[2]
Hasirci, V.; Vrana, E.; Zorlutuna, P.; Ndreu, A.; Yilgor, P.; Basmanav, F.B.; Aydin, E. Nanobiomaterials: A review of the existing science and technology, and new approaches. J. Biomater. Sci. Polym. Ed., 2006, 17, 1241-1268.
[13]
Navarro-Suarez, S.; Flores-Palma, A.; Flores-Ruiz, R.; Gutiérrez-Pérez, J.L.; Torres-Lagares, D. Nanobiomaterials in dentistry. In: Nanobiomaterials - Nanostructured Materials for Biomedical Applications; Narayan, R., Ed.; Woodhead Publishing, Elsevier Inc.: Duxford, UK, 2018; pp. 297-318.
[14]
Mookhtiar, H.; Hegde, V.; Ram, S.S.; Memon, K. Nanotechnology in interdisciplinary dentistry. Int. J. Sci. Res., 2020, 8, 4-5.
[19]
Narayan, R. Nanobiomaterials: Nanostructured Materials for Biomedical Applications;; Woodhead Publishing: Swaston, Cambridge, UK, 2017.
[21]
Wang, X.; Ramalingam, M.; Kong, X.; Zhao, L. Nanobiomaterials: Classification, Fabrication and Biomedical Applications; Wiley‐VCH Verlag, GmbH: Weinheim, Germany, 2018.
[25]
Fendler, J.H. Nanoparticles and Nanostructured Films: Preparation,Characterization, and Applications; Wiley-VCH, Verlag,GmbH: Weinheim, Germany, 1998, pp. 1-462.
[26]
Anwar, Z.; Khurshid, A.; Khurshid, A.; Zuberi, S.A.; Baig, Q.E.N.; Ahmad, I. Nanoparticles: Physicochemical properties, characterization, methods of preparation and applications. In: Advances in Nanotechnology; Bartul, Z.; Trenor, J., Eds.; Nova Science Publishers, Inc.: New York, USA, 2017; pp. 1-176.
[27]
Bachkar, B.A.; Gadhe, L.T.; Battase, P.; Mahajan, N.; Wagh, R. Nanosponges: A potential nanocarrier for targeted drug delivery. World J. Pharm. Res., 2015, 4, 751-768.
[28]
Bezawada, S. Charanjitha; Reddy, V.M.; Naveena; Gupta, V.R.M. Nanosponges-a concise review for emerging trends. Int. J. Pharm. Res. Biomed. Anal., 2014, 3, 1-6.
[30]
Jilsha, G.; Viswanad, V. Nanosponges: A novel approach of drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2013, 19, 119-123.
[31]
Osmani, R.A.M.; Thirumaleshwar, M.; Bhosale, R.R.; Kulkarni, P.K. Nanosponges the spanking accession in drug delivery-an updated comprehensive review. Pharm. Sin., 2014, 5, 7-21.
[32]
Trotta, F.; Tumiatti, V.; Cavalli, R.; Roggero, C.; Mognetti, B.; Berta, G. Cyclodextrin-based nanosponges as a vehicle for antitumoraldrugs. W.O. Patent 2009003656A1,, 2009.
[33]
Vishwakarma, A.; Nikam, P.; Mogal, R.; Talele, S. Review on nanosponges: A benefication for novel drug delivery. Int. J. Pharm. Tech. Res., 2014, 6, 11-20.
[34]
Zuberi, S.A.; Sheraz, M.A.; Ahmed, S.; Anwar, Z.; Ali, S.A.; Ahmad, I. Nanosponges: Characteristics, methods of preparation and applications. In: Advances in Nanotechnology; Bartul, Z.; Trenor, J., Eds.; Nova Science Publishers, Inc.: New York, USA, 2017; Vol. 18, pp. 177-226.
[42]
Jain, G.K.; Ahmad, F.J.; Khar, R.K.; Fiese, E.F.; Hagen, T.A. Preformulation. In: Lachman/Lieberman’s The Theory and Practice of Industrial Pharmacy, 4th ed; Khar, Rk.; Vyas, S.P.; Ahmad, F.J.; Jain, G.K., Eds.; CBS Publishers and Distributors Pvt Ltd.: New Delhi, India, 2013; pp. 217-254.
[46]
Singh, D.; Soni, G.C.; Prajapati, S.K. Recent advances in nanosponges as drug delivery system: A review article. Eur. J. Pharm. Med. Res., 2016, 3, 364-371.
[47]
Rita, L.; Throat, A.; Gargote, C.S. Current trends in β-cyclodextrin based drug delivery systems. Int. J. Res. Ayurveda Pharm., 2011, 2, 1520-1526.
[48]
Trotta, F.; Cavalli, R.; Tumiatti, W.; Zerbinati, O.; Rogero, C.; Vallero, R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. C.N Patent 1993380B,, 2010.
[50]
Trotta, F.; Cavalli, R.; Tumiatti, W.; Zerbinati, O.; Rogero, C.; Vallero, R. Ultrasound assisted synthesis of cyclodextrin-based nanosponges. E.P. Patent 1786 841B1,, 2007.
[54]
Thakre, A.R.; Gholse, Y.N.; Kasliwal, R.H. Nanosponges: A novel approach of drug delivery system. J. Med. Pharm. Allied Sci., 2016, 5, 78-92.
[63]
Eldose, A.; Twinkle, P.; Honey, S.; Twinkle, Z.; Hitesh, J.; Umesh, U. Nanosponge: A novel nano drug carrier. J. Adv. Res. Pharm. Biol. Sci., 2015, 1, 1-7.
[66]
Trotta, F.; Wander, T. Cross-linked polymers based on cyclodextrins for removing polluting agents W.O. Patent 2003085002,, 2005.
[68]
Massaro, M.; Cavallaro, G.; Lazzara, G.; Riela, S. Covalently modified nanoclays: Synthesis, properties and applications. In: Micro and Nano Technologies, Clay Nanoparticles; Cavallaro, G.; Fakhrullin, R.; Pasbakhsh, P., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 305-333.
[72]
Johnston, C.S.; Steinberg, F.M.; Rucker, R.B. Ascorbic acid. In: Handbook of Vitamins, 4th ed; Zempleni, J.; Rucker, R.B.; McCormick, D.B.; Suttie, J.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 489-520.
[73]
Sheraz, M.A.; Khan, M.F.; Ahmed, S.; Ahmad, I. Pharmacological effects of ascorbic acid. In: Vitamin C: Dietary Sources, Technology, Daily Requirements and Symptoms of Deficiency; Guine, R.P.F., Ed.; Nova Science Publishers, Inc.: New York, USA, 2013; pp. 191-208.
[92]
Sheraz, M.A.; Khan, M.F.; Ahmed, S.O.; Kazi, S.H.; Ahmad, I.Q. Stability and stabilization of ascorbic acid. Househ. Pers. Care Today, 2015, 10, 22-25.
[93]
Sheskey, P.J.; Cook, W.G.; Cable, C.G. Handbook of Pharmaceutical Excipients, 8th ed; Pharmaceutical Press: London, UK, 2017, pp. 80-83.
[94]
Bissett, D.L. Anti-aging skin care formulations. In: Cosmetic Formulation of Skin Care Products; Draelos, Z.D.; Thaman, L.A., Eds.; Taylor & Francis Group: New York, USA, 2006.
[105]
Jilsha, G.; Viswanad, V. Nanosponge loaded hydrogel of cephalexin for topical delivery. Int. J. Pharm. Sci. Res., 2015, 6, 2781-2789.
[106]
Olteanu, A.A.; Arama, C.C.; Bleotu, C.; Lupuleasa, D.; Monciu, C.M. Investigation of cyclodextrin based nanosponges complexes with angiotensin I converting enzyme inhibitors (enalapril, captopril, cilazapril). Farmacia, 2015, 63, 492-503.
[119]
Harmonised Tripartite Guideline, I.C.H.. Validation of analytical
procedures: Text and methodology Q2(R1 International Conference
on Harmonization of Technical Requirements for Registration
of Pharmaceuticals for Human UseGeneva, Switzerland,2005.
[120]
Hameed, A.; Ali, S.A.; Khan, A.A.; Moin, S.T.; Khan, K.M.; Hashim, J.; Basha, F.Z.; Malik, M.I. Solvent free click chemistry for tetrazole synthesis from1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) based fluorinated ionic liquids, their micellization and density functional theory studies. RSC Adv, 2014, 4, 64128-64137.
[122]
Helal, D.A.; El-Rhman, D.A.; Abdel-Halim, S.A.; El-Nabarawi, M.A. Formulation and evaluation of fluconazole topical gel. Int. J. Pharm. Pharm. Sci., 2012, 4, 176-183.
[137]
Monographs on ascorbic acid and diphenyl carbonate. In: The Merck Index, 15th Ed.; O’ Neil, M.J., Ed.; Royal Society of Chemistry,Merck & Co. Inc.: White House Station, NJ, USA,, 2013.
[138]
Aulton, M.E. Powder flow. In: Aulton’s Pharmaceutics - The Design and Manufacture of Medicines, 5th ed; Aulton, M.E.; Taylor, K.M.G., Eds.; Elsevier Ltd.: London, UK, 2018; pp. 197-210.
[139]
Sinko, P.J. Martin’s Physical Pharmacy and Pharmaceutical Sciences.Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences,, 7th Ed.; Lippincott Williams and Wilkins,Wolters Kluwer: Philadelphia, PA, USA, 2017, pp. 486-513.
[140]
Harmonised Tripartite Guideline, I.C.H. Stability Testing of New Drug Substances and Products Q1A(R2); International Council on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use: Geneva, Switzerland, 2003.