An Update On Proficiency of Voltage-gated Ion Channel Blockers in the Treatment of Inflammation-associated Diseases

Page: [1290 - 1303] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Inflammation is the body’s mechanism to trigger the immune system, thereby preventing bacteria and viruses from manifesting their toxic effect. Inflammation plays a vital role in regulating inflammatory mediator levels to initiate the wound healing process depending on the nature of the stimuli. This process occurs due to chemical release from white blood cells by elevating blood flow to the site of action, leading to redness and increased body temperature. Currently, there are numerous Non-steroidal anti-inflammatory drugs (NSAIDs) available, but these drugs are reported with adverse effects such as gastric bleeding, progressive kidney damage, and increased risk of heart attacks when prolonged use. For such instances, alternative options need to be adopted. The introduction of voltage-gated ion channel blockers can be a substantial alternative to mask the side effects of these currently available drugs. Chronic inflammatory disorders such as rheumatoid and osteoarthritis, cancer and migraine, etc., can cause dreadful pain, which is often debilitating for the patient. The underlying mechanism for both acute and chronic inflammation involves various complex receptors, different types of cells, receptors, and proteins. The working of voltage-gated sodium and calcium channels is closely linked to both inflammatory and neuropathic pain. Certain drugs such as carbamazepine and gabapentin, which are ion channel blockers, have greater pharmacotherapeutic activity for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states. This review intends to provide brief information on the mechanism of action, latest clinical trials, and applications of these blockers in treating inflammatory conditions.

Keywords: Voltage-gated ion channel blockers, inflammation, inflammatory conditions, sodium channel blockers, potassium channel blockers, calcium channel blockers.

Graphical Abstract

[1]
Soli R, Kaabi B, Barhoumi M, El-Ayeb M, Srairi-Abid N. Bioinformatic characterizations and prediction of K+ and Na+ ion channels effector toxins. BMC Pharmacol 2009; 9: 4.
[http://dx.doi.org/10.1186/1471-2210-9-4] [PMID: 19284552]
[2]
Alexander SPH, Mathie A, Peters JA. Ion channels. Br J Pharmacol 2011; 164 (Suppl. s1): S137-74.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01649_5.x] [PMID: 21585344]
[3]
Wang L, Wang K. Highlights for the 6th International Ion Channel Conference: Ion channel structure, function, disease and therapeutics. Acta Pharm Sin B 2017; 7(6): 665-9.
[http://dx.doi.org/10.1016/j.apsb.2017.09.007] [PMID: 29159026]
[4]
Efimova E. Cardiac conduction system. Sex Cardiac Electrophysiol 2020; 49-60.
[http://dx.doi.org/10.1016/B978-0-12-817728-0.00005-X]
[5]
Madden JA, Rusch NJ. Electrophysiology of vascular smooth muscle. Heart Physiol Pathophysiol 2001; 213-27.
[6]
Ion channel | biology Britannica Available from: https://www. britannica.com/science/ion-channel [Accessed on: 2022 Feb, 15].
[7]
Ananthanaryan PJC. Ananthanarayan and paniker’s textbook of microbiology PDF download. In: Medicos times Orient Longman Private Limited. 2005; pp. 71-80. Available from: https://medicostimes.com/ananthanarayan-and-panikers-microbiology-pdf/ [Accessed on: 2022 May, 23].
[8]
Bezanilla F. Voltage-gated ion channels. Biol Memb Ion Chann 2007; 81-118.
[http://dx.doi.org/10.1007/0-387-68919-2_3]
[9]
Zhang XC, Yang H, Liu Z, Sun F. Thermodynamics of voltage-gated ion channels. Biophysics Reports 2018; 4(6): 300-19.
[http://dx.doi.org/10.1007/s41048-018-0074-y]
[10]
Chew LA, Khanna R. CRMP2 and voltage-gated ion channels: Potential roles in neuropathic pain. Neuronal Signal 2018; 2(1): NS20170220.
[http://dx.doi.org/10.1042/NS20170220] [PMID: 30364788]
[11]
Huang H, Pugsley MK, Fermini B, et al. Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative. J Pharmacol Toxicol Methods 2017; 87: 11-23.
[http://dx.doi.org/10.1016/j.vascn.2017.04.002] [PMID: 28408211]
[12]
Collingridge GL, Olsen RW, Peters J, Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology 2009; 56(1): 2-5.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.063 ] [PMID: 18655795]
[13]
Absalom NL, Liao VW, Chebib M. Ligand-gated ion channels in genetic disorders and the question of efficacy. Int J Biochem Cell Biol 2020; 126: 105806.
[http://dx.doi.org/10.1016/j.biocel.2020.105806] [PMID: 32679079]
[14]
Gielen M, Corringer PJ, Gielen M, Corringer PJ. The dual-gate model for pentameric ligand-gated ion channels activation and desensitization. J Physiol 2018; 596(10): 1873-902.
[http://dx.doi.org/10.1113/JP275100] [PMID: 29484660]
[15]
Alexander SPH, Peters JA, Kelly E, et al. The concise guide to pharmacology 2017/18: Ligand-gated ion channels. Br J Pharmacol 2017; 174 (Suppl. 1): S130-59.
[http://dx.doi.org/10.1111/bph.13879] [PMID: 29055038]
[16]
Eisenhut M, Wallace H. Ion channels in inflammation. Pflug Arch 2011; 461(4): 401-21.
[http://dx.doi.org/10.1007/s00424-010-0917-y]
[17]
Hatta S, Sakamoto J, Horio Y. Ion channels and diseases. Med Electron Microsc 2002; 35(3): 117-26.
[http://dx.doi.org/10.1007/s007950200015]
[18]
Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol 2017; 313(5): L859-72.
[http://dx.doi.org/10.1152/ajplung.00285.2017] [PMID: 29025712]
[19]
Yu FH, Catterall WA. Overview of the voltage-gated sodium channel family. Genome Biol 2003; 4(3): 207.
[http://dx.doi.org/10.1186/gb-2003-4-3-207] [PMID: 12620097]
[20]
Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE. A prokaryotic voltage-gated sodium channel. Science (1979) 2001; 294(5550): 2372-5.
[21]
De Lera RM, Kraus RL. Voltage-gated sodium channels: Structure, function, pharmacology, and clinical indications. J Med Chem 2015; 58(18): 7093-118.
[http://dx.doi.org/10.1021/jm501981g] [PMID: 25927480]
[22]
Catterall WA, Zheng N. Deciphering voltage-gated Na+ and Ca+2 channels by studying prokaryotic ancestors. Trends Biochem Sci 2015; 40(9): 526-34.
[http://dx.doi.org/10.1016/j.tibs.2015.07.002] [PMID: 26254514]
[23]
De Caen PG, Yarov YV, Scheuer T, Catterall WA. Gating charge interactions with the S1 segment during activation of a Na + channel voltage sensor. Proc Natl Acad Sci USA 2011; 108(46): 18825-30.
[http://dx.doi.org/10.1073/pnas.1116449108] [PMID: 22042870]
[24]
DeCaen PG, Yarov-Yarovoy V, Zhao Y, Scheuer T, Catterall WA. Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proc Natl Acad Sci USA 2008; 105(39): 15142-7.
[http://dx.doi.org/10.1073/pnas.0806486105] [PMID: 18809926]
[25]
Nishino A, Okamura Y. Evolutionary history of voltage-gated sodium channels. Handb Exp Pharmacol 2017; 246: 3-32.
[http://dx.doi.org/10.1007/164_2017_70] [PMID: 29094210]
[26]
Zakon HH. Adaptive evolution of voltage-gated sodium channels: The first 800 million years. Proc Natl Acad Sci USA 2012; 109 (Suppl. 1): 10619-25.
[http://dx.doi.org/10.1073/pnas.1201884109] [PMID: 22723361]
[27]
Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature 2011; 475(7356): 353-8.
[http://dx.doi.org/10.1038/nature10238]
[28]
Zhang X, Ren W, Decaen P, et al. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 2012; 486(7401): 130-4.
[http://dx.doi.org/10.1038/nature11054]
[29]
Savio GE, Gollob MH, Darbar D. Voltage-gated sodium channels: Biophysics, pharmacology, and related channelopathies. Front Pharmacol 2012; 3: 124.
[http://dx.doi.org/10.3389/fphar.2012.00124] [PMID: 22798951]
[30]
Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006; 9(9): 1142-9.
[http://dx.doi.org/10.1038/nn1754]
[31]
Sokolov S, Scheuer T, Catterall WA. Gating pore current in an inherited ion channelopathy. Nature 2007; 446(7131): 76-8.
[http://dx.doi.org/10.1038/nature05598] [PMID: 17330043]
[32]
Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 2010; 7(1): 33-46.
[http://dx.doi.org/10.1016/j.hrthm.2009.09.069] [PMID: 20129283]
[33]
Dib HSD, Black JA, Waxman SG. Voltage-gated sodium channels: Therapeutic targets for pain. Pain Med 2009; 10(7): 1260-9.
[http://dx.doi.org/10.1111/j.1526-4637.2009.00719.x ] [PMID: 19818036]
[34]
Amaya F, Wang H, Costigan M, et al. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 2006; 26(50): 12852-60.
[http://dx.doi.org/10.1523/JNEUROSCI.4015-06.2006 ] [PMID: 17167076]
[35]
Ekberg J, Adams DJ. Neuronal voltage-gated sodium channel subtypes: Key roles in inflammatory and neuropathic pain. Int J Biochem Cell Biol 2006; 38(12): 2005-10.
[http://dx.doi.org/10.1016/j.biocel.2006.06.008] [PMID: 16919992]
[36]
Ritter AM, Martin WJ, Thorneloe KS. The voltage-gated sodium channel Nav1.9 is required for inflammation-based urinary bladder dysfunction. Neurosci Lett 2009; 452(1): 28-32.
[http://dx.doi.org/10.1016/j.neulet.2008.12.051] [PMID: 19146922]
[37]
Momin A, Wood JN. Sensory neuron voltage-gated sodium channels as analgesic drug targets. Curr Opin Neurobiol 2008; 18(4): 383-8.
[http://dx.doi.org/10.1016/j.conb.2008.08.017] [PMID: 18824099]
[38]
Priest BT. Future potential and status of selective sodium channel blockers for the treatment of pain. Curr Opin Drug Discov Devel 2009; 12(5): 682-92.
[PMID: 19736626]
[39]
Theile JW, Cummins TR. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol 2011; 2: 54.
[http://dx.doi.org/10.3389/fphar.2011.00054] [PMID: 22007172]
[40]
Bhattacharya A, Wickenden AD, Chaplan SR. Sodium channel blockers for the treatment of neuropathic pain. Neurotherapeutics 2009; 6(4): 663-78.
[http://dx.doi.org/10.1016/j.nurt.2009.08.001]
[41]
Matulenko M, Scanio M, Kort M. Voltage-gated sodium channel blockers for the treatment of chronic pain. Curr Top Med Chem 2009; 9(4): 362-76.
[http://dx.doi.org/10.2174/156802609788317883] [PMID: 19442207]
[42]
Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 2011; 3(8): a003947.
[http://dx.doi.org/10.1101/cshperspect.a003947] [PMID: 21746798]
[43]
Shilpi JA, Uddin SJ. Analgesic and antipyretic natural products. Annu Rep Med Chem 2020; 55: 435-58.
[http://dx.doi.org/10.1016/bs.armc.2020.03.003]
[44]
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: Structure, function, and dysfunction. Neuron 2014; 82(1): 24-45.
[http://dx.doi.org/10.1016/j.neuron.2014.03.016] [PMID: 24698266]
[45]
Hogan PG, Rao A. Store-operated calcium entry: Mechanisms and modulation. Biochem Biophys Res Commun 2015; 460(1): 40-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.110] [PMID: 25998732]
[46]
Ben JM, Yue DT. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J Gen Physiol 2014; 143(6): 679-92.
[http://dx.doi.org/10.1085/jgp.201311153] [PMID: 24863929]
[47]
Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C. Calcium channels in photosynthetic eukaryotes: Implications for evolution of calcium‐based signalling. New Phytol 2010; 187(1): 23-43.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03271.x ] [PMID: 20456068]
[48]
Senatore A, Raiss H, Le P. Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, placozoa, porifera and ctenophora. Front Physiol 2016; 7: 481.
[http://dx.doi.org/10.3389/fphys.2016.00481] [PMID: 27867359]
[49]
Dolphin AC. A short history of voltage-gated calcium channels. Br J Pharmacol 2006; 147(S1): S56-62.
[http://dx.doi.org/10.1038/sj.bjp.0706442] [PMID: 16402121]
[50]
Catterall WA, Perez RE, Snutch TP, Striessnig J. International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 2005; 57(4): 411-25.
[http://dx.doi.org/10.1124/pr.57.4.5] [PMID: 16382099]
[51]
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: Physiology and pathophysiology and pharmacology. J Physiol 2016; 594(19): 5369-90.
[http://dx.doi.org/10.1113/JP272262] [PMID: 27273705]
[52]
Davies A, Kadurin I, Alvarez-Laviada A, et al. The α 2 δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc Natl Acad Sci USA 2010; 107(4): 1654-9.
[http://dx.doi.org/10.1073/pnas.0908735107] [PMID: 20080692]
[53]
Edvardson S, Oz S, Abulhijaa FA, et al. Early infantile epileptic encephalopathy associated with a high voltage gated calcium channelopathy. J Med Genet 2013; 50(2): 118-23.
[http://dx.doi.org/10.1136/jmedgenet-2012-101223 ] [PMID: 23339110]
[54]
Bidaud I, Mezghrani A, Swayne LA, Monteil A, Lory P. Voltage-gated calcium channels in genetic diseases. Biochimica et Biophysica Acta (BBA) -. Mol Cell Res 2006; 1763(11): 1169-74.
[55]
Pietrobon D. Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 2002; 25(1): 31-50.
[http://dx.doi.org/10.1385/MN:25:1:031]
[56]
McGivern JG. Targeting N-type and T-type calcium channels for the treatment of pain. Drug Discov Today 2006; 11(5-6): 245-53.
[http://dx.doi.org/10.1016/S1359-6446(05)03662-7 ] [PMID: 16580601]
[57]
Zamponi GW, Lewis RJ, Todorovic SM, Arneric SP, Snutch TP. Role of voltage-gated calcium channels in ascending pain pathways. Brain Res Brain Res Rev 2009; 60(1): 84-9.
[http://dx.doi.org/10.1016/j.brainresrev.2008.12.021 ] [PMID: 19162069]
[58]
Doan L. Voltage-gated calcium channels and pain. Tech Reg Anesth Pain Manage 2010; 14(2): 42-7.
[http://dx.doi.org/10.1053/j.trap.2010.03.003]
[59]
Vink S, Alewood PF. Targeting voltage-gated calcium channels: Developments in peptide and small-molecule inhibitors for the treatment of neuropathic pain. Br J Pharmacol 2012; 167(5): 970-89.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02082.x ] [PMID: 22725651]
[60]
Eisenberg MJ, Brox A, Bestawros AN. Calcium channel blockers: An update. Am J Med 2004; 116(1): 35-43.
[http://dx.doi.org/10.1016/j.amjmed.2003.08.027] [PMID: 14706664]
[61]
Nimmrich V, Eckert A. Calcium channel blockers and dementia. Br J Pharmacol 2013; 169(6): 1203-10.
[http://dx.doi.org/10.1111/bph.12240] [PMID: 23638877]
[62]
Taddei S, Bruno RM. Calcium channel blockers. Encyclopedia of Endocrine Diseases 2018; 689-95.
[63]
Flenady V, Wojcieszek AM, Papatsonis DNM, et al. Calcium channel blockers for inhibiting preterm labour and birth. Cochrane Database of Syst Rev 2014; 2014(6)
[http://dx.doi.org/10.1002/14651858.CD002255.pub2]
[64]
Aria MM. Bioelectricity and excitable membranes. Electrophysiol Measurements Study Neural Interfaces 2020; 1-23.
[http://dx.doi.org/10.1016/B978-0-12-817070-0.00001-4]
[65]
Yellen G. The voltage-gated potassium channels and their relatives. Nature 2002; 419(6902): 35-42.
[http://dx.doi.org/10.1038/nature00978]
[66]
Voltage-Gated K+ channels. Available from: https://www.ks.uiuc. edu/Research/kvchannel/ [Accessed on: 2022 Feb, 11].
[67]
Morais-Cabral JH, Zhou Y, MacKinnon R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 2001; 414(6859): 37-42.
[68]
Zhou Y, Morais CJH, Kaufman A, Mackinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 2001; 414(6859): 43-8.
[69]
Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH. Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 2015; 218(4): 515-25.
[http://dx.doi.org/10.1242/jeb.110270] [PMID: 25696815]
[70]
Cordero MJF, Jogini V, Lewis A, et al. Molecular driving forces determining potassium channel slow inactivation. Nat Struct Mol Biol 2007; 14(11): 1062-9.
[http://dx.doi.org/10.1038/nsmb1309]
[71]
Bean BP. The action potential in mammalian central neurons. Nature Rev Neurosci 2007; 8(6): 451-65.
[http://dx.doi.org/10.1038/nrn2148]
[72]
Catterall WA. Ion channel protein superfamily. Encycl Biol Chem 2013; 648-52.
[http://dx.doi.org/10.1016/B978-0-12-378630-2.00133-X]
[73]
Herguedas B, Krieger J, Greger IH. Receptor heteromeric assembly-how it works and why it matters: The case of ionotropic glutamate receptors. Prog Mol Biol Transl Sci 2013; 117: 361-86.
[http://dx.doi.org/10.1016/B978-0-12-386931-9.00013-1 ] [PMID: 23663975]
[74]
Smith M. Epilepsy and movement disorders. Mecha Genet Neurodevel Cognitive Disord 2021; 195-224.
[http://dx.doi.org/10.1016/B978-0-12-821913-3.00009-3]
[75]
Maddison P, Mills KR, Newsom DJ. Clinical electrophysiological characterization of the acquired neuromyotonia phenotype of autoimmune peripheral nerve hyperexcitability. Muscle Nerve 2006; 33(6): 801-8.
[http://dx.doi.org/10.1002/mus.20536] [PMID: 16570308]
[76]
Irani SR, Vincent A. Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes. Handb Clin Neurol 2016; 133: 185-97.
[http://dx.doi.org/10.1016/B978-0-444-63432-0.00011-6 ] [PMID: 27112678]
[77]
Olsen ML, Schade S, Lyons SA, Amaral MD, Sontheimer H. Expression of voltage-gated chloride channels in human glioma cells. J Neurosci 2003; 23(13): 5572-82.
[http://dx.doi.org/10.1523/JNEUROSCI.23-13-05572.2003] [PMID: 12843258]
[78]
Wondergem R, Gong W, Monen SH, et al. Blocking swelling‐activated chloride current inhibits mouse liver cell proliferation. J Physiol 2001; 532(3): 661-72.
[http://dx.doi.org/10.1111/j.1469-7793.2001.0661e.x ] [PMID: 11313437]
[79]
Tilly BC, Mancini GMS, Bijman J, et al. Nucleotide-activated chloride channels in lysosomal membranes. Biochem Biophys Res Commun 1992; 187(1): 254-60.
[http://dx.doi.org/10.1016/S0006-291X(05)81485-8 ] [PMID: 1325789]
[80]
Matthews G, Neher E, Penner R, Matthews G, Neher E, Penner R. Second messenger-activated calcium influx in rat peritoneal mast cells. J Physiol 1989; 418(1): 105-30.
[http://dx.doi.org/10.1113/jphysiol.1989.sp017830] [PMID: 2559968]
[81]
Borsani G, Rugarli EI, Taglialatela M, Wong C, Ballabio A. Characterization of a human and murine gene (CLCN3) sharing similarities to voltage-gated chloride channels and to a yeast integral membrane protein. Genomics 1995; 27(1): 131-41.
[http://dx.doi.org/10.1006/geno.1995.1015] [PMID: 7665160]
[82]
Ranganathan R, Lewis JH, MacKinnon R. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron 1996; 16(1): 131-9.
[http://dx.doi.org/10.1016/S0896-6273(00)80030-6 ] [PMID: 8562077]
[83]
Lü Q, Miller C. Silver as a probe of pore-forming residues in a potassium channel. Science 1995; 268(5208): 304-7.
[84]
George AL Jr, Crackower MA, Abdalla JA, Hudson AJ, Ebers GC. Molecular basis of Thomsen’s disease (autosomal dominant myotonia congenita). Nat Genet 1993; 3(4): 305-10.
[http://dx.doi.org/10.1038/ng0493-305] [PMID: 7981750]
[85]
Fahlke C, Beck CL, George AL Jr. A mutation in autosomal dominant myotonia congenita affects pore properties of the muscle chloride channel. Proc Natl Acad Sci USA 1997; 94(6): 2729-34.
[http://dx.doi.org/10.1073/pnas.94.6.2729] [PMID: 9122265]
[86]
Jentsch TJ, Steinmeyer K, Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 1990; 348(6301): 510-4.
[http://dx.doi.org/10.1038/348510a0]
[87]
Gründer S, Thiemann A, Pusch M, Jentsch TJ. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature 1992; 360(6406): 759-62.
[88]
Kieferle S, Fong P, Bens M, Vandewalle A, Jentsch TJ. Two highly homologous members of the ClC chloride channel family in both rat and human kidney. Proc Natl Acad Sci USA 1994; 91(15): 6943-7.
[http://dx.doi.org/10.1073/pnas.91.15.6943] [PMID: 8041726]
[89]
Middleton RE, Pheasant DJ, Miller C. Purification, reconstitution, and subunit composition of a voltage-gated chloride channel from Torpedo electroplax. Biochemistry 1994; 33(45): 13189-98.
[http://dx.doi.org/10.1021/bi00249a005] [PMID: 7947726]
[90]
Jentsch TJ, Günther W, Pusch M, Schwappach B. Properties of voltage-gated chloride channels of the ClC gene family. J Physiol 1995; 482 (Suppl.): 19-25.
[http://dx.doi.org/10.1113/jphysiol.1995.sp020560] [PMID: 7730971]
[91]
Jurenka JS. Jurenka. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern Med Rev 2009; 14(2): 141-53.
[92]
Aggarwal B, Chandra Bharti A. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 2003; 23(1A): 363-98.
[93]
Huang MT, Lysz T, Ferraro T, Abidi TF, Laskin JD, Conney AH. Inhibitory effects of curcumin on in vitro lipoxygenase and cyclooxygenase activities in mouse epidermis. Cancer Res 1991; 51(3): 813-9.
[94]
Cho J-W, Lee K-S, Kim C-W. Curcumin attenuates the expression of IL-1beta, IL-6, and TNF-alpha as well as cyclin E in TNF-alpha-treated HaCaT cells; NF-kappaB and MAPKs as potential upstream targets. Int J Mol Med 2007; 19(3): 469-74.
[95]
Liu JY, Lin SJ, Lin JK. Inhibitory effects of curcumin on protein kinase C activity induced by 12- O -tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 1993; 14(5): 857-61.
[http://dx.doi.org/10.1093/carcin/14.5.857] [PMID: 8504477]
[96]
Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 2011; 25(6): 447-52.
[http://dx.doi.org/10.1111/j.2042-7158.1973.tb09131.x ] [PMID: 4146582]
[97]
Dworkin RH, Turk DC, Peirce-Sandner S, et al. Considerations for improving assay sensitivity in chronic pain clinical trials: IMMPACT recommendations. Pain 2012; 153(6): 1148-58.
[http://dx.doi.org/10.1016/j.pain.2012.03.003] [PMID: 22494920]
[98]
Tuttle AH, Tohyama S, Ramsay T, et al. Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain 2015; 156(12): 2616-26.
[http://dx.doi.org/10.1097/j.pain.0000000000000333 ] [PMID: 26307858]
[99]
Rice ASC, Dworkin RH, McCarthy TD, et al. EMA401, an orally administered highly selective angiotensin II type 2 receptor antagonist, as a novel treatment for postherpetic neuralgia: A randomised, double-blind, placebo-controlled phase 2 clinical trial. Lancet 2014; 383(9929): 1637-47.
[http://dx.doi.org/10.1016/S0140-6736(13)62337-5 ] [PMID: 24507377]
[100]
Dworkin RH, Turk DC, Peirce-Sandner S, et al. Assay sensitivity and study features in neuropathic pain trials: An ACTTION meta-analysis. Neurology 2013; 81(1): 67-75.
[http://dx.doi.org/10.1212/WNL.0b013e318297ee69 ] [PMID: 23700332]
[101]
Truini A, Garcia-Larrea L, Cruccu G. Reappraising neuropathic pain in humans-how symptoms help disclose mechanisms. Nature Reviews Neurology 2013; 9(10): 572-82.
[102]
Demant DT, Lund K, Finnerup NB, et al. Pain relief with lidocaine 5% patch in localized peripheral neuropathic pain in relation to pain phenotype. Pain 2015; 156(11): 2234-44.
[http://dx.doi.org/10.1097/j.pain.0000000000000266 ] [PMID: 26090758]
[103]
Satoskar RR, Shah SJ, Shenoy SG. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol 1986; 24(12): 651-4.
[PMID: 3546166]
[104]
Deodhar SD, Sethi R, Srimal RC. Preliminary study on antirheumatic activity of curcumin (diferu-loyl methane). Indian J Med Res 1980; 1: 632-4. PubMed Available from: https://pubmed.ncbi. nlm.nih.gov/7390600/ [Accessed on: 2022 Feb, 11].
[PMID: 7390600]
[105]
Blockade of vascular potassium channels during human endotoxemia - Full text view. Available from: https://clinicaltrials.gov/ct2/show/study/NCT00185003?term=ion+channels&cond=Inflammation&draw=2&rank=3 [Accessed on: 2022 Feb, 11].
[106]
Colchicine counteracting inflammation in covid-19 pneumonia - tabular view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/record/NCT04322565?term=ion+channels&cond=Inflammation&draw=2&rank=1 [Accessed on: 2022 Feb, 11].
[107]
Amiloride hydrochlorothiazide as treatment of acute inflammation of the optic nerve - full text view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/NCT01879527?term=ion+channels&cond=Inflammation&draw=2&rank=2 [Accessed on: 2022 Feb, 11].
[108]
Impact of lidocaine administration on postoperative complications during lung resection surgery - Full text view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/NCT03905837? term=sodium+channels&cond=Inflammation&draw=2&rank=4 [Accessed on: 2022 Feb, 11].
[109]
Lidocaine-ketamine versus ketamine for induction of anesthesia in septic shock patients-full text view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/NCT03844984?term=sodium+channels&cond=Inflammation&draw=2&rank=10 [Accessed on: 2022 Feb, 11].
[110]
Predictive factors affecting the efficacy of local tetracycline injection for treatment of post-mastectomy seroma. - tabular view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/record/NCT04730674?term=sodium+channels&cond=Inflammation&draw=2&rank=7 [Accessed on: 2022 Feb, 11].
[111]
Comparison of fimasartan versus amlodipine therapy on carotid plaque inflammation - full text view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/NCT02378064?term=calcium+channels&cond=Inflammation&draw=2&rank=1 [Accessed on: 2022 Feb, 11].
[112]
A pilot study of use of calcium channel blocker to decrease inflammation and pain in hereditary pancreatitis - full text view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/NCT00156403?term=calcium+channels&cond=Inflammation&draw=2&rank=2 [Accessed on: 2022 Feb, 11].
[113]
Drug-disease interaction in crohn’s disease - tabular view. ClinicalTrialsgov Available from: https://clinicaltrials.gov/ct2/show/record/NCT01261286?term=calcium+channels&cond=Inflammation&draw=2&rank=4 [Accessed on: 2022 Feb, 11].