Prebiotics and Probiotics: Effects on Dyslipidemia and NAFLD/NASH and the Associated Mechanisms of Action

Page: [633 - 646] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is now considered the most common chronic liver disease worldwide. NAFLD is related to changes in lipid metabolism and is characterized by the increase or accumulation of fat in hepatocytes that may progress to nonalcoholic steatohepatitis (NASH), which leads to the appearance of inflammatory processes. Treatment consists of changes in diet, physical activity, and weight control; however, these disorders represent a health problem and require the development of novel alternatives to treatment and prevention. NAFLD/NASH are strongly associated with other disorders, such as metabolic syndrome (MetS); in fact, NAFLD is considered the hepatic manifestation of MetS. These disorders are related to other components of MetS, including dyslipidemia, which is characterized by an imbalance in blood cholesterol and triglyceride levels. Prebiotics and probiotics benefit from treating and preventing several ailments, including liver diseases. Specifically, in dyslipidemia, NAFLD, and NASH, probiotics play a fundamental role in conducting the biotransformation of primary bile acids into secondary bile acids, which generally have important activity as immunomodulators and metabolism regulators. The mechanisms of action of pre and probiotics involve the activity of bile acid receptors, such as FXR and TGR-5, and the events resulting from their activation. Therefore, prebiotics and probiotics may be reasonable options to prevent and treat metabolic- related liver diseases.

Keywords: Probiotics, prebiotics, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), dyslipidemia, FXR, TGR-5, bile acid.

Graphical Abstract

[1]
Bernal, R.R.; Castro, N.G.; Malé, V.R.; Carmona-Sánchez, R.; González, M.S.; García, J.I.; Chávez, T.N.; Aguilar, S.C.; Aiza, H.I.; Ballesteros, M.A.; Bosques, P.F.; Castillo, B.M.; Chávez, J.A.; Cisneros, G.L.; Flores, C.J.; García, C.D.; Gutiérrez, G.Y.; Higuera de la Tijera, M.F.; Kershenobich, S.D.; Ladrón, CL.; Lizardi, C.J.; López, J.A.; Mártínez, VS.; Márquez, G.E.; Méndez, S.N.; Moreno, AR.; Poo, J.L.; Ramos, M.P.; Rodríguez, H.H.; Sánchez, J.F.; Stoopen, R.M.; Torre, D.A.; Torres, V.G.; Trejo, E.R.; Uribe, E.M.; Velarde, J.A. The Mexican consensus on nonalcoholic fatty liver disease. J. Gastroenterol. Mex., 2019, 84(1), 69-99.
[http://dx.doi.org/10.1016/j.rgmx.2018.11.007]
[2]
Kwak, M.S.; Kim, D. Non alcoholic fatty liver disease and lifestyle modifications, focusing on physical activity. Korean J. Intern. Med., 2018, 33(1), 64-74.
[http://dx.doi.org/10.3904/kjim.2017.343] [PMID: 29202557]
[3]
Fraile, J.M.; Palliyil, S.; Barelle, C.; Porter, A.J.; Kovaleva, M. Nonalcoholic steatohepatitis (NASH) - A review of a crowded clinical landscape, driven by a complex disease. Drug Des. Devel. Ther., 2021, 15, 3997-4009.
[http://dx.doi.org/10.2147/DDDT.S315724] [PMID: 34588764]
[4]
Mantovani, A.; Scorletti, E.; Mosca, A.; Alisi, A.; Byrne, C.D.; Targher, G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism, 2020, 111S, 154170.
[http://dx.doi.org/10.1016/j.metabol.2020.154170] [PMID: 32006558]
[5]
Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol., 2015, 62(1), S47-S64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[6]
Aron, W.J.; Warmbrunn, M.V.; Nieuwdorp, M.; Clément, K. Nonalcoholic fatty liver disease: Modulating gut microbiota to improve severity? Gastroenterology, 2020, 158(7), 1881-1898.
[http://dx.doi.org/10.1053/j.gastro.2020.01.049] [PMID: 32044317]
[7]
Hedayatnia, M.; Asadi, Z.; Zare, F.R.; Yaghooti, K.M.; Ghazizadeh, H.; Ghaffarian, Z.R.; Nosrati, T.A.; Mohammadi, B.M.; Rohban, M.; Sadabadi, F.; Rahimi, H.R.; Ghalandari, M.; Ghaffari, M.S.; Yousefi, A.; Pouresmaeili, E.; Besharatlou, M.R.; Moohebati, M.; Ferns, G.A.; Esmaily, H.; Ghayour-Mobarhan, M. Dyslipidemia and cardiovascular disease risk among the MASHAD study population. Lipids Health Dis., 2020, 19(1), 42.
[http://dx.doi.org/10.1186/s12944-020-01204-y] [PMID: 32178672]
[8]
Fernández, M.E.; Lira, I.G.; Cariño, R.; Soria, L.E.; Pérez, E.; Pérez, N. Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J. Food Biochem., 2019, 43(9), e12986.
[http://dx.doi.org/10.1111/jfbc.12986] [PMID: 31489674]
[9]
Ampuero, J.; Sánchez, T.Y.; Aguilera, V.; Bellido, F.; Romero, G.M. New therapeutic perspectives in non-alcoholic steatohepatitis. Gastroenterol. Hepatol., 2018, 41(2), 128-142.
[http://dx.doi.org/10.1016/j.gastrohep.2017.07.006] [PMID: 28874313]
[10]
Quigley, E.M.M. Prebiotics and probiotics in digestive health. Clin. Gastroenterol. Hepatol., 2019, 17(2), 333-344.
[http://dx.doi.org/10.1016/j.cgh.2018.09.028] [PMID: 30267869]
[11]
Sepideh, A.; Karim, P.; Hossein, A.; Leila, R.; Hamdollah, M.; Mohammad E, G.; Mojtaba, S.; Mohammad, S.; Ghader, G.; Seyed Moayed, A. Effects of multistrain probiotic supplementation on glycemic and inflammatory indices in patients with non-alcoholic fatty liver disease: A double-blind randomized clinical trial. J. Am. Coll. Nutr., 2016, 35(6), 500-505.
[http://dx.doi.org/10.1080/07315724.2015.1031355] [PMID: 26430826]
[12]
Cai, T.; Wu, H.; Qin, J.; Qiao, J.; Yang, Y.; Wu, Y.; Qiao, D.; Xu, H.; Cao, Y. In vitro evaluation by PCA and AHP of potential antidiabetic properties of lactic acid bacteria isolated from traditional fermented food. Lebensm. Wiss. Technol., 2019, 115, 108455.
[http://dx.doi.org/10.1016/j.lwt.2019.108455]
[13]
Yang, L.H.; Guo, H.; Cai, J.; Cai, X.W.; Liu, G.L.; Chen, D.F. Intervention effect of microbiological capsules containing Bacillus subtilis and Enterococcus on intestinal flora in patients with NASH. World Chin. J. Dig, 2012, 20(20), 1873.
[http://dx.doi.org/10.11569/wcjd.v20.i20.1873]
[14]
Schroeder, B.O.; Birchenough, G.M.H.; Ståhlman, M.; Arike, L.; Johansson, M.E.V.; Hansson, G.C.; Bäckhed, F. Bifidobacteria or fiber protects against diet induced microbiota mediated colonic mucus deterioration. Cell Host Microbe, 2018, 23(1), 27-40.e7.
[http://dx.doi.org/10.1016/j.chom.2017.11.004] [PMID: 29276171]
[15]
Dargahi, N.; Johnson, J.; Donkor, O.; Vasiljevic, T.; Apostolopoulos, V. Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas, 2019, 119, 25-38.
[http://dx.doi.org/10.1016/j.maturitas.2018.11.002] [PMID: 30502748]
[16]
Di Ciaula, A.; Baj, J.; Garruti, G.; Celano, G.; De Angelis, M.; Wang, H.H.; Di Palo, D.M.; Bonfrate, L.; Wang, D.Q.; Portincasa, P. Liver steatosis, gut-liver axis, microbiome and environmental factors. A never ending bidirectional cross talk. J. Clin. Med., 2020, 9(8), 2648.
[http://dx.doi.org/10.3390/jcm9082648] [PMID: 32823983]
[17]
Ducastel, S.; Touche, V.; Trabelsi, M.S.; Boulinguiez, A.; Butruille, L.; Nawrot, M.; Peschard, S.; Chávez, T.O.; Dorchies, E.; Vallez, E.; Annicotte, J.S.; Lancel, S.; Briand, O.; Bantubungi, K.; Caron, S.; Bindels, L.B.; Delzenne, N.M.; Tailleux, A.; Staels, B.; Lestavel, S. The nuclear receptor FXR inhibits glucagon like peptide-1 secretion in response to microbiota derived short chain fatty acids. Sci. Rep., 2020, 10(1), 174.
[http://dx.doi.org/10.1038/s41598-019-56743-x] [PMID: 31932631]
[18]
McMillin, M.; Frampton, G.; Tobin, R.; Dusio, G.; Smith, J.; Shin, H.; Newell, R.K.; Grant, S.; DeMorrow, S. TGR5 signaling reduces neuroinflammation during hepatic encephalopathy. J. Neurochem., 2015, 135(3), 565-576.
[http://dx.doi.org/10.1111/jnc.13243] [PMID: 26179031]
[19]
Rigano, D.; Sirignano, C.; Taglialatela, S.O. The potential of natural products for targeting PPARα. Acta Pharm. Sin. B, 2017, 7(4), 427-438.
[http://dx.doi.org/10.1016/j.apsb.2017.05.005] [PMID: 28752027]
[20]
Merlen, G.; Ursic, B.J.; Jourdainne, V.; Kahale, N.; Glenisson, M.; Doignon, I.; Rainteau, D.; Tordjmann, T. Bile acids and their receptors during liver regeneration: “Dangerous protectors”. Mol. Aspects Med., 2017, 56, 25-33.
[http://dx.doi.org/10.1016/j.mam.2017.03.002] [PMID: 28302491]
[21]
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K.; Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(8), 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[22]
Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(5), 303-310.
[http://dx.doi.org/10.1038/nrgastro.2015.47] [PMID: 25824997]
[23]
Tsilingiri, K.; Rescigno, M. Postbiotics: What else? Benef. Microbes, 2013, 4(1), 101-107.
[http://dx.doi.org/10.3920/BM2012.0046] [PMID: 23271068]
[24]
Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol., 2017, 17(4), 219-232.
[http://dx.doi.org/10.1038/nri.2017.7] [PMID: 28260787]
[25]
Thaiss, C.A.; Itav, S.; Rothschild, D.; Meijer, M.T.; Levy, M.; Moresi, C.; Dohnalová, L.; Braverman, S.; Rozin, S.; Malitsky, S.; Dori, B.M.; Kuperman, Y.; Biton, I.; Gertler, A.; Harmelin, A.; Shapiro, H.; Halpern, Z.; Aharoni, A.; Segal, E.; Elinav, E. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature, 2016, 540(7634), 544-551.
[http://dx.doi.org/10.1038/nature20796] [PMID: 27906159]
[26]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[27]
Arora, T.; Singh, S.; Sharma, R.K. Probiotics: Interaction with gut microbiome and antiobesity potential. Nutrition, 2013, 29(4), 591-596.
[http://dx.doi.org/10.1016/j.nut.2012.07.017] [PMID: 23287068]
[28]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[29]
Soriano, G.; Sánchez, E.; Guarner, C. Probiotics in liver diseases. Nutr. Hosp., 2013, 28(3), 558-563.
[PMID: 23848072]
[30]
Schwenger, K.J.; Clermont-Dejean, N.; Allard, J.P. The role of the gut microbiome in chronic liver disease: The clinical evidence revised. JHEP Rep., 2019, 1(3), 214-226.
[http://dx.doi.org/10.1016/j.jhepr.2019.04.004] [PMID: 32039372]
[31]
Di Lena, M.; Quero, G.M.; Santovito, E.; Verran, J.; De Angelis, M.; Fusco, V. A selective medium for isolation and accurate enumeration of Lactobacillus casei-group members in probiotic milks and dairy products. Int. Dairy J., 2015, 47, 27-36.
[http://dx.doi.org/10.1016/j.idairyj.2015.01.018]
[32]
Kothari, D.; Patel, S.; Kim, S.K. Probiotic supplements might not be universally-effective and safe: A review. Biomed. Pharmacother., 2019, 111, 537-547.
[http://dx.doi.org/10.1016/j.biopha.2018.12.104] [PMID: 30597307]
[33]
Zendeboodi, F.; Khorshidian, N.; Mortazavian, A.M.; da Cruz, A.G. Probiotic: Conceptualization from a new approach. Curr. Opin. Food Sci., 2020, 32, 103-123.
[http://dx.doi.org/10.1016/j.cofs.2020.03.009]
[34]
Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci., 2017, 74(16), 2959-2977.
[http://dx.doi.org/10.1007/s00018-017-2509-x] [PMID: 28352996]
[35]
Ray, A.; Dittel, B.N. Interrelatedness between dysbiosis in the gut microbiota due to immunodeficiency and disease penetrance of colitis. Immunology, 2015, 146(3), 359-368.
[http://dx.doi.org/10.1111/imm.12511] [PMID: 26211540]
[36]
Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol., 2017, 14(10), 573-584.
[http://dx.doi.org/10.1038/nrgastro.2017.88] [PMID: 28743984]
[37]
Rackayová, V.; Flatt, E.; Braissant, O.; Grosse, J.; Capobianco, D.; Mastromarino, P.; McMillin, M.; DeMorrow, S.; McLin, V.A.; Cudalbu, C. Probiotics improve the neurometabolic profile of rats with chronic cholestatic liver disease. Sci. Rep., 2021, 11(1), 2269.
[http://dx.doi.org/10.1038/s41598-021-81871-8] [PMID: 33500487]
[38]
Wang, C.; Zhang, C.; Li, S.; Yu, L.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Effects of probiotic supplementation on dyslipidemia in type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. Foods, 2020, 9(11), 1540.
[http://dx.doi.org/10.3390/foods9111540] [PMID: 33114518]
[39]
St-Onge, M.P.; Farnworth, E.R.; Jones, P.J. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am. J. Clin. Nutr., 2000, 71(3), 674-681.
[http://dx.doi.org/10.1093/ajcn/71.3.674] [PMID: 10702159]
[40]
Zhuang, G.; Liu, X.M.; Zhang, Q.X.; Tian, F.W.; Zhang, H.; Zhang, H.P.; Chen, W. Research advances with regards to clinical outcome and potential mechanisms of the cholesterol lowering effects of probiotic. Clin. Lipidol., 2012, 7(5), 501-507.
[http://dx.doi.org/10.2217/clp.12.40]
[41]
González, S.M.; Rocha, N.E.; Simental, L.E.; Rodríguez, R.; Aguilar, C.N.; Rutiaga, O.M.; López, M.G.; Gamboa, C.I. Dehydrated apple‐based snack supplemented with Agave fructans exerts prebiotic effect regulating the production of short-chain fatty acid in mice. J. Food Process. Preserv., 2019, 43(8), e14026.
[http://dx.doi.org/10.1111/jfpp.14026]
[42]
Jia, X.; Xu, W.; Zhang, L.; Li, X.; Wang, R.; Wu, S. Impact of gut microbiota and microbiota related metabolites on hyperlipidemia. Front. Cell. Infect. Microbiol., 2021, 11, 634780.
[http://dx.doi.org/10.3389/fcimb.2021.634780] [PMID: 34490132]
[43]
He, M.; Shi, B. Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell Biosci., 2017, 7(1), 54.
[http://dx.doi.org/10.1186/s13578-017-0183-1] [PMID: 29090088]
[44]
Lim, P.S.; Loke, C.F.; Ho, Y.W.; Tan, H.Y. Cholesterol homeostasis associated with probiotic supplementation in vivo. J. Appl. Microbiol., 2020, 129(5), 1374-1388.
[http://dx.doi.org/10.1111/jam.14678] [PMID: 32356362]
[45]
Yoo, S.R.; Kim, Y.J.; Park, D.Y.; Jung, U.J.; Jeon, S.M.; Ahn, Y.T.; Huh, C.S.; McGregor, R.; Choi, M.S. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring), 2013, 21(12), 2571-2578.
[http://dx.doi.org/10.1002/oby.20428] [PMID: 23512789]
[46]
Chen, J.; Wang, R.; Li, X.F.; Wang, R.L. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br. J. Nutr., 2012, 107(10), 1429-1434.
[http://dx.doi.org/10.1017/S0007114511004491] [PMID: 21914236]
[47]
Zhang, J.; Wang, S.; Zeng, Z.; Qin, Y.; Shen, Q.; Li, P. Antidiabetic effects of Bifidobacterium animalis 01 through improving hepatic insulin sensitivity in type 2 diabetic rat model. J. Funct. Foods, 2020, 67, 103843.
[http://dx.doi.org/10.1016/j.jff.2020.103843]
[48]
Rodriguez, J.; Hiel, S.; Neyrinck, A.M.; Le Roy, T.; Pötgens, S.A.; Leyrolle, Q.; Pachikian, B.D.; Gianfrancesco, M.A.; Cani, P.D.; Paquot, N.; Cnop, M.; Lanthier, N.; Thissen, J.P.; Bindels, L.B.; Delzenne, N.M. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut, 2020, 69(11), 1975-1987.
[http://dx.doi.org/10.1136/gutjnl-2019-319726] [PMID: 32041744]
[49]
He, Y.J.; You, C.G. The potential role of gut microbiota in the prevention and treatment of lipid metabolism disorders. Int. J. Endocrinol., 2020, 2020, 8601796.
[http://dx.doi.org/10.1155/2020/8601796] [PMID: 33005189]
[50]
Leal, A.M.; Noriega, L.G.; Torre, I.; Torres, N.; Alemán, G.; López-Romero, P.; Sánchez, M.; Aguilar, M.; Furuzawa, J.; Velázquez, L.A.; Ávila, A.; Ordáz, G.; Gutiérrez, J.A.; Serna, S.O.; Tovar, A.R. Aguamiel concentrate from Agave salmiana and its extracted saponins attenuated obesity and hepatic steatosis and increased Akkermansia muciniphila in C57BL6 mice. Sci. Rep., 2016, 6(1), 34242.
[http://dx.doi.org/10.1038/srep34242] [PMID: 27678062]
[51]
Gupta, H.; Youn, G.S.; Shin, M.J.; Suk, K.T. Role of gut microbiota in hepatocarcinogenesis. Microorganisms, 2019, 7(5), 121-137.
[http://dx.doi.org/10.3390/microorganisms7050121] [PMID: 31060311]
[52]
Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; Waget, A.; Delmée, E.; Cousin, B.; Sulpice, T.; Chamontin, B.; Ferrières, J.; Tanti, J.F.; Gibson, G.R.; Casteilla, L.; Delzenne, N.M.; Alessi, M.C.; Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007, 56(7), 1761-1772.
[http://dx.doi.org/10.2337/db06-1491] [PMID: 17456850]
[53]
Pan, X.; Wen, S.W.; Kaminga, A.C.; Liu, A. Gut metabolites and inflammation factors in non alcoholic fatty liver disease: A systematic review and meta analysis. Sci. Rep., 2020, 10(1), 8848.
[http://dx.doi.org/10.1038/s41598-020-65051-8] [PMID: 32483129]
[54]
Jia, B.; Jeon, C.O. Promotion and induction of liver cancer by gut microbiome mediated modulation of bile acids. PLoS Pathog., 2019, 15(9), e1007954.
[http://dx.doi.org/10.1371/journal.ppat.1007954] [PMID: 31487329]
[55]
Sun, L.; Pang, Y.; Wang, X.; Wu, Q.; Liu, H.; Liu, B.; Liu, G.; Ye, M.; Kong, W.; Jiang, C. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharm. Sin. B, 2019, 9(4), 702-710.
[http://dx.doi.org/10.1016/j.apsb.2019.02.004] [PMID: 31384531]
[56]
Yan, R.; Wang, K.; Wang, Q.; Jiang, H.; Lu, Y.; Chen, X.; Zhang, H.; Su, X.; Du, Y.; Chen, L.; Li, L.; Lv, L. Probiotic Lactobacillus casei shirota prevents acute liver injury by reshaping the gut microbiota to alleviate excessive inflammation and metabolic disorders. Microb. Biotechnol., 2022, 15(1), 247-261.
[http://dx.doi.org/10.1111/1751-7915.13750] [PMID: 33492728]
[57]
Li, M.M.; Zhou, Y.; Zuo, L.; Nie, D.; Li, X.A. Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice. Nutrition, 2021, 81, 110959.
[http://dx.doi.org/10.1016/j.nut.2020.110959] [PMID: 33059126]
[58]
Jantararussamee, C.; Rodniem, S.; Taweechotipatr, M.; Showpittapornchai, U.; Pradidarcheep, W. Hepatoprotective effect of probiotic lactic acid bacteria on thioacetamide induced liver fibrosis in rats. Probiotics Antimicrob. Proteins, 2021, 13(1), 40-50.
[http://dx.doi.org/10.1007/s12602-020-09663-6] [PMID: 32468435]
[59]
Aller, R.; De Luis, D.A.; Izaola, O.; Conde, R.; Gonzalez Sagrado, M.; Primo, D.; De La Fuente, B.; Gonzalez, J. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: A double blind randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(9), 1090-1095.
[PMID: 22013734]
[60]
Chen, H.T.; Huang, H.L.; Li, Y.Q.; Xu, H.M.; Zhou, Y.J. Therapeutic advances in non-alcoholic fatty liver disease: A microbiota-centered view. World J. Gastroenterol., 2020, 26(16), 1901-1911.
[http://dx.doi.org/10.3748/wjg.v26.i16.1901] [PMID: 32390701]
[61]
Yan, Y.; Liu, C.; Zhao, S.; Wang, X.; Wang, J.; Zhang, H.; Wang, Y.; Zhao, G. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Express, 2020, 10(1), 101.
[http://dx.doi.org/10.1186/s13568-020-01038-y] [PMID: 32472368]
[62]
Behrouz, V.; Aryaeian, N.; Zahedi, M.J.; Jazayeri, S. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: A randomized clinical trial. J. Food Sci., 2020, 85(10), 3611-3617.
[http://dx.doi.org/10.1111/1750-3841.15367] [PMID: 32885440]
[63]
Malaguarnera, M.; Vacante, M.; Antic, T.; Giordano, M.; Chisari, G.; Acquaviva, R.; Mastrojeni, S.; Malaguarnera, G.; Mistretta, A.; Li Volti, G.; Galvano, F. Bifidobacterium longum with fructooligosaccharides in patients with non alcoholic steatohepatitis. Dig. Dis. Sci., 2012, 57(2), 545-553.
[http://dx.doi.org/10.1007/s10620-011-1887-4] [PMID: 21901256]
[64]
Abhari, K.; Saadati, S.; Yari, Z.; Hosseini, H.; Hedayati, M.; Abhari, S.; Alavian, S.M.; Hekmatdoost, A. The effects of Bacillus coagulans supplementation in patients with non-alcoholic fatty liver disease: A randomized, placebo-controlled, clinical trial. Clin. Nutr. ESPEN, 2020, 39, 53-60.
[http://dx.doi.org/10.1016/j.clnesp.2020.06.020] [PMID: 32859329]
[65]
Neag, M.A.; Catinean, A.; Muntean, D.M.; Pop, M.R.; Bocsan, C.I.; Botan, E.C.; Buzoianu, A.D. Probiotic bacillus spores protect against acetaminophen induced acute liver injury in rats. Nutrients, 2020, 12(3), 632.
[http://dx.doi.org/10.3390/nu12030632] [PMID: 32120994]
[66]
Fontana, L.; Plaza, J.; Robles, P.; Valente, H.; Sáez, M.J.; Abadía, F.; Gómez, C.; Gil, Á.; Álvarez, A.I. Bifidobacterium breve CNCM I-4035, Lactobacillus paracasei CNCM I-4034 and Lactobacillus rhamnosus CNCM I-4036 modulate macrophage gene expression and ameliorate damage markers in the liver of Zucker-Leprfa/fa rats. Nutrients, 2021, 13(1), 202.
[http://dx.doi.org/10.3390/nu13010202] [PMID: 33440736]
[67]
Dargahi, N.; Johnson, J.; Donkor, O.; Vasiljevic, T.; Apostolopoulos, V. Immunomodulatory effects of Streptococcus thermophilus on U937 monocyte cell cultures. J. Funct. Foods, 2018, 49, 241-249.
[http://dx.doi.org/10.1016/j.jff.2018.08.038]
[68]
Hajiagha, M.N.; Taghizadeh, S.; Asgharzadeh, M.; Dao, S.; Ganbarov, K.; Köse, Ş.; Kafil, H.S. Gut microbiota and human body interactions; its impact on health: A review. Curr. Pharm. Biotechnol., 2022, 23(1), 4-14.
[http://dx.doi.org/10.2174/1389201022666210104115836] [PMID: 33397232]
[69]
Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 2017, 279(1), 70-89.
[http://dx.doi.org/10.1111/imr.12567] [PMID: 28856738]
[70]
Torres, E.; Lenoir, M.; Mayorga, L.; Allain, T.; Sokol, H.; Langella, P.; Sánchez, M.E.; Bermúdez, L.G. Identification of novel anti-inflammatory probiotic strains isolated from pulque. Appl. Microbiol. Biotechnol., 2016, 100(1), 385-396.
[http://dx.doi.org/10.1007/s00253-015-7049-4] [PMID: 26476654]
[71]
Kamada, N.; Seo, S.U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol., 2013, 13(5), 321-335.
[http://dx.doi.org/10.1038/nri3430] [PMID: 23618829]
[72]
Mykhal’chyshyn, H.P.; Bodnar, P.M.; Kobyliak, N.M. Effect of probiotics on proinflammatory cytokines level in patients with type 2 diabetes and nonalcoholic fatty liver disease. Lik. Sprava, 2013, 2(2), 56-62.
[PMID: 24605611]
[73]
He, F.; Morita, H.; Ouwehand, A.C.; Hosoda, M.; Hiramatsu, M.; Kurisaki, J.; Isolauri, E.; Benno, Y.; Salminen, S. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol. Immunol., 2002, 46(11), 781-785.
[http://dx.doi.org/10.1111/j.1348-0421.2002.tb02765.x] [PMID: 12516776]
[74]
Christensen, H.R.; Frøkiaer, H.; Pestka, J.J. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol., 2002, 168(1), 171-178.
[http://dx.doi.org/10.4049/jimmunol.168.1.171] [PMID: 11751960]
[75]
Marshall-Jones, Z.V.; Baillon, M.L.A.; Croft, J.M.; Butterwick, R.F. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. Am. J. Vet. Res., 2006, 67(6), 1005-1012.
[http://dx.doi.org/10.2460/ajvr.67.6.1005] [PMID: 16740094]
[76]
Rouxinol, A.L.; Pinto, A.R.; Janeiro, C.; Rodrigues, D.; Moreira, M.; Dias, J.; Pereira, P. Probiotics for the control of obesity - Its effect on weight change. Porto Biomed. J., 2016, 1(1), 12-24.
[http://dx.doi.org/10.1016/j.pbj.2016.03.005] [PMID: 32258541]
[77]
Winston, J.A.; Theriot, C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes, 2020, 11(2), 158-171.
[http://dx.doi.org/10.1080/19490976.2019.1674124] [PMID: 31595814]
[78]
de Boer, J.F.; Bloks, V.W.; Verkade, E.; Heiner-Fokkema, M.R.; Kuipers, F. New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr. Opin. Lipidol., 2018, 29(3), 194-202.
[http://dx.doi.org/10.1097/MOL.0000000000000508] [PMID: 29553998]
[79]
Kurdi, P.; Kawanishi, K.; Mizutani, K.; Yokota, A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J. Bacteriol., 2006, 188(5), 1979-1986.
[http://dx.doi.org/10.1128/JB.188.5.1979-1986.2006] [PMID: 16484210]
[80]
Al-Khaifi, A.; Straniero, S.; Voronova, V.; Chernikova, D.; Sokolov, V.; Kumar, C.; Angelin, B.; Rudling, M. Asynchronous rhythms of circulating conjugated and unconjugated bile acids in the modulation of human metabolism. J. Intern. Med., 2018, 284(5), 546-559.
[http://dx.doi.org/10.1111/joim.12811] [PMID: 29964306]
[81]
Yamada, S.; Takashina, Y.; Watanabe, M.; Nagamine, R.; Saito, Y.; Kamada, N.; Saito, H. Bile acid metabolism regulated by the gut microbiota promotes non-alcoholic steatohepatitis-associated hepatocellular carcinoma in mice. Oncotarget, 2018, 9(11), 9925-9939.
[http://dx.doi.org/10.18632/oncotarget.24066] [PMID: 29515780]
[82]
Chiang, J.Y.L.; Ferrell, J.M. Bile acid metabolism in liver pathobiology. Gene Expr., 2018, 18(2), 71-87.
[http://dx.doi.org/10.3727/105221618X15156018385515] [PMID: 29325602]
[83]
Villette, R.; Kc, P.; Beliard, S.; Salas Tapia, M.F.; Rainteau, D.; Guerin, M.; Lesnik, P. Unraveling host-gut microbiota dialogue and its impact on cholesterol levels. Front. Pharmacol., 2020, 11, 278-293.
[http://dx.doi.org/10.3389/fphar.2020.00278] [PMID: 32308619]
[84]
Li, T.; Chiang, J.Y.L. Bile acid-based therapies for non-alcoholic steatohepatitis and alcoholic liver disease. Hepatobiliary Surg. Nutr., 2020, 9(2), 152-169.
[http://dx.doi.org/10.21037/hbsn.2019.09.03] [PMID: 32355674]
[85]
Chiang, J.Y.L. Bile acid metabolism and signaling in liver disease and therapy. Liver Res., 2017, 1(1), 3-9.
[http://dx.doi.org/10.1016/j.livres.2017.05.001] [PMID: 29104811]
[86]
Chiang, J.Y.L.; Ferrell, J.M. Bile acids as metabolic regulators and nutrient sensors. Annu. Rev. Nutr., 2019, 39(1), 175-200.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124344] [PMID: 31018107]
[87]
Li, T.; Chiang, J.Y.L. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev., 2014, 66(4), 948-983.
[http://dx.doi.org/10.1124/pr.113.008201] [PMID: 25073467]
[88]
Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol., 2014, 30(3), 332-338.
[http://dx.doi.org/10.1097/MOG.0000000000000057] [PMID: 24625896]
[89]
Chiang, J.Y.L.; Ferrell, J.M. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am. J. Physiol. Gastrointest. Liver Physiol., 2020, 318(3), G554-G573.
[http://dx.doi.org/10.1152/ajpgi.00223.2019] [PMID: 31984784]
[90]
Alard, J.; Cudennec, B.; Boutillier, D.; Peucelle, V.; Descat, A.; Decoin, R.; Kuylle, S.; Jablaoui, A.; Rhimi, M.; Wolowczuk, I.; Pot, B.; Tailleux, A.; Maguin, E.; Holowacz, S.; Grangette, C. Multiple selection criteria for probiotic strains with high potential for obesity management. Nutrients, 2021, 13(3), 713.
[http://dx.doi.org/10.3390/nu13030713] [PMID: 33668212]
[91]
Navarro, S.L.; Levy, L.; Curtis, K.R.; Elkon, I.; Kahsai, O.J.; Ammar, H.S.; Randolph, T.W.; Hong, N.N.; Carnevale Neto, F.; Raftery, D.; Chapkin, R.S.; Lampe, J.W.; Hullar, M.A.J. Effect of a flaxseed lignan intervention on circulating bile acids in a placebo-controlled randomized, crossover trial. Nutrients, 2020, 12(6), 1837.
[http://dx.doi.org/10.3390/nu12061837] [PMID: 32575611]
[92]
Yao, M.; Qv, L.; Lu, Y.; Wang, B.; Berglund, B.; Li, L. An update on the efficacy and functionality of probiotics for the treatment of non-alcoholic fatty liver disease. Engineering (Beijing), 2021, 7(5), 679-686.
[http://dx.doi.org/10.1016/j.eng.2020.01.017]
[93]
Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res., 2004, 45(7), 1169-1196.
[http://dx.doi.org/10.1194/jlr.R300019-JLR200] [PMID: 15102878]
[94]
Shen, Y.; Su, Y.; Silva, F.J.; Weller, A.H.; Sostre-Colón, J.; Titchenell, P.M.; Steger, D.J.; Seale, P.; Soccio, R.E. Shared PPARα/γ target genes regulate brown adipocyte thermogenic function. Cell Rep., 2020, 30(9), 3079-3091.e5.
[http://dx.doi.org/10.1016/j.celrep.2020.02.032] [PMID: 32130908]
[95]
Staels, B.; Fruchart, J.C. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes, 2005, 54(8), 2460-2470.
[http://dx.doi.org/10.2337/diabetes.54.8.2460] [PMID: 16046315]
[96]
Pawlak, M.; Lefebvre, P.; Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol., 2015, 62(3), 720-733.
[http://dx.doi.org/10.1016/j.jhep.2014.10.039] [PMID: 25450203]
[97]
Siersbæk, M.S.; Loft, A.; Aagaard, M.M.; Nielsen, R.; Schmidt, S.F.; Petrovic, N.; Nedergaard, J.; Mandrup, S. Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression. Mol. Cell. Biol., 2012, 32(17), 3452-3463.
[http://dx.doi.org/10.1128/MCB.00526-12] [PMID: 22733994]
[98]
Wang, W.; Shi, L.P.; Shi, L.; Xu, L. Efficacy of probiotics on the treatment of non-alcoholic fatty liver disease. Zhonghua Nei Ke Za Zhi, 2018, 57(2), 101-106.
[PMID: 29397594]
[99]
Cha, J.Y.; Repa, J.J. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J. Biol. Chem., 2007, 282(1), 743-751.
[http://dx.doi.org/10.1074/jbc.M605023200] [PMID: 17107947]
[100]
Chen, Z.; Chen, H.; Zhang, Z.; Ding, P.; Yan, X.; Li, Y.; Zhang, S.; Gu, Q.; Zhou, H.; Xu, J. Discovery of novel liver X receptor inverse agonists as lipogenesis inhibitors. Eur. J. Med. Chem., 2020, 206, 112793.
[http://dx.doi.org/10.1016/j.ejmech.2020.112793] [PMID: 32961480]
[101]
Linden, A.G.; Li, S.; Choi, H.Y.; Fang, F.; Fukasawa, M.; Uyeda, K.; Hammer, R.E.; Horton, J.D.; Engelking, L.J.; Liang, G. Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J. Lipid Res., 2018, 59(3), 475-487.
[http://dx.doi.org/10.1194/jlr.M081836] [PMID: 29335275]
[102]
Repa, J.J.; Mangelsdorf, D.J. The liver X receptor gene team: Potential new players in atherosclerosis. Nat. Med., 2002, 8(11), 1243-1248.
[http://dx.doi.org/10.1038/nm1102-1243] [PMID: 12411951]
[103]
Zelcer, N.; Hong, C.; Boyadjian, R.; Tontonoz, P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science, 2009, 325(5936), 100-104.
[http://dx.doi.org/10.1126/science.1168974] [PMID: 19520913]
[104]
Kim, B.Y.; Son, Y.; Cho, H.R.; Lee, D.; Eo, S.K.; Kim, K. 27-Hydroxycholesterol induces macrophage gene expression via LXR-dependent and -independent mechanisms. Korean J. Physiol. Pharmacol., 2021, 25(2), 111-118.
[http://dx.doi.org/10.4196/kjpp.2021.25.2.111] [PMID: 33602881]
[105]
Griffett, K.; Welch, R.D.; Flaveny, C.A.; Kolar, G.R.; Neuschwander-Tetri, B.A.; Burris, T.P. The LXR inverse agonist SR9238 suppresses fibrosis in a model of non-alcoholic steatohepatitis. Mol. Metab., 2015, 4(4), 353-357.
[http://dx.doi.org/10.1016/j.molmet.2015.01.009] [PMID: 25830098]
[106]
Huang, P.; Kaluba, B.; Jiang, X.L.; Chang, S.; Tang, X.F.; Mao, L.F.; Zhang, Z.P.; Huang, F.Z. Liver X receptor inverse agonist SR9243 suppresses non-alcoholic steatohepatitis intrahepatic inflammation and fibrosis. BioMed Res. Int., 2018, 2018, 8071093.
[http://dx.doi.org/10.1155/2018/8071093] [PMID: 29670908]
[107]
Kumari, A.; Pal Pathak, D.; Asthana, S. Bile acids mediated potential functional interaction between FXR and FATP5 in the regulation of lipid metabolism. Int. J. Biol. Sci., 2020, 16(13), 2308-2322.
[http://dx.doi.org/10.7150/ijbs.44774] [PMID: 32760200]
[108]
Zhou, H.; Zhou, S.Y.; Gillilland, M., III; Li, J.Y.; Lee, A.; Gao, J.; Zhang, G.; Xu, X.; Owyang, C. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by high-fat feeding. JCI Insight, 2020, 5(20), e138881.
[http://dx.doi.org/10.1172/jci.insight.138881] [PMID: 33055426]
[109]
Pineda Torra, I.; Claudel, T.; Duval, C.; Kosykh, V.; Fruchart, J.C.; Staels, B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol. Endocrinol., 2003, 17(2), 259-272.
[http://dx.doi.org/10.1210/me.2002-0120] [PMID: 12554753]
[110]
Martinot, E.; Sèdes, L.; Baptissart, M.; Lobaccaro, J.M.; Caira, F.; Beaudoin, C.; Volle, D.H. Bile acids and their receptors. Mol. Aspects Med., 2017, 56, 2-9.
[http://dx.doi.org/10.1016/j.mam.2017.01.006] [PMID: 28153453]
[111]
Kida, T.; Tsubosaka, Y.; Hori, M.; Ozaki, H.; Murata, T. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1663-1669.
[http://dx.doi.org/10.1161/ATVBAHA.113.301565] [PMID: 23619297]
[112]
Pelton, R. Postbiotic metabolites: How probiotics regulate health. Integr. Med. (Encinitas), 2020, 19(1), 25-30.
[PMID: 32549861]
[113]
Aguilar, J.E.; Garcia, R.; Garcia, H.S.; Mata, V.; González, A.F.; Vallejo, B.; Hernández, A. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol., 2018, 75, 105-114.
[http://dx.doi.org/10.1016/j.tifs.2018.03.009]
[114]
Arellano, L.; Portillo, M.P.; Martínez, J.A.; Milton, I. Usefulness of probiotics in the management of NAFLD: Evidence and involved mechanisms of action from preclinical and human models. Int. J. Mol. Sci., 2022, 23(6), 3167.
[http://dx.doi.org/10.3390/ijms23063167] [PMID: 35328587]
[115]
Barros, C.P.; Guimarães, J.T.; Esmerino, E.A.; Duarte, M.C.K.; Silva, M.C.; Silva, R.; Ferreira, B.M.; Sant’Ana, A.S.; Freitas, M.Q.; Cruz, A.G. Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Curr. Opin. Food Sci., 2020, 32, 1-8.
[http://dx.doi.org/10.1016/j.cofs.2019.12.003]
[116]
Peluzio, M.; Martinez, J.A.; Milagro, F.I. Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends Food Sci. Technol., 2021, 108, 11-26.
[http://dx.doi.org/10.1016/j.tifs.2020.12.004]
[117]
Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Tsigalou, C.; Dalamaga, M. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives. Curr. Obes. Rep., 2020, 9(3), 179-192.
[http://dx.doi.org/10.1007/s13679-020-00379-w] [PMID: 32472285]
[118]
Aoun, A.; Darwish, F.; Hamod, N. The influence of the gut microbiome on obesity in adults and the role of probiotics, prebiotics, and synbiotics for weight loss. Prev. Nutr. Food Sci., 2020, 25(2), 113-123.
[http://dx.doi.org/10.3746/pnf.2020.25.2.113] [PMID: 32676461]
[119]
Li, H.Y.; Zhou, D.D.; Gan, R.Y.; Huang, S.Y.; Zhao, C.N.; Shang, A.; Xu, X.Y.; Li, H.B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review. Nutrients, 2021, 13(9), 3211.
[http://dx.doi.org/10.3390/nu13093211] [PMID: 34579087]
[120]
Zhou, D.; Pan, Q.; Xin, F.Z.; Zhang, R.N.; He, C.X.; Chen, G.Y.; Liu, C.; Chen, Y.W.; Fan, J.G. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J. Gastroenterol., 2017, 23(1), 60-75.
[http://dx.doi.org/10.3748/wjg.v23.i1.60] [PMID: 28104981]
[121]
Ye, J.; Lv, L.; Wu, W.; Li, Y.; Shi, D.; Fang, D.; Guo, F.; Jiang, H.; Yan, R.; Ye, W.; Li, L. Butyrate protects mice against methioninecholine-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Front. Microbiol., 2018, 9, 1967.
[http://dx.doi.org/10.3389/fmicb.2018.01967] [PMID: 30186272]
[122]
Osman, A.; El-Gazzar, N.; Almanaa, T.N.; El-Hadary, A.; Sitohy, M. Lipolytic postbiotic from Lactobacillus paracasei manages metabolic syndrome in albino Wistar rats. Molecules, 2021, 26(2), 472.
[http://dx.doi.org/10.3390/molecules26020472] [PMID: 33477482]
[123]
Nakamura, F.; Ishida, Y.; Sawada, D.; Ashida, N.; Sugawara, T.; Sakai, M.; Goto, T.; Kawada, T.; Fujiwara, S. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. J. Agric. Food Chem., 2016, 64(12), 2549-2559.
[http://dx.doi.org/10.1021/acs.jafc.5b05827] [PMID: 26927959]