Desonide Nanoemulsion Gel for Transdermal Absorption Drug Delivery: Pharmacodynamic and Safety Evaluation

Page: [1525 - 1532] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: When administered transdermally, desonide is ineffective due to its poor solubility. As a new transdermal delivery system, nanoemulsion gel has demonstrated significant advantages for drug delivery over conventional formulations. We have established desonide nanoemulsion gel (DES NE gel) for better transdermal absorption, but its efficacy and safety still need to be evaluated. This study aims to provide additional evidence demonstrating the improved pharmacodynamics and safety of transdermal delivery of Desonide via nanoemulsion gel.

Methods: Pharmacodynamics and safety of Desonide nanoemulsion gel were evaluated using Desonate ® as the reference formulation. To assess the difference in curative effect between DES NE gel and Desonate® and to ensure safety, atopic dermatitis (AD) models in KM mice were developed using 2,4-dinitrofluorobenzene (DNFB). The degree of ear swelling, ear mass difference, thymus, spleen index, and HE conventional pathology of mice were used as pharmacodynamic evaluation indexes, and the irritation was predicted by the New Zealand rabbit epidermal stimulation assay.

Results: Nanoemulsion gels may facilitate transdermal penetration of drugs by influencing the skin condition. Medium and high doses of DES NE gel significantly ameliorated the inflammation and swelling of the ear caused by dermatitis/eczema in mice. In addition, compared with DES gel, skin irritation extent did not increase.

Conclusion: Nanoemulsion gel can be applied to improve the efficacy of drugs with low potency or poor solubility. DES NE gel provides a higher transdermal potential than other delivery systems. In this study, it was found that nanoemulsion gel is a promising percutaneous carrier of DES. DES NE-GEL has a significant curative effect on dermatitis/eczema in a mouse model and is expected to provide a new, efficient, and low toxic preparation for clinical treatment of dermatitis/eczema through the percutaneous system.

Keywords: desonide, nanoemulsion gel, pharmacodynamic research, safety evaluation.

Graphical Abstract

[1]
Bao, L.; Zhang, H.; Chan, L.S. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAK-STAT, 2013, 2(3), e24137.
[http://dx.doi.org/10.4161/jkst.24137] [PMID: 24069552]
[2]
Eichenfield, L.F.; Basu, S.; Calvarese, B.; Trancik, R.J. Effect of desonide hydrogel 0.05% on the hypothalamic-pituitary-adrenal axis in pediatric subjects with moderate to severe atopic dermatitis. Pediatr. Dermatol., 2007, 24(3), 289-295.
[http://dx.doi.org/10.1111/j.1525-1470.2007.00405.x] [PMID: 17542883]
[3]
Mehta, A.; Nadkarni, N.; Patil, S.; Godse, K.; Gautam, M.; Agarwal, S. Topical corticosteroids in dermatology. Indian J. Dermatol. Venereol. Leprol., 2016, 82(4), 371-378.
[http://dx.doi.org/10.4103/0378-6323.178903] [PMID: 27279294]
[4]
Kahanek, N.R.; Gelbard, C.G.; Hebert, A.A. Desonide: A review of formulations, efficacy and safety. Expert Opin. Investig. Drugs, 2008, 17(7), 1097-1104.
[http://dx.doi.org/10.1517/13543784.17.7.1097] [PMID: 18549345]
[5]
Trookman, N.S.; Rizer, R.L. Randomized controlled trial of desonlde hydrogel 0.05% versus desonide ointment 0.05% in the treatment of mild-to-moderate atopic dermatitis. J. Clin. Aesthet. Dermatol., 2011, 4(11), 34-38.
[PMID: 22125657]
[6]
Lucky, A.W.; Grote, G.D.; Williams, J.L.; Tuley, M.R.; Czernielewski, J.M.; Dolak, T.M.; Herndon, J.H.; Baker, M.D. Effect of desonide ointment, 0.05%, on the hypothalamic-pituitary-adrenal axis of children with atopic dermatitis. Cutis, 1997, 59(3), 151-153.
[PMID: 9071556]
[7]
Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[8]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[9]
Cláudia Paiva-Santos, A.; Gama, M.; Peixoto, D.; Sousa-Oliveira, I.; Ferreira-Faria, I.; Zeinali, M.; Abbaspour-Ravasjani, S.; Mascarenhas-Melo, F.; Hamishehkar, H.; Veiga, F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int. J. Pharm., 2022, 618, 121656.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121656] [PMID: 35278601]
[10]
Roy, A.; Nishchaya, K.; Rai, V.K. Nanoemulsion-based dosage forms for the transdermal drug delivery applications: A review of recent advances. Expert Opin. Drug Deliv., 2022, 19(3), 303-319.
[http://dx.doi.org/10.1080/17425247.2022.2045944] [PMID: 35196938]
[11]
Asasutjarit, R.; Sooksai, N.; Fristiohady, A.; Lairungruang, K.; Ng, S.F.; Fuongfuchat, A. Optimization of production parameters for andrographolide-loaded nanoemulsion preparation by microfluidization and evaluations of its bioactivities in skin cancer cells and UVB radiation-exposed skin. Pharmaceutics, 2021, 13(8), 1290.
[http://dx.doi.org/10.3390/pharmaceutics13081290] [PMID: 34452250]
[12]
Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release, 2017, 252, 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[13]
Kim, H.; Kim, J.T.; Barua, S.; Yoo, S.Y.; Hong, S.C.; Lee, K.B.; Lee, J. Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization. Expert Opin. Drug Deliv., 2018, 15(1), 17-31.
[http://dx.doi.org/10.1080/17425247.2017.1306054] [PMID: 28286978]
[14]
Singh, M.; Bharadwaj, S.; Lee, K.E.; Kang, S.G. Therapeutic nanoemulsions in ophthalmic drug administration: Concept in formulations and characterization techniques for ocular drug delivery. J. Control. Release, 2020, 328, 895-916.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.025] [PMID: 33069743]
[15]
Ma, Q.; Zhang, J.; Lu, B.; Lin, H.; Sarkar, R.; Wu, T.; Li, X. Nanoemulgel for improved topical delivery of desonide: Formulation design and characterization. AAPS PharmSciTech, 2021, 22(5), 163.
[http://dx.doi.org/10.1208/s12249-021-02035-5] [PMID: 34031790]
[16]
Yang, M.; Gu, Y.; Yang, D.; Tang, X.; Liu, J. Development of triptolide-nanoemulsion gels for percutaneous administration: Physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J. Nanobiotechnology, 2017, 15(1), 88.
[http://dx.doi.org/10.1186/s12951-017-0323-0] [PMID: 29202753]
[17]
Tayel, S.A.; El-Nabarawi, M.A.; Tadros, M.I.; Abd-Elsalam, W.H. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: Design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. Int. J. Pharm., 2013, 443(1-2), 293-305.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.049] [PMID: 23333217]
[18]
Hussain, A.; Samad, A.; Singh, S.K.; Ahsan, M.N.; Haque, M.W.; Faruk, A.; Ahmed, F.J. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv., 2016, 23(2), 642-657.
[http://dx.doi.org/10.3109/10717544.2014.933284] [PMID: 25013957]
[19]
Khurana, S.; Jain, N.K.; Bedi, P.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci., 2013, 92(6-7), 383-392.
[http://dx.doi.org/10.1016/j.lfs.2013.01.005] [PMID: 23353874]
[20]
Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of cell viability by the lactate dehydrogenase assay. Cold Spring Harb. Protoc., 2018, 2018(6), prot095497.
[http://dx.doi.org/10.1101/pdb.prot095497]
[21]
Chakraborty, T.; Gupta, S.; Nair, A.; Chauhan, S.; Saini, V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J. Drug Deliv. Sci. Technol., 2021, 64, 102601.
[http://dx.doi.org/10.1016/j.jddst.2021.102601]