrointestinal symptoms. Br. J. Sports Med., 2004, 38(4), 482-487.
[http://dx.doi.org/10.1136/bjsm.2003.006825] [PMID: 15273191]
[30]
Buhmann, S.; Kirchhoff, C.; Ladurner, R.; Mussack, T.; Reiser, M.F.; Lienemann, A. Assessment of colonic transit time using MRI: A feasibility study. Eur. Radiol., 2007, 17(3), 669-674.
[http://dx.doi.org/10.1007/s00330-006-0414-z] [PMID: 17036156]
[31]
Fallingborg, J.; Christensen, L.A.; Jacobsen, B.A.; Rasmussen, S.N. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci., 1993, 38(11), 1989-1993.
[http://dx.doi.org/10.1007/BF01297074] [PMID: 8223071]
[32]
Bratten, J.; Jones, M.P. New directions in the assessment of gastric function: Clinical applications of physiologic measurements. Dig. Dis., 2006, 24(3-4), 252-259.
[http://dx.doi.org/10.1159/000092878] [PMID: 16849852]
[33]
Ibekwe, V.C.; Fadda, H.M.; McConnell, E.L.; Khela, M.K.; Evans, D.F.; Basit, A.W. Interplay between intestinal pH, transit time and feed status on the in vivo performance of pH responsive ileo-colonic release systems. Pharm. Res., 2008, 25(8), 1828-1835.
[http://dx.doi.org/10.1007/s11095-008-9580-9] [PMID: 18465212]
[34]
Brunton, L.L.; Knollmann, B.C.; Hilal-Dandan, R. Goodman & Gilman”s: The Pharmacological Basis of Therapeutics, 13th ed; McGraw-Hill Education: New York, 2018.
[35]
Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: Thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280(5), G922-G929.
[http://dx.doi.org/10.1152/ajpgi.2001.280.5.G922] [PMID: 11292601]
[36]
Chowdhury, A.H.; Lobo, D.N. Fluids and gastrointestinal function. Curr. Opin. Clin. Nutr. Metab. Care, 2011, 14(5), 469-476.
[http://dx.doi.org/10.1097/MCO.0b013e328348c084] [PMID: 21681086]
[37]
Johansson, M.E.; Sjövall, H.; Hansson, G.C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(6), 352-361.
[http://dx.doi.org/10.1038/nrgastro.2013.35] [PMID: 23478383]
[38]
Consortium, T.H.M.P. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[39]
Macfarlane, G.T.; Macfarlane, S. Fermentation in the human large intestine: Its physiologic consequences and the potential contribution of prebiotics. J. Clin. Gastroenterol., 2011, 45(Suppl.), S120-S127.
[http://dx.doi.org/10.1097/MCG.0b013e31822fecfe] [PMID: 21992950]
[40]
Sartor, R.B. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology, 2010, 139(6), 1816-1819.
[http://dx.doi.org/10.1053/j.gastro.2010.10.036] [PMID: 21029802]
[41]
El Aidy, S.; van den Bogert, B.; Kleerebezem, M. The small intestine microbiota, nutritional modulation and relevance for health. Curr. Opin. Biotechnol., 2015, 32, 14-20.
[http://dx.doi.org/10.1016/j.copbio.2014.09.005] [PMID: 25308830]
[42]
Prajapati, V.D.; Jani, G.K.; Khutliwala, T.A.; Zala, B.S. Raft forming system-an upcoming approach of gastroretentive drug delivery system. J. Control. Release, 2013, 168(2), 151-165.
[http://dx.doi.org/10.1016/j.jconrel.2013.02.028] [PMID: 23500062]
[43]
Prinderre, P.; Sauzet, C.; Fuxen, C. Advances in gastro retentive drug-delivery systems. Expert Opin. Drug Deliv., 2011, 8(9), 1189-1203.
[http://dx.doi.org/10.1517/17425247.2011.592828] [PMID: 21671821]
[44]
Kotreka, U.K.; Adeyeye, M.C. Gastroretentive floating drug-delivery systems: A critical review. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(1), 47-99.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v28.i1.20] [PMID: 21395515]
[45]
Nguyen, N.Q.; Debreceni, T.L.; Burgstad, C.M.; Wishart, J.M.; Bellon, M.; Rayner, C.K.; Wittert, G.A.; Horowitz, M. Effects of posture and meal volume on gastric emptying, intestinal transit, oral glucose tolerance, blood pressure and gastrointestinal symptoms after roux-en-y gastric bypass. Obes. Surg., 2015, 25(8), 1392-1400.
[http://dx.doi.org/10.1007/s11695-014-1531-4] [PMID: 25502436]
[46]
Srikanth Meka, V.; Ramana Murthy Kolapalli, V. Formulation of gastric floating system using bio-sourced terminalia catappa gum and in vivo evaluation. Curr. drug del., 2016, 13(6), 971-981.
[http://dx.doi.org/10.2174/1567201812666151009115756]
[47]
Juvonen, K.R.; Purhonen, A-K.; Salmenkallio-Marttila, M.; Lähteenmäki, L.; Laaksonen, D.E.; Herzig, K.H.; Uusitupa, M.I.; Poutanen, K.S.; Karhunen, L.J. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J. Nutr., 2009, 139(3), 461-466.
[http://dx.doi.org/10.3945/jn.108.099945] [PMID: 19176745]
[48]
Zhu, Y.; Hsu, W.H.; Hollis, J.H. The impact of food viscosity on eating rate, subjective appetite, glycemic response and gastric emptying rate. PLoS One, 2013, 8(6), e67482.
[http://dx.doi.org/10.1371/journal.pone.0067482] [PMID: 23818981]
[49]
Freire, A.C.; Basit, A.W.; Choudhary, R.; Piong, C.W.; Merchant, H.A. Does sex matter? The influence of gender on gastrointestinal physiology and drug delivery. Int. J. Pharm., 2011, 415(1-2), 15-28.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.069] [PMID: 21640175]
[50]
Firth, M.; Prather, C.M. Gastrointestinal motility problems in the elderly patient. Gastroenterology, 2002, 122(6), 1688-1700.
[http://dx.doi.org/10.1053/gast.2002.33566] [PMID: 12016432]
[51]
Wang, Y.T.; Mohammed, S.D.; Farmer, A.D.; Wang, D.; Zarate, N.; Hobson, A.R.; Hellström, P.M.; Semler, J.R.; Kuo, B.; Rao, S.S.; Hasler, W.L.; Camilleri, M.; Scott, S.M. Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: Influence of age, gender, study country and testing protocol. Aliment. Pharmacol. Ther., 2015, 42(6), 761-772.
[http://dx.doi.org/10.1111/apt.13329] [PMID: 26223837]
[52]
Jacob, S.; Nair, A.B.; Patel, V.; Shah, J. 3D printing technologies: Recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech, 2020, 21(6), 220.
[http://dx.doi.org/10.1208/s12249-020-01771-4] [PMID: 32748243]
[53]
Hwang, K.M.; Nguyen, T.T.; Seok, S.H.; Jo, H.I.; Cho, C.H.; Hwang, K.M.; Kim, J.Y.; Park, C.W.; Rhee, Y.S.; Park, E.S. Swellable and porous bilayer tablet for gastroretentive drug delivery: Preparation and in vitro-in vivo evaluation. Int. J. Pharm., 2019, 572, 118783.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118783] [PMID: 31678393]
[54]
Hatton, G.B.; Madla, C.M.; Rabbie, S.C.; Basit, A.W. All disease begins in the gut: Influence of gastrointestinal disorders and surgery on oral drug performance. Int. J. Pharm., 2018, 548(1), 408-422.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.054] [PMID: 29969711]
[55]
Watts, P.J.; Barrow, L.; Steed, K.P.; Wilson, C.G.; Spiller, R.C.; Melia, C.D.; Davies, M.C. The transit rate of different-sized model dosage forms through the human colon and the effects of a lactulose-induced catharsis. Int. J. Pharm., 1992, 87(1-3), 215-221.
[http://dx.doi.org/10.1016/0378-5173(92)90245-W]
[56]
Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine, 2015, 11(5), 1117-1132.
[http://dx.doi.org/10.1016/j.nano.2015.02.018] [PMID: 25784453]
[57]
Hatton, G.B.; Madla, C.M.; Rabbie, S.C.; Basit, A.W. Gut reaction: Impact of systemic diseases on gastrointestinal physiology and drug absorption. Drug Discov. Today, 2019, 24(2), 417-427.
[http://dx.doi.org/10.1016/j.drudis.2018.11.009] [PMID: 30453059]
[58]
Konturek, P.C.; Brzozowski, T.; Konturek, S.J. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol. Pharmacol., 2011, 62(6), 591-599.
[PMID: 22314561]
[59]
Triantafyllou, K.; Kalantzis, C.; Papadopoulos, A.A.; Apostolopoulos, P.; Rokkas, T.; Kalantzis, N.; Ladas, S.D. Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Dig. Liver Dis., 2007, 39(6), 575-580.
[http://dx.doi.org/10.1016/j.dld.2007.01.024] [PMID: 17433797]
[60]
Krygowska-Wajs, A.; Cheshire, W.P., Jr; Wszolek, Z.K.; Hubalewska-Dydejczyk, A.; Jasinska-Myga, B.; Farrer, M.J.; Moskala, M.; Sowa-Staszczak, A. Evaluation of gastric emptying in familial and sporadic Parkinson disease. Parkinsonism Relat. Disord., 2009, 15(9), 692-696.
[http://dx.doi.org/10.1016/j.parkreldis.2009.04.003] [PMID: 19451015]
[61]
Kadivar, A.; Kamalidehghan, B.; Javar, H.A.; Davoudi, E.T.; Zaharuddin, N.D.; Sabeti, B.; Chung, L.Y.; Noordin, M.I. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet. PLoS One, 2015, 10(6), e0126874.
[http://dx.doi.org/10.1371/journal.pone.0126874] [PMID: 26035710]
[62]
Hanif, M.; Shah, S.; Rasul, A.; Abbas, G.; Zaman, M.; Amjad, M.W.; Abdul Ghafoor Raja, M.; Khan, H.U.; Ashfaq, M.; Iqbal, O. Enhancement of oral bioavailability of ibandronate through gastroretentive raft forming drug delivery system: In vitro and in vivo evaluation. Int. J. Nanomedicine, 2020, 15, 4847-4858.
[http://dx.doi.org/10.2147/IJN.S255278] [PMID: 32764922]
[63]
Abduljabbar, H.N.; Badr-Eldin, S.M.; Aldawsari, H.M. Gastroretentive ranitidine hydrochloride tablets with combined floating and bioadhesive properties: Factorial design analysis, in vitro evaluation and in vivo abdominal X-ray imaging. Curr. Drug Deliv., 2015, 12(5), 578-590.
[http://dx.doi.org/10.2174/1567201812666150608101720] [PMID: 26051347]
[64]
Namdev, A.; Jain, D. Floating drug delivery systems: An emerging trend for the treatment of peptic ulcer. Curr. Drug Deliv., 2019, 16(10), 874-886.
[http://dx.doi.org/10.2174/1567201816666191018163519] [PMID: 31894738]
[65]
Pandey, M. Natural macromolecules in the development of safe and effective gastroretentive floating microparticles of metformin hydrochloride. Nat. Prod. J., 2016, 6(1), 62-72.
[66]
Zhang, W.Q.; Chen, L.B.; Zhe, A.; Liu, Y.Y.; Zhang, L.; Wang, Y-H.; Shao, Y-K.; Liu, Y-Y. Gastroretentive floating microspheres of carvedilol: Preparation, in vitro and in vivo characterization. J. Biomater. Tissue Eng., 2016, 6(1), 74-78.
[http://dx.doi.org/10.1166/jbt.2016.1413]
[67]
Singh, B.N.; Kim, K.H. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J. Control., 2000, 63, 235-259.
[68]
Kamalakkannan, V.; Puratchikody, A.; Ramanathan, L. Formulation and in vitro evaluation of solid lipid microparticles of candesartan cilexetil floating tablets. Drug Deliv. Lett., 2012, 2(3), 202-212.
[69]
Jiménez-Martínez, I.; Quirino-Barreda, T.; Villafuerte-Robles, L. Sustained delivery of captopril from floating matrix tablets. Int. J. Pharm., 2008, 362(1-2), 37-43.
[http://dx.doi.org/10.1016/j.ijpharm.2008.05.040] [PMID: 18588962]
[70]
Rossi, A.; Conti, C.; Colombo, G.; Castrati, L.; Scarpignato, C.; Barata, P.; Sandri, G.; Caramella, C.; Bettini, R.; Buttini, F.; Colombo, P. Floating modular drug delivery systems with buoyancy independent of release mechanisms to sustain amoxicillin and clarithromycin intra-gastric concentrations. Drug Dev. Ind., 2016, 42(2), 332-339.
[http://dx.doi.org/10.3109/03639045.2015.1054397] [PMID: 26065531]
[71]
Reddy, L.H.; Murthy, R.S. Floating dosage systems in drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 2002, 19(6), 553-585.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v19.i6.20] [PMID: 12822735]
[72]
Xu, J.; Tan, X.; Chen, L.; Li, X.; Xie, F. Starch/microcrystalline cellulose hybrid gels as gastric-floating drug delivery systems. Carbohydr. Polym., 2019, 215, 151-159.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.078] [PMID: 30981340]
[73]
Rahim, S.A.; Carter, P.; Elkordy, A.A. Influence of calcium carbonate and sodium carbonate gassing agents on pentoxifylline floating tablets properties. Powder Technol., 2017, 322, 65-74.
[http://dx.doi.org/10.1016/j.powtec.2017.09.001]
[74]
Li, Z.; Zeng, R.; Yang, L.; Ren, X.; Maffucci, K.G.; Qu, Y. Development and characterization of PCL electrospun membrane-coated bletilla striata polysaccharide-based gastroretentive drug delivery system. AAPS PharmSciTech, 2020, 21(2), 66.
[http://dx.doi.org/10.1208/s12249-019-1607-5] [PMID: 31932983]
[75]
Tort, S.; Han, D.; Steckl, A.J. Self-inflating floating nanofiber membranes for controlled drug delivery. Int. J. Pharm., 2020, 579, 119164.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119164] [PMID: 32081796]
[76]
Celli, G.B.; Ghanem, A.; Brooks, M.S. Development and evaluation of floating alginate microspheres for oral delivery of anthocyanins - A preliminary investigation. Food Sci. Nutr., 2016, 5(3), 713-721.
[http://dx.doi.org/10.1002/fsn3.451] [PMID: 28572961]
[77]
Shaha, S.; Patel, J.; Pundarikakshudu, K.; Patel, N. An overview of a gastro-retentive floating drug delivery system. Asian J. Pharm. Sci., 2009, (4), 65-80.
[78]
Wannasarit, S.; Mahattanadul, S.; Issarachot, O.; Puttarak, P.; Wiwattanapatapee, R. Raft-forming gastro-retentive formulations based on Centella asiatica extract-solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Sci., 2020, 143, 105204.
[http://dx.doi.org/10.1016/j.ejps.2019.105204] [PMID: 31870812]
[79]
Wavhule, P.; Devarajan, P.V. Development and optimization of microballoons assisted floating tablets of Baclofen. AAPS PharmSciTech, 2021, 22(8), 272.
[http://dx.doi.org/10.1208/s12249-021-02139-y] [PMID: 34766234]
[80]
Kim, S.; Hwang, K-M.; Park, Y.S.; Nguyen, T-T.; Park, E-S. Preparation and evaluation of non-effervescent gastroretentive tablets containing pregabalin for once-daily administration and dose proportional pharmacokinetics. Int. J. Pharm., 2018, 550(1-2), 160-169.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.038] [PMID: 30138708]
[81]
Souza, M.P.C.; Sábio, R.M.; Ribeiro, T.C.; Santos, A.M.D.; Meneguin, A.B.; Chorilli, M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int. J. Biol. Macromol., 2020, 159, 804-822.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.104] [PMID: 32425271]
[82]
Rahamathulla, M.; Saisivam, S.; Gangadharappa, H.V. Development of valsartan floating matrix tablets using low density polypropylene foam powder: In vitro and in vivo evaluation. AAPS PharmSciTech, 2019, 20(1), 35.
[http://dx.doi.org/10.1208/s12249-018-1265-z] [PMID: 30604045]
[83]
Niranjan Patra, C.; Swain, S.; Kumar Sahoo, S.; Kumar Sahoo, D.; Mondal, D.; Jammula, S.; Rao, B.E. Preparation and characterization of gastro-retentive sustained release microcapsules of salbutamol sulphate. Drug Deliv. Lett., 2013, 3(2), 91-100.
[http://dx.doi.org/10.2174/2210303111303020002]
[84]
Adel, S.; ElKasabgy, N.A. Design of innovated lipid-based floating beads loaded with an antispasmodic drug: In-vitro and in-vivo evaluation. J. Liposome Res., 2014, 24(2), 136-149.
[http://dx.doi.org/10.3109/08982104.2013.857355] [PMID: 24236529]
[85]
Bardonnet, P.L.; Faivre, V.; Pugh, W.J.; Piffaretti, J.C.; Falson, F. Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. J. Control. Release, 2006, 111(1-2), 1-18.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.031] [PMID: 16403588]
[86]
Porwal, A.; Dwivedi, H.; Pathak, K. Decades of research in drug targeting using gastroretentive drug delivery systems for antihypertensive therapy. Braz. J. Pharm. Sci., 2017, 53(3)
[http://dx.doi.org/10.1590/s2175-97902017000300173]
[87]
Timmermans, J.; Moës, A.J. Factors controlling the buoyancy and gastric retention capabilities of floating matrix capsules: New data for reconsidering the controversy. J. Pharm. Sci., 1994, 83(1), 18-24.
[http://dx.doi.org/10.1002/jps.2600830106] [PMID: 8138903]
[88]
Hejazi, R.; Amiji, M. Stomach-specific anti H. pylori therapy I:preparation and characterization of tetracycline of a floating multipleunit,capsule, a high-density loaded chitosan microcapsules. Int. J. Pharm., 2002, 235, 87-94.
[http://dx.doi.org/10.1016/S0378-5173(01)00985-1] [PMID: 11879743]
[89]
Clarke, G.M.; Newton, J.M.; Short, M.B. Comparative gastrointestinal transit of pellet systems of varying density. Int. J. Pharm., 2006, 114(1), 1-11.
[http://dx.doi.org/10.1016/0378-5173(94)00200-O]
[90]
Moes, A. Gastric retention systems for oral drug delivery.In: Business Briefing; Pharmatech, 2003, pp. 157-159.
[91]
Kambayashi, A.; Sako, K.; Kondo, H. Effects of diurnal variation and food on gastrointestinal transit of 111in-labeled hydrogel matrix extended-release tablets and 99mTc-labeled pellets in humans. J. Pharm. Sci., 2020, 109(2), 1020-1025.
[http://dx.doi.org/10.1016/j.xphs.2019.09.025] [PMID: 31600549]
[92]
Arora, S.; Ali, J.; Ahuja, A.; Khar, R.K.; Baboota, S. Floating drug delivery systems: A review. AAPS PharmSciTech, 2005, 6(3), E372-E390.
[http://dx.doi.org/10.1208/pt060347] [PMID: 16353995]
[93]
Omidian, H.; Rocca, J.G.; Park, K. Advances in superporous hydrogels. J. Control. Release, 2005, 102(1), 3-12.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.028] [PMID: 15653129]
[94]
Chavda, H.V.; Patel, R.D.; Modhia, I.P.; Patel, C.N. Preparation and characterization of superporous hydrogel based on different polymers. Int. J. Pharm. Investig., 2012, 2(3), 134-139.
[http://dx.doi.org/10.4103/2230-973X.104396] [PMID: 23373004]
[95]
Chen, J.; Blevins, W.E.; Park, H.; Park, K. Gastric retention properties of superporous hydrogel composites. J. Control. Release, 2000, 64(1-3), 39-51.
[http://dx.doi.org/10.1016/S0168-3659(99)00139-X] [PMID: 10640644]
[96]
Omidian, H.; Rocca, J.G.; Park, K. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate. Macromol. Biosci., 2006, 6(9), 703-710.
[http://dx.doi.org/10.1002/mabi.200600062] [PMID: 16967483]
[97]
Murphy, C.S.; Pillay, V.; Choonara, Y.E.; du Toit, L.C. Gastroretentive drug delivery systems: Current developments in novel system design and evaluation. Curr. Drug Deliv., 2009, 6(5), 451-460.
[http://dx.doi.org/10.2174/156720109789941687] [PMID: 19751198]
[98]
Gröning, R.; Berntgen, M.; Georgarakis, M. Acyclovir serum concentrations following peroral administration of magnetic depot tablets and the influence of extracorporal magnets to control gastrointestinal transit. Eur. J. Pharm. Biopharm., 1998, 46(3), 285-291.
[http://dx.doi.org/10.1016/S0939-6411(98)00052-6] [PMID: 9885300]
[99]
Groning, R.; Berntgen, M. Estimation of the gastric residence time of magnetic dosage forms using the Heidelberg capsule. Pharmazie, 1996, 51(5), 328-331.
[PMID: 8710954]
[100]
Dubernet, C. Systemes aliberation gastrique prolongee. Novelles formes medicamenteuses; Editions Medicales Internationales; Editions TEC and DOC: Cachan, 2004, pp. 119-133.
[101]
Whiteland, L.; Fell, J.T.; Collett, J.H. Development of gastroretentive dosage form. Eur. J. Pharm. Sci., 1996, 4, 182.
[http://dx.doi.org/10.1016/S0928-0987(97)86558-X]
[102]
Das, S.; Kaur, S.; Rai, V.K. Gastro-retentive drug delivery systems: A recent update on clinical pertinence and drug delivery. Drug Deliv. Transl. Res., 2021, 11(5), 1849-1877.
[http://dx.doi.org/10.1007/s13346-020-00875-5] [PMID: 33403646]
[103]
Fix, J.A.; Cargill, R.; Engle, K. Controlled gastric emptying. III. Gastric residence time of a nondisintegrating geometric shape in human volunteers. Pharm. Res., 1993, 10(7), 1087-1089.
[http://dx.doi.org/10.1023/A:1018939512213] [PMID: 8378252]
[104]
Kedzierewicz, F.; Thouvenot, P.; Lemut, J.; Etienne, A.; Hoffman, M.; Maincent, P. Evaluation of peroral silicone dosage forms in humans by gamma-scintigraphy. J. Control. Release, 1999, 58(2), 195-205.
[http://dx.doi.org/10.1016/S0168-3659(98)00154-0] [PMID: 10053192]
[105]
Hardikar, S.; Bhosale, A. Formulation and evaluation of gastro retentive tablets of clarithromycin prepared by using novel polymer blend. Bull. Fac. Pharm. Cairo Univ., 2018, 56(2), 147-157.
[http://dx.doi.org/10.1016/j.bfopcu.2018.07.001]
[106]
Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev., 2001, 48(2-3), 139-157.
[http://dx.doi.org/10.1016/S0169-409X(01)00112-0] [PMID: 11369079]
[107]
Laity, P.R.; Cameron, R.E. Synchrotron X-ray microtomographic study of tablet swelling. Eur. J. Pharm. Biopharm., 2010, 75(2), 263-276.
[http://dx.doi.org/10.1016/j.ejpb.2010.02.009] [PMID: 20172028]
[108]
Klausner, E.A.; Eyal, S.; Lavy, E.; Friedman, M.; Hoffman, A. Novel levodopa gastroretentive dosage form: In-vivo evaluation in dogs. J. Control. Release, 2003, 88(1), 117-126.
[http://dx.doi.org/10.1016/S0168-3659(02)00487-X] [PMID: 12586509]
[109]
Porwal, A.; Dwivedi, H.; Pathak, K. Gastroretentive bilayer film for sustained release of atorvastatin calcium and immediate release of amlodipine besylate: Pharmaceutical, pharmacokinetic evaluation, and IVIVC. Pharm. Dev. Technol., 2020, 25(4), 416-431.
[http://dx.doi.org/10.1080/10837450.2019.1705486] [PMID: 31852330]
[110]
Jimenez-Castellanoz, N.R.; Zia, H.; Rhodes, C.T. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm., 1993, 19(1-2), 143-194.
[http://dx.doi.org/10.3109/03639049309038765]
[111]
Thirawong, N.; Nunthanid, J.; Puttipipatkhachorn, S.; Sriamornsak, P. Mucoadhesive properties of various pectins on gastrointestinal mucosa: An in vitro evaluation using texture analyzer. Eur. J. Pharm. Biopharm., 2007, 67(1), 132-140.
[http://dx.doi.org/10.1016/j.ejpb.2007.01.010] [PMID: 17321731]
[112]
Patel, R.S.; Poddar, S.S. Development and characterization of mucoadhesive buccal patches of salbutamol sulphate. Curr. Drug Deliv., 2009, 6(1), 140-144.
[http://dx.doi.org/10.2174/156720109787048177] [PMID: 19418966]
[113]
Harding, S.E.; Davis, S.S.; Deacon, M.P.; Fiebrig, I. Biopolymer mucoadhesives. Biotechnol. Genet. Eng. Rev., 1999, 16(1), 41-86.
[http://dx.doi.org/10.1080/02648725.1999.10647971] [PMID: 10819077]
[114]
He, P.; Davis, S.S.; Illum, L. Chitosan microspheres prepared by spray drying. Int. J. Pharm., 1999, 187(1), 53-65.
[http://dx.doi.org/10.1016/S0378-5173(99)00125-8] [PMID: 10502613]
[115]
Wang, J.; Tauchi, Y.; Deguchi, Y.; Morimoto, K.; Tabata, Y.; Ikada, Y. Positively charged gelatin microspheres as gastric mucoadhesive drug delivery system for eradication of H. pylori. Drug Deliv., 2000, 7(4), 237-243.
[http://dx.doi.org/10.1080/107175400455173] [PMID: 11195431]
[116]
Shtenberg, Y.; Goldfeder, M.; Prinz, H.; Shainsky, J.; Ghantous, Y.; Abu El-Naaj, I.; Schroeder, A.; Bianco-Peled, H. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int. J. Biol. Macromol., 2018, 111, 62-69.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.137] [PMID: 29292143]
[117]
Patil, H.; Tiwari, R.V.; Repka, M.A. Recent advancements in mucoadhesive floating drug delivery systems: A mini‐review. J. Drug Deliv. Sci. Technol., 2016, 31, 65-71.
[http://dx.doi.org/10.1016/j.jddst.2015.12.002]
[118]
Mamdouh, M.; Donia, A.; Essa, E.; Maghraby, G.E. Preparation of liquid oral mucoadhesive gastro-retentive system of nimodipine. Curr. Drug Deliv., 2019, 16(9), 862-871.
[http://dx.doi.org/10.2174/1567201816666191014102531] [PMID: 31633475]
[119]
Tripathi, J.; Thapa, P.; Maharjan, R.; Jeong, S.H. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics, 2019, 11(4), 193.
[http://dx.doi.org/10.3390/pharmaceutics11040193] [PMID: 31010054]
[120]
Andrews, G.P.; Laverty, T.P.; Jones, D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm., 2009, 71(3), 505-518.
[http://dx.doi.org/10.1016/j.ejpb.2008.09.028] [PMID: 18984051]
[121]
Martins, I.C.F.; Raposo, N.R.B.; Mockdeci, H.R.; Polonini, H.C.; de Oliveira Ferreira, A.; Fabri, G.M.C. das Gracas Afonso Miranda Chaves, M. Delivering resveratrol on the buccal mucosa using mucoadhesive tablets: A potential treatment strategy for inflammatory oral lesions. Curr. Drug Deliv., 2018, 15(2), 254-259.
[http://dx.doi.org/10.2174/1567201814666170726102558] [PMID: 28745229]
[122]
Abouelatta, S.M.; Aboelwafa, A.A.; El-Gazayerly, O.N. Gastroretentive raft liquid delivery system as a new approach to release extension for carrier-mediated drug. Drug Deliv., 2018, 25(1), 1161-1174.
[http://dx.doi.org/10.1080/10717544.2018.1474969] [PMID: 29792353]
[123]
Panda, S.; Madhusrota, P.; Sethi, G. Raft forming system-a novel approach for improving gastric retention. J. Pharm. Sci. Res., 2019, 11(12), 3761-3772.
[124]
Shah, S.; Patel, J.; Patel, N. Stomach specific floating drug delivery system: A Review. Int. J. Pharm. Tech. Res., 2009, 1(3), 623-633.
[125]
Pawar, A.Y.; Jadhav, K.R.; Nikam, M.N. A raft forming System: An novel approach for Gastroretention. Int. J. Pure App. Biosci., 2015, 4, 179-180.
[126]
Hampson, F.C.; Jolliffe, I.G.; Bakhtyari, A.; Taylor, G.; Sykes, J.; Johnstone, L.M.; Dettmar, P.W. Alginate-antacid combinations: Raft formation and gastric retention studies. Drug Dev. Ind. Pharm., 2010, 36(5), 614-623.
[http://dx.doi.org/10.3109/03639040903388290] [PMID: 19925256]
[127]
Kerdsakundee, N.; Mahattanadul, S.; Wiwattanapatapee, R. Development and evaluation of gastroretentive raft forming systems incorporating curcumin-Eudragit® EPO solid dispersions for gastric ulcer treatment. Eur. J. Pharm. Biopharm., 2015, 94, 513-520.
[http://dx.doi.org/10.1016/j.ejpb.2015.06.024] [PMID: 26143367]
[128]
Sharma, A.R.; Khan, A. Gastroretentive drug delivery system: An approach to enhance gastric retention for prolonged drug release. Int. J. Pharm. Sci. Res., 2014, 5(4), 1095.
[129]
Ayre, A.; Dand, N.; Lalitha, K.G. Gastro-retentive floating and mucoadhesive drug delivery systems-insights and current applications. IOSR J. Pharm. Biol. Sci., 2016, 11(3), 89-96.
[130]
Kubo, W.; Konno, Y.; Miyazaki, S.; Attwood, D. In situ gelling pectin formulations for oral sustained delivery of paracetamol. Drug Dev. Ind. Pharm., 2004, 30(6), 593-599.
[http://dx.doi.org/10.1081/DDC-120037490] [PMID: 15285332]
[131]
Fatema, K.; Shahi, S.; Shaikh, T.; Zaheer, Z. Gastroretentive drug delivery system: An overview. Asian Pacific J. Health Sci., 2016, 3(4), 131-144.
[http://dx.doi.org/10.21276/apjhs.2016.3.4.22]
[132]
Miyazaki, Y.; Yakou, S.; Takayama, K. Comparison of gastroretentive microspheres and sustained-release preparations using theophylline pharmacokinetics. J. Pharm. Pharmacol., 2008, 60(6), 693-698.
[http://dx.doi.org/10.1211/jpp.60.6.0003] [PMID: 18498704]
[133]
Kumar, S.A.; Aeila, A.S.S.; Sai, T.M. Gastro retentive drug delivery systems: An overview. Pharminfonet. 2008, 6(1)
[134]
Umamaheshwari, R.B.; Jain, S.; Bhadra, D.; Jain, N.K. Floating microspheres bearing acetohydroxamic acid for the treatment of Helicobacter pylori. J. Pharm. Pharmacol., 2003, 55(12), 1607-1613.
[http://dx.doi.org/10.1211/0022357022223] [PMID: 14738585]
[135]
Kohri, N.; Naasani, I.; Iseki, K.; Miyazaki, K. Improving the oral bioavailability of sulpiride by a gastric-retained form in rabbits. J. Pharm. Pharmacol., 1996, 48(4), 371-374.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb05935.x] [PMID: 8794985]
[136]
Boddupalli, B.M.; Mohammed, Z.N.K.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(4), 381-387.
[http://dx.doi.org/10.4103/0110-5558.76436] [PMID: 22247877]
[137]
Akiyama, Y.; Nagahara, N.; Nara, E.; Kitano, M.; Iwasa, S.; Yamamoto, I.; Azuma, J.; Ogawa, Y. Evaluation of oral mucoadhesive microspheres in man on the basis of the pharmacokinetics of furosemide and riboflavin, compounds with limited gastrointestinal absorption sites. J. Pharm. Pharmacol., 1998, 50(2), 159-166.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06171.x] [PMID: 9530983]
[138]
Ahuja, A.; Khar, R.K.; Ali, J. Mucoadhesive drug delivery systems. Drug Dev. Ind. Pharm., 1997, 23(5), 489-515.
[http://dx.doi.org/10.3109/03639049709148498]
[139]
Singh, B.; Garg, B.; Chaturvedi, S.C.; Arora, S.; Mandsaurwale, R.; Kapil, R.; Singh, B. Formulation development of gastroretentive tablets of lamivudine using the floating-bioadhesive potential of optimized polymer blends. J. Pharm. Pharmacol., 2012, 64(5), 654-669.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01442.x] [PMID: 22471361]
[140]
Park, K.; Robinson, J.R. Bioadhesive polymers as platforms for oralcontrolled drug delivery: Method to study bioadhesion. Int. J. Pharm., 1984, 19(2), 107-127.
[http://dx.doi.org/10.1016/0378-5173(84)90154-6]
[141]
Zhu, X.; Qi, X.; Wu, Z.; Zhang, Z.; Xing, J.; Li, X. Preparation of multiple-unit floating-bioadhesive cooperative minitablets for improving the oral bioavailability of famotidine in rats. Drug Deliv., 2014, 21(6), 459-466.
[http://dx.doi.org/10.3109/10717544.2013.879626] [PMID: 24456044]
[142]
Adebisi, A.O.; Laity, P.R.; Conway, B.R. Formulation and evaluation of floating mucoadhesive alginate beads for targeting Helicobacter pylori. J. Pharm. Pharmacol., 2015, 67(4), 511-524.
[http://dx.doi.org/10.1111/jphp.12345] [PMID: 25496042]
[143]
Sankar, R.; Jain, S.K. Development and characterization of gastroretentive sustained-release formulation by combination of swelling and mucoadhesive approach: A mechanistic study. Drug Des. Devel. Ther., 2013, 7, 1455-1469.
[PMID: 24348022]
[144]
Sharma, O.P.; Shah, M.V.; Parikh, D.C.; Mehta, T.A. Formulation optimization of gastroretentive drug delivery system for allopurinol using experimental design. Expert Opin. Drug Deliv., 2015, 12(4), 513-524.
[http://dx.doi.org/10.1517/17425247.2014.944861] [PMID: 25428196]
[145]
Xu, H.; Ji, H.; Li, Z.; Qiao, W.; Wang, C.; Tang, J. In vivo Pharmacokinetics and in vitro Release of Imatinib Mesylate-Loaded Liposomes for Pulmonary Delivery. Int. J. Nanomedicine, 2021, 16, 1221-1229.
[http://dx.doi.org/10.2147/IJN.S294626] [PMID: 33628019]
[146]
Chen, R.N.; Ho, H.O.; Yu, C.Y.; Sheu, M.T. Development of swelling/floating gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with CYP2C9 polymorphism. Eur. J. Pharm. Sci., 2010, 39(1-3), 82-89.
[http://dx.doi.org/10.1016/j.ejps.2009.10.015] [PMID: 19903527]
[147]
Bomma, R.; Veerabrahma, K. Development of gastroretentive drug delivery system for cefuroxime axetil: In vitro and in vivo evaluation in human volunteers. Pharm. Dev. Technol., 2013, 18(5), 1230-1237.
[http://dx.doi.org/10.3109/10837450.2012.660698] [PMID: 22348334]
[148]
Meijerink, C.H.J.; Changoer, L.; Blom, W. Gastro-retentive drug delivery system. WO2014014348A1, 2014.
[149]
Ranade, A.N.; Ranpise, N.S.; Ramesh, C. Exploring the potential of gastro retentive dosage form in delivery of ellagic acid and aloe vera gel powder for treatment of gastric ulcers. Curr. Drug Deliv., 2014, 11(2), 287-297.
[http://dx.doi.org/10.2174/1567201810666131122153041] [PMID: 24261674]
[150]
Abouelatta, S.M.; Aboelwafa, A.A.; Khalil, R.M.; El-Gazayerly, O.N. Utilization of ionotropic gelation technique for bioavailability enhancement of cinnarizine: In-vitro optimization and in-vivo performance in human. Drug Deliv., 2015, 7544, 1-11.
[PMID: 26165421]
[151]
Lin, H.L.; Chen, L.C.; Cheng, W.T.; Cheng, W.J.; Ho, H.O.; Sheu, M.T. Preparation and characterization of a novel swellable and floating gastroretentive drug delivery system (sfGRDDS) for enhanced oral bioavailability of nilotinib. Pharmaceutics, 2020, 12(2), 137.
[http://dx.doi.org/10.3390/pharmaceutics12020137] [PMID: 32041184]
[152]
El-Zahaby, S.A.; Kassem, A.A.; El-Kamel, A.H. Design and evaluation of gastroretentive levofloxacin floating mini-tablets-in-capsule system for eradication of Helicobacter pylori. Saudi Pharm. J., 2014, 22(6), 570-579.
[http://dx.doi.org/10.1016/j.jsps.2014.02.009] [PMID: 25561871]
[153]
Cvijic, S.; Ibric, S.; Parojcic, J.; Djuris, J. An in vitro—In silico approach for the formulation and characterization of ranitidine gastroretentive delivery systems. J. Drug Deliv. Sci. Technol., 2018, 45, 1-10.
[http://dx.doi.org/10.1016/j.jddst.2018.02.013]
[154]
Diós, P.; Nagy, S.; Pál, S.; Pernecker, T.; Kocsis, B.; Budán, F.; Horváth, I.; Szigeti, K.; Bölcskei, K.; Máthé, D.; Dévay, A. Preformulation studies and optimization of sodium alginate based floating drug delivery system for eradication of Helicobacter pylori. Eur. J. Pharm. Biopharm., 2015, 96, 196-206.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.020] [PMID: 26247118]
[155]
Hooda, A.; Nanda, A.; Jain, M.; Kumar, V.; Rathee, P. Optimization and evaluation of gastroretentive ranitidine HCl microspheres by using design expert software. Int. J. Biol. Macromol., 2012, 51(5), 691-700.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.07.030] [PMID: 22903013]
[156]
Odeku, O.; Aderogba, A.; Ajala, T. Akin-Anjani, O.; Okunlola, A. Formulation of floating metronidazole microspheres using cassava starch (Manihot esculenta) as polymer. J. Pharm. Investig., 2017, 47(5), 445-451.
[http://dx.doi.org/10.1007/s40005-017-0319-7]
[157]
Jain, S.K.; Jangdey, M.S. Lectin conjugated gastroretentive multiparticulate delivery system of clarithromycin for the effective treatment of Helicobacter pylori. Mol. Pharm., 2008, 6, 295-304.
[158]
Mostafavi, A.; Emami, J.; Varshosaz, J.; Davies, N.M.; Rezazadeh, M. Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers. Int. J. Pharm., 2011, 409(1-2), 128-136.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.035] [PMID: 21371548]
[159]
Sethi, S.; Mangla, B.; Kamboj, S.; Rana, V. A QbD approach for the fabrication of immediate and prolong buoyant cinnarizine tablet using polyacrylamide-g-corn fibre gum. Int. J. Biol. Macromol., 2018, 117, 350-361.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.178] [PMID: 29807074]
[160]
Chavanpatil, M.D.; Jain, P.; Chaudhari, S.; Shear, R.; Vavia, P.R. Novel sustained release, swellable and bioadhesive gastroretentive drug delivery system for ofloxacin. Int. J. Pharm., 2006, 316(1-2), 86-92.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.038] [PMID: 16567072]
[161]
Fu, J.; Yin, H.; Yu, X.; Xie, C.; Jiang, H.; Jin, Y.; Sheng, F. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int. J. Pharm., 2018, 549(1-2), 370-379.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.011] [PMID: 30107218]
[162]
Aiassa, V.; Garnero, C.; Longhi, M.R.; Zoppi, A. Cyclodextrin multicomponent complexes: Pharmaceutical applications. Pharmaceutics, 2021, 13(7), 1099.
[http://dx.doi.org/10.3390/pharmaceutics13071099] [PMID: 34371790]
[163]
Lamichhane, S.; Park, J.B.; Sohn, D.H.; Lee, S. Customized novel design of 3D printed pregabalin tablets for intra-gastric floating and controlled release using fused deposition modeling. Pharmaceutics, 2019, 11(11), 564.
[http://dx.doi.org/10.3390/pharmaceutics11110564] [PMID: 31671686]
[164]
Hwang, K.M.; Cho, C.H.; Tung, N.T.; Kim, J.Y.; Rhee, Y.S.; Park, E.S. Release kinetics of highly porous floating tablets containing cilostazol. Eur. J. Pharm. Biopharm., 2017, 115, 39-51.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.027] [PMID: 28219750]
[165]
Ngwuluka, N.C.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. An optimized gastroretentive nanosystem for the delivery of levodopa. Int. J. Pharm., 2015, 494(1), 49-65.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.014]
[166]
He, W.; Li, Y.; Zhang, R.; Wu, Z.; Yin, L. Gastro-floating bilayer tablets for the sustained release of metformin and immediate release of pioglitazone: Preparation and in vitro/in vivo evaluation. Int. J. Pharm., 2014, 476(1-2), 223-231.
[http://dx.doi.org/10.1016/j.ijpharm.2014.09.056] [PMID: 25283698]
[167]
Sarkar, D.; Nandi, G.; Changder, A.; Hudati, P.; Sarkar, S.; Ghosh, L.K. Sustained release gastroretentive tablet of metformin hydrochloride based on poly (acrylic acid)-grafted-gellan. Int. J. Biol. Macromol., 2017, 96, 137-148.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.022] [PMID: 27956100]
[168]
Patil, S.; Talele, G.S. Gastroretentive mucoadhesive tablet of lafutidine for controlled release and enhanced bioavailability. Drug Deliv., 2015, 22(3), 312-319.
[http://dx.doi.org/10.3109/10717544.2013.877099] [PMID: 24471787]
[169]
Qin, C.; Wu, M.; Xu, S.; Wang, X.; Shi, W.; Dong, Y.; Yang, L.; He, W.; Han, X.; Yin, L. Design and optimization of gastro-floating sustained-release tablet of pregabalin: In vitro and in vivo evaluation. Int. J. Pharm., 2018, 545(1-2), 37-44.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.011] [PMID: 29649518]
[170]
Eisenächer, F.; Garbacz, G.; Mäder, K. Physiological relevant in vitro evaluation of polymer coats for gastroretentive floating tablets. Eur. J. Pharm. Biopharm., 2014, 88(3), 778-786.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.009] [PMID: 25086221]
[171]
Strübing, S.; Abboud, T.; Contri, R.V.; Metz, H.; Mäder, K. New insights on poly(vinyl acetate)-based coated floating tablets: Characterisation of hydration and CO2 generation by benchtop MRI and its relation to drug release and floating strength. Eur. J. Pharm. Biopharm., 2008, 69(2), 708-717.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.009] [PMID: 18249530]
[172]
Cassano, R.; Curcio, F.; Mandracchia, D.; Trapani, A.; Trombino, S. Gelatin and glycerine-based bioadhesive vaginal hydrogel. Curr. Drug Deliv., 2020, 17(4), 303-311.
[http://dx.doi.org/10.2174/1567201817666200129130031] [PMID: 31995006]
[173]
Chen, Y.C.; Ho, H.O.; Lee, T.Y.; Sheu, M.T. Physical characterizations and sustained release profiling of gastroretentive drug delivery systems with improved floating and swelling capabilities. Int. J. Pharm., 2013, 441(1-2), 162-169.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.002] [PMID: 23237874]
[174]
Verma, S.; Nagpal, K.; Singh, S.K.; Mishra, D.N. Unfolding type gastroretentive film of Cinnarizine based on ethyl cellulose and hydroxypropylmethyl cellulose. Int. J. Biol. Macromol., 2014, 64, 347-352.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.12.030] [PMID: 24370473]
[175]
Mandal, U.K.; Chatterjee, B.; Senjoti, F.G. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J. Pharm. Sci., 2016, 11(5), 575-584.
[http://dx.doi.org/10.1016/j.ajps.2016.04.007]
[176]
Pawar, V.K.; Kansal, S.; Garg, G.; Awasthi, R.; Singodia, D.; Kulkarni, G.T. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems. Drug Deliv., 2011, 18(2), 97-110.
[http://dx.doi.org/10.3109/10717544.2010.520354] [PMID: 20958237]
[177]
Kumar, M.; Kaushik, D. An overview on various approaches and recent patents on gastroretentive drug delivery systems. Recent Pat. Drug Deliv. Formul., 2018, 12(2), 84-92.
[http://dx.doi.org/10.2174/1872211312666180308150218] [PMID: 29521255]
[178]
Sathish, D.; Himabindu, S.; Kumar, Y.S.; Shayeda, R.Y.M.; Rao, Y.M. Floating drug delivery systems for prolonging gastric residence time: A review. Curr. Drug Deliv., 2011, 8(5), 494-510.
[http://dx.doi.org/10.2174/156720111796642273] [PMID: 21696354]
[179]
Yadav, M.; Sharma, P.; Chaudhary, V.; Srivastava, B. Gastroretentive drug delivery systems: A promising approach. Am. J. Pharm. Res., 2016, 6(4), 2231-6876.
[180]
Walsh, E.G.; Adamczyk, B.E.; Chalasani, K.B.; Maher, S.; O’Toole, E.B.; Fox, J.S.; Leonard, T.W.; Brayden, D.J. Oral delivery of macromolecules: Rationale underpinning Gastrointestinal Permeation Enhancement Technology (GIPET). Ther. Deliv., 2011, 2(12), 1595-1610.
[http://dx.doi.org/10.4155/tde.11.132] [PMID: 22833984]
[181]
Dhiman, S.; Singh, T.G. Design and optimization of floating matrix tablets of famotidine by central composite design. Asian J. Pharm. Clin. Res., 2012, 5(1), 45-49.
[182]
Rekhi, G.S. Advances in solid dose oral drug delivery. In: Drug Delivery: Oral Drug Delivery and Advanced Excipients; Frederick Furness Publishing: The Candlemakers, UK, , 2010.
[183]
Dhiman, S.; Singh, T.G.; Rehni, A.K.; Sood, S.; Arora, S. Gastroretentive: A controlled release drug delivery system. Asian J. Pharm. Clin. Res., 2011, 4(1), 5-13.
[184]
Pund, A.U.; Shendge, R.S.; Pote, A.K. Current approaches on gastroretentive drug delivery systems. J. Drug Deliv. Ther., 2020, 10(1), 139-146.
[http://dx.doi.org/10.22270/jddt.v10i1.3803]
[185]
Simons, F.J.; Wagner, K.G. Modeling, design and manufacture of innovative floating gastroretentive drug delivery systems based on hot-melt extruded tubes. Eur. J. Pharm. Biopharm., 2019, 137, 196-208.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.022] [PMID: 30826475]
[186]
Camilleri, M.; Iturrino, J.; Bharucha, A.E.; Burton, D.; Shin, A.; Jeong, I.D.; Zinsmeister, A.R. Performance characteristics of scintigraphic measurement of gastric emptying of solids in healthy participants. Neurogastroenterol. Motil., 2012, 24(12), 1076-e562.
[http://dx.doi.org/10.1111/j.1365-2982.2012.01972.x] [PMID: 22747676]
[187]
Avbunudiagba, J.A.; Alalor, C.A.; Okolocha, Q.D. A controlled release theophylline delivery system based on a bilayer floating system. Turk. J. Pharm. Sci., 2020, 17(6), 645-652.
[http://dx.doi.org/10.4274/tjps.galenos.2019.53325] [PMID: 33389965]
[188]
Mudie, D.M.; Amidon, G.L.; Amidon, G.E. Physiological parameters for oral delivery and in vitro testing. Mol. Pharm., 2010, 7(5), 1388-1405.
[http://dx.doi.org/10.1021/mp100149j] [PMID: 20822152]
[189]
Mojaverian, P.; Vlasses, P.H.; Kellner, P.E.; Rocci, M.L., Jr Effects of gender, posture, and age on gastric residence time of an indigestible solid: Pharmaceutical considerations. Pharm. Res., 1988, 5(10), 639-644.
[http://dx.doi.org/10.1023/A:1015922903843] [PMID: 3244616]
[190]
Kong, F.; Singh, R.P. Modes of disintegration of solid foods in simulated gastric environment. Food Biophys., 2009, 4(3), 180-190.
[http://dx.doi.org/10.1007/s11483-009-9116-9] [PMID: 20401314]
[191]
Lalloo, A.K.; McConnell, E.L.; Jin, L.; Elkes, R.; Seiler, C.; Wu, Y. Decoupling the role of image size and calorie intake on gastric retention of swelling-based gastric retentive formulations: Pre-screening in the dog model. Int. J. Pharm., 2012, 431(1-2), 90-100.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.044] [PMID: 22546295]
[192]
Sustained release non-steroidal, Anti-inflammatory and lidocaine PLGA microspheres. United States Patent 6217911,
[193]
Thapa, P.; Jeong, S.H. Effects of formulation and process variables on gastroretentive floating tablets with a high-dose soluble drug and experimental design approach. Pharmaceutics, 2018, 10(3), 161.
[http://dx.doi.org/10.3390/pharmaceutics10030161] [PMID: 30227678]
[194]
Sheikh, F.A.; Hussain, M.A.; Ashraf, M.U.; Haseeb, M.T.; Farid-Ul-Haq, M. Linseed hydrogel based floating drug delivery system for fluoroquinolone antibiotics: Design, in vitro drug release and in vivo real-time floating detection. Saudi Pharm. J., 2020, 28(5), 538-549.
[http://dx.doi.org/10.1016/j.jsps.2020.03.005] [PMID: 32435134]
[195]
Abd El-Aziz, M.F.; Ismail, S.; Tadros, M.I.; Elnabarawi, M.A. Alfuzosin hydrochloride-loaded low-density gastroretentive sponges: Development, in vitro characterization and gastroretentive monitoring in healthy volunteers via MRI. Pharm. Dev. Technol., 2020, 25(5), 566-578.
[http://dx.doi.org/10.1080/10837450.2020.1720235] [PMID: 31967910]
[196]
Singh, M.P.; Kumar, M.; Shankar, R. Development and optimization of methscopolamine bromide gastroretentive floating tablets using 32 factorial design. Drug Res. (Stuttg.), 2020, 70(12), 576-582.
[http://dx.doi.org/10.1055/a-1249-8186] [PMID: 32992345]
[197]
Rahamathulla, M.; Alam, N.; Hani, U.; Ibrahim, Q.; Alhamhoom, Y. Development and in vitro evaluation of effervescent floating matrix tablet of neritinib: An anticancer drug. Pak. J. Pharm. Sci., 2021, 34(4), 1297-1303.
[PMID: 34799301]
[198]
Darandale, S.S.; Vavia, P.R. Design of a gastroretentive mucoadhesive dosage form of furosemide for controlled release. Acta Pharm. Sin. B, 2012, 2(5), 509-517.
[http://dx.doi.org/10.1016/j.apsb.2012.05.004]
[199]
Bunlung, S.; Nualnoi, T.; Issarachot, O.; Wiwattanapatapee, R. Development of raft-forming liquid and chewable tablet formulations incorporating quercetin solid dispersions for treatment of gastric ulcers. Saudi Pharm. J., 2021, 29(10), 1143-1154.
[http://dx.doi.org/10.1016/j.jsps.2021.08.005] [PMID: 34703368]