Reversible Photo-switching of G‐Quadruplex by Backbone-Inserted Azobenzene

Page: [444 - 448] Pages: 5

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Taking the typical human telomeric G-quadruplex (G4) sequence as a reference, we designed four photoresponsive DNA sequences by inserting azobenzene moieties into a planar interlayer and the end surfaces of the G4 structure.

Methods: The photo-responsive G4 molecules were investigated by melting curve, FRET, CD, and gel electrophoresis.

Results and Discussion: The measurements showed that the photo-responsive G4 molecules took the stable four-strand structure under visible light, but after UV light irradiation, the G4 structures tended to be disentangled. When azobenzene molecules were inserted at the end surfaces of the G4 structure, the Tm difference of the photo-responsive G4 between visible light and UV light reached more than 30 ºC.

Conclusion: In a temperature range from 20 to 53 ºC, the reversible transformation of the G4 structure can be realized solely by light irradiation.

Keywords: G-quadruplex, photoswitch, azobenzene, DNA nanotechnology, nano device

Graphical Abstract

[1]
Hänsel-Hertsch, R.; Di Antonio, M.; Balasubramanian, S. DNA G-quadruplexes in the human genome: Detection, functions and therapeutic potential. Nat. Rev. Mol. Cell Biol., 2017, 18(5), 279-284.
[http://dx.doi.org/10.1038/nrm.2017.3] [PMID: 28225080]
[2]
Bochman, M.L.; Paeschke, K.; Zakian, V.A. DNA secondary structures: Stability and function of G-quadruplex structures. Nat. Rev. Genet., 2012, 13(11), 770-780.
[http://dx.doi.org/10.1038/nrg3296] [PMID: 23032257]
[3]
Alberti, P.; Bourdoncle, A.; Saccà, B.; Lacroix, L.; Mergny, J.L. DNA nanomachines and nanostructures involving quadruplexes. Org. Biomol. Chem., 2006, 4(18), 3383-3391.
[http://dx.doi.org/10.1039/b605739j] [PMID: 17036128]
[4]
Wang, C.; Huang, Z.; Lin, Y.; Ren, J.; Qu, X. Artificial DNA nano-spring powered by protons. Adv. Mater., 2010, 22(25), 2792-2798.
[http://dx.doi.org/10.1002/adma.201000445] [PMID: 20422657]
[5]
a) Ogasawara, S.; Maeda, M. Reversible photoswitching of a G-quadruplex. [J] Angew. Chem. Int. Ed., 2009, 48(36), 6671-6674.;
b) Ogasawara, S. Transcription driven by reversible photocontrol of hyperstable g-quadruplexes. ACS Synth. Biol., 2018, 7, 2507-2513.
[http://dx.doi.org/10.1021/acssynbio.8b00216] [PMID: 30350586]
[6]
Thevarpadam, J.; Bessi, I.; Binas, O.; Gonçalves, D.P.N.; Slavov, C.; Jonker, H.R.A.; Richter, C.; Wachtveitl, J.; Schwalbe, H.; Heckel, A. Photoresponsive formation of an intermolecular minimal G-quadruplex motif. Angew. Chem. Int. Ed., 2016, 55(8), 2738-2742.
[http://dx.doi.org/10.1002/anie.201510269]
[7]
Xing, X.; Wang, X.; Xu, L.; Tai, Y.; Dai, L.; Zheng, X.; Mao, W.; Xu, X.; Zhou, X. Light-driven conformational regulation of human telomeric G-quadruplex DNA in physiological conditions. Org. Biomol. Chem., 2011, 9(19), 6639-6645.
[http://dx.doi.org/10.1039/C1OB05939D] [PMID: 21850352]
[8]
Kim, Y.; Phillips, J.A.; Liu, H.; Kang, H.; Tan, W. Using photons to manipulate enzyme inhibition by an azobenzene-modified nucleic acid probe. Proc. Natl. Acad. Sci. USA, 2009, 106(16), 6489-6494.
[http://dx.doi.org/10.1073/pnas.0812402106] [PMID: 19359478]
[9]
Kou, B.; Guo, X.; Xiao, S.J.; Liang, X. Highly efficient room-temperature photoresponsive DNA tethering azobenzene through backbone-inserted glycerol via ether bond. Small, 2013, 9(23), 3939-3943.
[http://dx.doi.org/10.1002/smll.201301134] [PMID: 23813916]
[10]
Chen, Y.; Zhao, C.; Qu, X. Molecular recognition of human telomeric DNA and the interaction mechanisms. Sci. China Chem., 2012, 42, 1717-1731.
[11]
Collie, G.W.; Promontorio, R.; Hampel, S.M.; Micco, M.; Neidle, S.; Parkinson, G.N. Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands. J. Am. Chem. Soc., 2012, 134(5), 2723-2731.
[http://dx.doi.org/10.1021/ja2102423] [PMID: 22280460]
[12]
Mergny, J.L.; Phan, A.T.; Lacroix, L. Following G-quartet formation by UV-spectroscopy. FEBS Lett., 1998, 435(1), 74-78.
[http://dx.doi.org/10.1016/S0014-5793(98)01043-6] [PMID: 9755862]
[13]
Murphy, M.C.; Rasnik, I.; Cheng, W.; Lohman, T.M.; Ha, T. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J., 2004, 86(4), 2530-2537.
[http://dx.doi.org/10.1016/S0006-3495(04)74308-8] [PMID: 15041689]